1
|
Csuka P, Molnár Z, Tóth V, Imarah AO, Balogh‐Weiser D, Vértessy BG, Poppe L. Immobilization of the Aspartate Ammonia-Lyase from Pseudomonas fluorescens R124 on Magnetic Nanoparticles: Characterization and Kinetics. Chembiochem 2022; 23:e202100708. [PMID: 35114050 PMCID: PMC9307013 DOI: 10.1002/cbic.202100708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Indexed: 11/07/2022]
Abstract
Aspartate ammonia-lyases (AALs) catalyze the non-oxidative elimination of ammonia from l-aspartate to give fumarate and ammonia. In this work the AAL coding gene from Pseudomonas fluorescens R124 was identified, isolated, and cloned into the pET-15b expression vector and expressed in E. coli. The purified enzyme (PfAAL) showed optimal activity at pH 8.8, Michaelis-Menten kinetics in the ammonia elimination from l-aspartate, and no strong dependence on divalent metal ions for its activity. The purified PfAAL was covalently immobilized on epoxy-functionalized magnetic nanoparticles (MNP), and effective kinetics of the immobilized PfAAL-MNP was compared to the native solution form. Glycerol addition significantly enhanced the storability of PfAAL-MNP. Inhibiting effect of the growing viscosity (modulated by addition of glycerol or glucose) on the enzymatic activity was observed for the native and immobilized form of PfAAL, as previously described for other free enzymes. The storage stability and recyclability of PfAAL-MNP is promising for further biocatalytic applications.
Collapse
Affiliation(s)
- Pál Csuka
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Zsófia Molnár
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Institute of EnzymologyELKH Research Center of Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Veronika Tóth
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Ali Obaid Imarah
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Diána Balogh‐Weiser
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Department of Physical Chemistry and Materials ScienceBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Beáta G. Vértessy
- Institute of EnzymologyELKH Research Center of Natural SciencesMagyar tudósok krt. 21117BudapestHungary
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - László Poppe
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Biocatalysis and Biotransformation Research CenterFaculty of Chemistry and Chemical EngineeringBabeş-Bolyai University of Cluj-NapocaArany János Str. 11400028Cluj-NapocaRomania
| |
Collapse
|
2
|
Saha P, Ganguly R, Li X, Das R, Singha NK, Pich A. Zwitterionic Nanogels and Microgels: An Overview on Their Synthesis and Applications. Macromol Rapid Commun 2021; 42:e2100112. [PMID: 34021658 DOI: 10.1002/marc.202100112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Zwitterionic polymers by virtue of their unique chemical and physical attributes have attracted researchers in recent years. The simultaneous presence of positive and negative charges in the same repeat unit renders them of various interesting properties such as superhydrophilicity, which has significantly broadened their scope for being used in different applications. Among polyzwitterions of different architectures, micro- and/or nano-gels have started receiving attention only until recently. These 3D cross-linked colloidal structures show peculiar characteristics in context to their solution properties, which are attributable either to the comonomers present or the presence of different electrolytes and biological specimens. In this review, a concise yet detailed account is provided of the different synthetic techniques and application domains of zwitterion-based micro- and/or nanogels that have been explored in recent years. Here, the focus is kept solely on the "polybetaines," which have garnered maximum research interest and remain the extensively studied polyzwitterions in literature. While their vast application potential in the biomedical sector is being detailed here, some other areas of scope such as using them as microreactors for the synthesis of metal nanoparticles or making smart membranes for water-treatment are discussed in this minireview as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany
| | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Xin Li
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany
| | - Rohan Das
- Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux, Esch-sur-Alzette, 4362, Luxembourg
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, 6167, The Netherlands
| |
Collapse
|
3
|
