1
|
Barkin JM, Jin-Smith B, Torok K, Pi L. Significance of CCNs in liver regeneration. J Cell Commun Signal 2023:10.1007/s12079-023-00762-x. [PMID: 37202628 DOI: 10.1007/s12079-023-00762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
The liver has an inherent regenerative capacity via hepatocyte proliferation after mild-to-modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1-CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvβ5, αvβ3, α6β1, αvβ6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of CCN genes in liver regeneration in relation to hepatocyte-driven or LPC/OC-mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting. Ccns in liver regeneration Restoring damaged or lost tissues requires robust cell growth and dynamic matrix remodeling. Ccns are matricellular proteins highly capable of influencing cell state and matrix production. Current studies have identified Ccns as active players in liver regeneration. Cell types, modes of action, and mechanisms of Ccn induction may vary depending on liver injuries. Hepatocyte proliferation is a default pathway for liver regeneration following mild-to-modest damages, working in parallel with the transient activation of stromal cells, such as macrophages and hepatic stellate cells (HSC). Liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) and are associated with sustained fibrosis when hepatocytes lose their proliferative ability in severe or chronic liver damage. Ccns may facilitate both hepatocyte regeneration and LPC/OC repair via various mediators (growth factors, matrix proteins, integrins, etc.) for cell-specific and context-dependent functions.
Collapse
Affiliation(s)
- Joshua M Barkin
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Kendle Torok
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
2
|
Hartwig V, Dewidar B, Lin T, Dropmann A, Ganss C, Kluth MA, Tappenbeck N, Tietze L, Christ B, Frank M, Vogelmann R, Ebert MPA, Dooley S. Human skin-derived ABCB5 + stem cell injection improves liver disease parameters in Mdr2KO mice. Arch Toxicol 2019; 93:2645-2660. [PMID: 31435712 DOI: 10.1007/s00204-019-02533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Although liver transplantation is a potential effective cure for patients with end-stage liver diseases, this strategy has several drawbacks including high cost, long waiting list, and limited availability of liver organs. Therefore, stem cell-based therapy is presented as an alternative option, which showed promising results in animal models of acute and chronic liver injuries. ABCB5+ cells isolated from skin dermis represent an easy accessible and expandable source of homogenous stem cell populations. In addition, ABCB5+ cells showed already promising results in the treatment of corneal and skin injury. To date, the effect of these cells on liver injury is still unknown. In the current study, sixteen weeks old Mdr2KO mice were i.v. injected with 500,000 ABCB5+ cells using different experimental setups. The effects of cellular therapy on inflammation, fibrosis, apoptosis, and proliferation were analyzed in the collected liver tissues. Toxicity of ABCB5+ cells was additionally investigated in mice with partial liver resection. In vitro, the fibrosis- and inflammatory-modulating effects of supernatant from ABCB5+ cells were examined in the human hepatic stellate cell line (LX-2). Cell injections into fibrotic Mdr2KO mice as well as into mice upon partial liver resection have no signs of toxicity with regard to cell transformation, cellular damage, fibrosis or inflammation as compared to controls. We next investigated the effects of ABCB5+ cells on established biliary liver fibrosis in the Mdr2KO mice. ABCB5+ cells to some extent influenced the shape of the liver inflammatory response and significantly reduced the amount of collagen deposition, as estimated from quantification of sirius red staining. Furthermore, reduced apoptosis and enhanced death compensatory proliferation resulted from ABCB5+ cell transformation. The stem cells secreted several trophic factors that activated TGF-β family signaling in cultured LX-2 hepatic stellate cells (HSCs), therewith shaping cell fate to an αSMAhigh, Vimentinlow phenotype. Taken together, ABCB5+ cells can represent a safe and feasible strategy to support liver regeneration and to reduce liver fibrosis in chronic liver diseases.
Collapse
Affiliation(s)
- Vanessa Hartwig
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Bedair Dewidar
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Ganss
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | - Mark Andreas Kluth
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | | | - Lysann Tietze
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Bruno Christ
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Markus Frank
- Department of Pediatrics and Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Roger Vogelmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Philip Alexander Ebert
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
3
|
Cheng JC, Wang EY, Yi Y, Thakur A, Tsai SH, Hoodless PA. S1P Stimulates Proliferation by Upregulating CTGF Expression through S1PR2-Mediated YAP Activation. Mol Cancer Res 2018; 16:1543-1555. [DOI: 10.1158/1541-7786.mcr-17-0681] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022]
|
4
|
Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG. Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). Int J Mol Med 2015; 36:1451-63. [PMID: 26498181 PMCID: PMC4678164 DOI: 10.3892/ijmm.2015.2390] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
The CCN family of proteins comprises the members CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. They share four evolutionarily conserved functional domains, and usually interact with various cytokines to elicit different biological functions including cell proliferation, adhesion, invasion, migration, embryonic development, angiogenesis, wound healing, fibrosis and inflammation through a variety of signalling pathways. In the past two decades, emerging functions for the CCN proteins (CCNs) have been identified in various types of cancer. Perturbed expression of CCNs has been observed in a variety of malignancies. The aberrant expression of certain CCNs is associated with disease progression and poor prognosis. Insight into the detailed mechanisms involved in CCN-mediated regulation may be useful in understanding their roles and functions in tumorigenesis and cancer metastasis. In this review, we briefly introduced the functions of CCNs, especially in cancer.