Wojnarowicz PM, Lima E Silva R, Ohnaka M, Lee SB, Chin Y, Kulukian A, Chang SH, Desai B, Garcia Escolano M, Shah R, Garcia-Cao M, Xu S, Kadam R, Goldgur Y, Miller MA, Ouerfelli O, Yang G, Arakawa T, Albanese SK, Garland WA, Stoller G, Chaudhary J, Norton L, Soni RK, Philip J, Hendrickson RC, Iavarone A, Dannenberg AJ, Chodera JD, Pavletich N, Lasorella A, Campochiaro PA, Benezra R. A Small-Molecule Pan-Id Antagonist Inhibits Pathologic Ocular Neovascularization. Cell Rep 2019; 29:62-75.e7. [PMID: 31577956 PMCID: PMC6896334 DOI: 10.1016/j.celrep.2019.08.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 02/01/2023] Open
Abstract
Id helix-loop-helix (HLH) proteins (Id1-4) bind E protein bHLH transcription factors, preventing them from forming active transcription complexes that drive changes in cell states. Id proteins are primarily expressed during development to inhibit differentiation, but they become re-expressed in adult tissues in diseases of the vasculature and cancer. We show that the genetic loss of Id1/Id3 reduces ocular neovascularization in mouse models of wet age-related macular degeneration (AMD) and retinopathy of prematurity (ROP). An in silico screen identifies AGX51, a small-molecule Id antagonist. AGX51 inhibits the Id1-E47 interaction, leading to ubiquitin-mediated degradation of Ids, cell growth arrest, and reduced viability. AGX51 is well-tolerated in mice and phenocopies the genetic loss of Id expression in AMD and ROP models by inhibiting retinal neovascularization. Thus, AGX51 is a first-in-class compound that antagonizes an interaction formerly considered undruggable and that may have utility in the management of multiple diseases.
Collapse
Affiliation(s)
- Paulina M Wojnarowicz
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raquel Lima E Silva
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Masayuki Ohnaka
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anita Kulukian
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sung-Hee Chang
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bina Desai
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marta Garcia Escolano
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Riddhi Shah
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marta Garcia-Cao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sijia Xu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rashmi Kadam
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Meredith A Miller
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, a Division of KBI Biopharma, San Diego, CA 92121, USA
| | - Steven K Albanese
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Glenn Stoller
- Ophthalmic Consultants of Long Island, Lynbrook, NY 11563, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Larry Norton
- Evelyn H. Lauder Breast Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajesh Kumar Soni
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Philip
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Antonio Iavarone
- Department of Neurology, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John D Chodera
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikola Pavletich
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Lasorella
- Department of Pediatrics, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Vitola G, Mazzei R, Poerio T, Porzio E, Manco G, Perrotta I, Militano F, Giorno L. Biocatalytic membrane reactor development for organophosphates degradation. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:789-795. [PMID: 30476802 DOI: 10.1016/j.jhazmat.2018.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Organophosphates (OPs) are highly toxic compounds used as pesticides and nerve agents. The devastating effects, reported in different studies, on the environment and human health indicate a serious scenario for both instantaneous and long terms effects. Bio-based strategies for OPs degradation seem the most promising solutions, particularly when extremophiles enzymes are used. These systems permit OPs degradation with high efficiency and specificity under mild conditions. However, as frequently observed, enzymes can easily lose activity in batch systems, so that a strategy to improve biocatalyst stability is highly needed, in order to develop continuous systems. In this work, for the first time, a continuous biocatalytic system for organophosphates (OPs) detoxification has been proposed by using a triple mutant of the thermostable phosphotriesterase (named SsoPox) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. The enzyme was covalently immobilized on polymeric membranes to develop a biocatalytic membrane reactor (BMR) able to hydrolyse a pesticide (paraoxon) contained in water. High paraoxon degradation (about 90%) and long term stability (1 year) were obtained when the enzyme was covalently immobilized on hydrophilic membranes. On the contrary, the enzyme in batch system completely loses its activity within few months after its solubilisation in buffer.
Collapse
Affiliation(s)
- G Vitola
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| | - R Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy.
| | - T Poerio
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| | - E Porzio
- Institute of Protein Biochemistry, National Research Council, IBP-CNR, via P. Castellino 111, 80131 Naples, Italy
| | - G Manco
- Institute of Protein Biochemistry, National Research Council, IBP-CNR, via P. Castellino 111, 80131 Naples, Italy
| | - I Perrotta
- Centre for Microscopy and Microanalysis (CM2), Dept. of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Cosenza, Italy
| | - F Militano
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| | - L Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| |
Collapse
|
5
|
Wang Z, Wang J, Chen G, Xu W, Fu Z, Jiang G, Wu J, Liu Z. Polyelectrolytes Tailored Enzyme Cascades with Enhanced Stability and Activity for One‐pot Synthesis. ChemCatChem 2018. [DOI: 10.1002/cctc.201801532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zheyu Wang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Junqian Wang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Gong Chen
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Weina Xu
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Zhongwang Fu
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Guoqiang Jiang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering University of California, Riverside Riverside CA 92521 USA
| | - Zheng Liu
- Department of Chemical Engineering Tsinghua University Beijing 100084 P.R. China
| |
Collapse
|
6
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
7
|
Vitola G, Mazzei R, Fontananova E, Porzio E, Manco G, Gaeta S, Giorno L. Polymeric biocatalytic membranes with immobilized thermostable phosphotriesterase. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Zhao G, Gong G, Wang P, Wang L, Liu H, Zheng Z. Enzymatic synthesis of L-aspartic acid by Escherichia coli cultured with a cost-effective corn plasm medium. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0805-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Singh RS, Yadav M. Enhanced production of recombinant aspartase of Aeromonas media NFB-5 in a stirred tank reactor. BIORESOURCE TECHNOLOGY 2013; 145:217-223. [PMID: 23219690 DOI: 10.1016/j.biortech.2012.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
Aspartase gene (aspA) from Aeromonas media NFB-5 was cloned and expressed in Escherichia coli BL21 using pET21b(+) expression vector. Maximum production of aspartase was obtained at shake-flask after 5 h of IPTG (1.5 mM) induction at 37°C and by supplementing the media with KH2PO4 (0.3%, w/v) and K2HPO4 (0.3%, w/v). Further production was investigated at a laboratory scale stirred tank reactor using response surface methodology (RSM). Agitation (130-270 rpm), aeration (0.30-1.70 vvm) and IPTG induction time (3-7 h) was optimized. Optimal levels of agitation (250 rpm), aeration (1.25 vvm) and induction time (6h) were determined by statistical analysis of the experimental data. More than 7-fold increase in recombinant aspartase (1234 U/g wet weight) was observed than the parent strain (172 U/g wet wt). Homogenized immobilized permeabilized recombinant cells (566 mg/g wet cells) produced more L-aspartic acid as compared to permeabilized recombinant free cells (154 mg/g wet cells).
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India.
| | | |
Collapse
|
10
|
Poppe L, Paizs C, Kovács K, Irimie FD, Vértessy B. Preparation of unnatural amino acids with ammonia-lyases and 2,3-aminomutases. Methods Mol Biol 2012; 794:3-19. [PMID: 21956553 DOI: 10.1007/978-1-61779-331-8_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ammonia-lyases catalyze a wide range of processes leading to α,β-unsaturated compounds by elimination of ammonia. In this chapter, ammonia-lyases are reviewed with major emphasis on their synthetic applications in stereoselective preparation of unnatural amino acids. Besides the synthesis of various unnatural α-amino acids with the aid of phenylalanine ammonia-lyases (PALs) utilizing the 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) prosthetic groups, the biotransformations leading to various unnatural β-amino acids with phenylalanine 2,3-aminomutases using the same catalytic MIO prosthetic group are discussed. Cloning, production, purification, and biotransformation protocols for PAL are described in detail.
Collapse
Affiliation(s)
- László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
11
|
Gumulya Y, Reetz MT. Enhancing the Thermal Robustness of an Enzyme by Directed Evolution: Least Favorable Starting Points and Inferior Mutants Can Map Superior Evolutionary Pathways. Chembiochem 2011; 12:2502-10. [DOI: 10.1002/cbic.201100412] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Indexed: 12/22/2022]
|
12
|
Reetz MT, Carballeira JD, Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl 2007; 45:7745-51. [PMID: 17075931 DOI: 10.1002/anie.200602795] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany.
| | | | | |
Collapse
|
13
|
Reetz MT, Carballeira JD, Vogel A. Iterative Saturation Mutagenesis on the Basis of B Factors as a Strategy for Increasing Protein Thermostability. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602795] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
Directed evolution is being used increasingly in industrial and academic laboratories to modify and improve commercially important enzymes. Laboratory evolution is thought to make its biggest contribution in explorations of non-natural functions, by allowing us to distinguish the properties nurtured by evolution. In this review we report the significant advances achieved with respect to the methods of biocatalyst improvement and some critical properties and applications of the modified enzymes. The application of directed evolution has been elaborately demonstrated for protein solubility, stability and catalytic efficiency. Modification of certain enzymes for their application in enantioselective catalysis has also been elucidated. By providing a simple and reliable route to enzyme improvement, directed evolution has emerged as a key technology for enzyme engineering and biocatalysis.
Collapse
Affiliation(s)
- Jasjeet Kaur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | | |
Collapse
|
15
|
Eijsink VGH, Gåseidnes S, Borchert TV, van den Burg B. Directed evolution of enzyme stability. ACTA ACUST UNITED AC 2005; 22:21-30. [PMID: 15857780 DOI: 10.1016/j.bioeng.2004.12.003] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/29/2004] [Accepted: 12/02/2004] [Indexed: 11/16/2022]
Abstract
Modern enzyme development relies to an increasing extent on strategies based on diversity generation followed by screening for variants with optimised properties. In principle, these directed evolution strategies might be used for optimising any enzyme property, which can be screened for in an economically feasible way, even if the molecular basis of that property is not known. Stability is an interesting property of enzymes because (1) it is of great industrial importance, (2) it is relatively easy to screen for, and (3) the molecular basis of stability relates closely to contemporary issues in protein science such as the protein folding problem and protein folding diseases. Thus, engineering enzyme stability is of both commercial and scientific interest. Here, we review how directed evolution has contributed to the development of stable enzymes and to new insight into the principles of protein stability. Several recent examples are described. These examples show that directed evolution is an effective strategy to obtain stable enzymes, especially when used in combination with rational or semi-rational engineering strategies. With respect to the principles of protein stability, some important lessons to learn from recent efforts in directed evolution are (1) that there are many structural ways to stabilize a protein, which are not always easy to rationalize, (2) that proteins may very well be stabilized by optimizing their surfaces, and (3) that high thermal stability may be obtained without forfeiture of catalytic performance at low temperatures.
Collapse
Affiliation(s)
- Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, P.O. Box 5003, N-1432 As, Norway
| | | | | | | |
Collapse
|
16
|
Asano Y, Kira I, Yokozeki K. Alteration of substrate specificity of aspartase by directed evolution. ACTA ACUST UNITED AC 2005; 22:95-101. [PMID: 15857789 DOI: 10.1016/j.bioeng.2004.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 12/06/2004] [Accepted: 12/21/2004] [Indexed: 11/16/2022]
Abstract
Aspartase (l-aspartate ammonia-lyase, EC 4.3.1.1), which catalyzes the reversible deamination of l-aspartic acid to yield fumaric acid and ammonia, is highly selective towards l-aspartic acid. We screened for enzyme variants with altered substrate specificity by a directed evolution method. Random mutagenesis was performed on an Escherichia coli aspartase gene (aspA) by error-prone PCR to construct a mutant library. The mutant library was introduced to E. coli and the transformants were screened for production of fumaric acid-mono amide from l-aspartic acid-alpha-amide. Through the screening, one mutant, MA2100, catalyzing deamination of l-aspartic acid-alpha-amide was achieved. Gene analysis of the MA2100 mutant indicated that the mutated enzyme had a K327N mutation. The characteristics of the mutated enzyme were examined. The optimum pH values for the l-aspartic acid and l-aspartic acid-alpha-amide of the mutated enzyme were pH 8.5 and 6.0, respectively. The K(m) value and V(max) value for the l-aspartic acid of the mutated enzyme were 28.3 mM and 0.26 U/mg, respectively. The K(m) value and V(max) value for the l-aspartic acid-alpha-amide of the mutated enzyme were 1450 mM and 0.47 U/mg, respectively. This is the first report describing the alteration of the substrate specificity of aspartase, an industrially important enzyme.
Collapse
Affiliation(s)
- Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan.
| | | | | |
Collapse
|
17
|
Sheng Y, Li S, Gou X, Kong X, Wang X, Sun Y, Zhang J. The hybrid enzymes from α-aspartyl dipeptidase and l-aspartase. Biochem Biophys Res Commun 2005; 331:107-12. [PMID: 15845365 DOI: 10.1016/j.bbrc.2005.03.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Indexed: 10/25/2022]
Abstract
With combinative functionalities as well as the improved activity and stability, the novel hybrid enzymes (HEs) from the heterogeneous enzymes of alpha-aspartyl dipeptidase (PepE, monomer) and l-aspartase (l-AspA, tetramer) were constructed successfully by gene random deletion strategy. The wild-type hybrid enzyme (WHE) and the evolved hybrid enzyme (EHE) were selected, respectively, upon the phenotype and the enzyme activity. The relative activity of the WHE tested was about 110% of the wild-type PepE and 26% of the wild-type l-AspA, whilst the activity of EHE was about 340% of the PepE and 87% of the l-AspA. In comparison to its individual wild-type enzymes, the EHE exhibited an improved thermostability, when examined at the enzyme concentration of 10(-7)mol/L, but the WHE showed a reduced thermostability. The activity of the EHE was about 3-fold compared to that of the WHE. The current results give a good example that the hybridization of enzymes could be attained between the monomer and multimer enzymes. In addition, they also indicate that construction hybrid enzyme from evolved enzymes is feasible.
Collapse
Affiliation(s)
- Yongjie Sheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Struhalla M, Czaja R, Hahn U. Addressing the Challenge of Changing the Specificity of RNase T1 with Rational and Evolutionary Approaches. Chembiochem 2004; 5:200-5. [PMID: 14760741 DOI: 10.1002/cbic.200300715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although ribonuclease T1 (RNase T1) is one of the best-characterized proteins with respect to structure and enzymatic action, numerous attempts at altering the specificity of the enzyme to cleave single-stranded RNA at the 3'-side of adenylic instead of guanylic residues by rational approaches have failed so far. Recently we generated and characterized the RNase T1 variant RV with a 7200-fold increase in adenylyl-3',5'-cytidine (ApC)/guanylyl-3',5'-cytidine (GpC) preference, with the guanine-binding loop changed from 41-KYNNYE-46 (wt) to 41-EFRNWN-46. Now we have introduced the asparagine residue at position 46 of the wild-type enzyme as a single-point mutation in variant E46N and in combination with the Y45W exchange also occurring in RV. Both variants show an improved ApC/GpC preference with a 1450-fold increase for E46N and a 2100-fold increase for Y45W/E46N in comparison to wild-type activity. We also addressed the challenge of altering enzyme specificity with an evolutionary approach. We have randomly introduced point mutations into the RNase T1 wild-type gene and into the gene of the variant RV with different mutation rates. Altogether we have screened about 100,000 individual clones for activity on RNase indicator plates; 533 of these clones were active. A significant change in substrate specificity towards an ApC preference could not be observed for any of these active variants; this demonstrated the magnitude of the challenge to alter the specificity of this evolutionary perfected enzyme.
Collapse
Affiliation(s)
- Marc Struhalla
- Institut für Biochemie, Fakultät für Biowissenschaften, Pharmazie und Psychologie, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | | | | |
Collapse
|
19
|
Paradoxical thermostable enzymes from psychrophile: molecular characterization and potentiality for biotechnological application. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00073-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Activation Changes of Hafnia alvei Aspartase by Acetic Anhydride. B KOREAN CHEM SOC 2002. [DOI: 10.5012/bkcs.2002.23.8.1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Kong X, Li Z, Gou X, Zhu S, Zhang H, Wang X, Zhang J. A monomeric L-aspartase obtained by in vitro selection. J Biol Chem 2002; 277:24289-93. [PMID: 11983692 DOI: 10.1074/jbc.m200370200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By mimicking the partial spatial structure of the dimer of the l-aspartase subunit, the central ten-helix bundle, and an "active site" between the cleft of domain 1 (D1) and domain 3 (D3) from different subunits, we designed l-aspartase variants, in which D1D2 and D2D3 were ligated with a random hexapeptide loop. As expected, we obtained the variant with the highest activity (relative activity is 21.3% of the native enzyme, named as drAsp017) by in vitro selection. The molecular weight of this variant, obtained from size-exclusion column chromatography, is about 81 kDa, which indicates that it is indeed a monomer, whereas native l-aspartase is a tetramer. The activity-reversibility of drAsp017 (10(-7) m) was 80% after incubation for 30 min at 50 degrees C, while native enzyme only retained about 17% under the same conditions. Reactivation of drAsp017 denatured in 4 m guanidine HCl was independent of protein concentration at up to 20 x 10(-8) m at 25 degrees C, whereas the protein concentration of native enzyme strongly affected its reactivation under the above conditions. The sensitivity of drAsp017 (10(-7) m) to effective factors in the fumarate-amination reaction compared with native enzyme was also determined. Half-saturating concentrations of the activator l-aspartate and Mg2+ for drAsp017 (0.8 and 0.5 mm, respectively) are much higher than that of the native enzyme (0.10 and 0.15 mm, respectively). The data show that a monomeric l-aspartase is obtained by in vitro selection. Thus, the conversion of oligomeric proteins into their functional monomers could have important applications.
Collapse
Affiliation(s)
- Xiangduo Kong
- Key Lab for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Kong X, Liu Y, Gou X, Zhu S, Zhang H, Wang X, Zhang J. Directed evolution of alpha-aspartyl dipeptidase from Salmonella typhimurium. Biochem Biophys Res Commun 2001; 289:137-42. [PMID: 11708790 DOI: 10.1006/bbrc.2001.5937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Model-free approaches (error-prone PCR to introduce random mutations, DNA shuffling to combine positive mutations, and screening of the resultant mutant libraries) have been used to enhance the catalytic activity and thermostability of alpha-aspartyl dipeptidase from Salmonella typhimurium, which is uniquely able to hydrolyze Asp-X dipeptides (where X is any amino acid) and one tripeptide (Asp-Gly-Gly). Under double selective pressures of activity and thermostability, through two rounds of error-prone PCR and three sequential generations of DNA shuffling, coupled with screening, a mutant pepEM3074 with approximately 47-fold increased enzyme activity compared with its wild-type parent was obtained. Moreover, the stability of pepEM3074 is increased significantly. Three amino acid substitutions (Asn89His, Gln153Glu, and Leu205Arg), two of them are near the active site and substrate binding pocket, were identified by sequencing the genes encoding this evolved enzyme. The mechanism of the enhancement of activity and stability was analyzed in this paper.
Collapse
Affiliation(s)
- X Kong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- D A Moffet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
24
|
|