Collapse
Affiliation(s)
- Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Hoi Ping Weeks
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
5
|
YANG AITING, WANG PING, TONG XIAOFEI, CONG MIN, LIU TIANHUI, CONG RUI, WU PENG, JIA JIDONG, WANG BAOEN, YOU HONG. Connective tissue growth factor induces hepatic progenitor cells to differentiate into hepatocytes. Int J Mol Med 2013; 32:35-42. [DOI: 10.3892/ijmm.2013.1380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/05/2013] [Indexed: 11/05/2022] Open
|
6
|
Alfaro MP, Deskins DL, Wallus M, DasGupta J, Davidson JM, Nanney LB, Guney MA, Gannon M, Young PP. A physiological role for connective tissue growth factor in early wound healing. J Transl Med 2013; 93:81-95. [PMID: 23212098 PMCID: PMC3720136 DOI: 10.1038/labinvest.2012.162] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mesenchymal stem cells (MSCs) that overexpress secreted frizzled-related protein 2 (sFRP2) exhibit an enhanced reparative phenotype. The secretomes of sFRP2-overexpressing MSCs and vector control-MSCs were compared through liquid chromatography tandem mass spectrometry. Proteomic profiling revealed that connective tissue growth factor (CTGF; CCN2) was overrepresented in the conditioned media of sFRP2-overexpressing MSCs and MSC-derived CTGF could thus be an important paracrine effector. Subcutaneously implanted, MSC-loaded polyvinyl alcohol (PVA) sponges and stented excisional wounds were used as wound models to study the dynamics of CTGF expression. Granulation tissue generated within the sponges and full-thickness skin wounds showed transient upregulation of CTGF expression by MSCs and fibroblasts, implying a role for this molecule in early tissue repair. Although collagen and COL1A2 mRNA were not increased when recombinant CTGF was administered to sponges during the early phase (day 1-6) of tissue repair, prolonged administration (>15 days) of exogenous CTGF into PVA sponges resulted in fibroblast proliferation and increased deposition of collagen within the experimental granulation tissue. In support of its physiological role, CTGF immunoinhibition during early repair (days 0-7) reduced the quantity, organizational quality and vascularity of experimental granulation tissue in the sponge model. However, CTGF haploinsufficiency was not enough to reduce collagen deposition in excisional wounds. Similar to acute murine wound models, CTGF was transiently present in the early phase of human acute burn wound healing. Together, these results further support a physiological role for CTGF in wound repair and demonstrate that when CTGF expression is confined to early tissue repair, it serves a pro-reparative role. These data also further illustrate the potential of MSC-derived paracrine modulators to enhance tissue repair.
Collapse
Affiliation(s)
- Maria P Alfaro
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Desirae L Deskins
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith Wallus
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jayasri DasGupta
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Davidson
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
,The Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Lillian B Nanney
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle A Guney
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Gannon
- The Department of Veterans Affairs Medical Center, Nashville, TN, USA
,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pampee P Young
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
,The Department of Veterans Affairs Medical Center, Nashville, TN, USA
,Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Abstract
The liver is the body's most important detoxification organ and has an extreme ability to regenerate. The regeneration process can be divided into three stages: initiation, proliferation and termination. Most of previous studies focus on the initial stage and proliferative stage, while the mechanism for the proper termination of liver regeneration is still poorly understood. The termination stage involves a variety of cytokines and growth factors, which mainly function to inhibit mitogen-mediated liver cell growth-promoting effect and promote the apoptosis of excessively proliferating liver cells. In this paper we will discuss the major factors involved in the termination of liver regeneration.
Collapse
|
8
|
Abstract
Liver regeneration is known to be a process involving highly organized and ordered tissue growth triggered by the loss of liver tissue, and remains a fascinating topic. A large number of genes are involved in this process, and there exists a sequence of stages that results in liver regeneration, while at the same time inhibitors control the size of the regenerated liver. The initiation step is characterized by priming of quiescent hepatocytes by factors such as TNF-α, IL-6 and nitric oxide. The proliferation step is the step during which hepatocytes enter into the cell cycle's G1 phase and are stimulated by complete mitogens including HGF, TGF-α and EGF. Hepatic stimulator substance, glucagon, insulin, TNF-α, IL-1 and IL-6 have also been implicated in regulating the regeneration process. Inhibitors and stop signals of hepatic regeneration are not well known and only limited information is available. Furthermore, the effects of other factors such as VEGF, PDGF, hypothyroidism, proliferating cell nuclear antigen, heat shock proteins, ischemic-reperfusion injury, steatosis and granulocyte colony-stimulating factor on liver regeneration are also systematically reviewed in this article. A tissue engineering approach using isolated hepatocytes for in vitro tissue generation and heterotopic transplantation of liver cells has been established. The use of stem cells might also be very attractive to overcome the limitation of donor liver tissue. Liver-specific differentiation of embryonic, fetal or adult stem cells is currently under investigation.
Collapse
Affiliation(s)
- Changku Jia
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China.
| |
Collapse
|
9
|
Shupe T, Petersen BE. Potential applications for cell regulatory factors in liver progenitor cell therapy. Int J Biochem Cell Biol 2010; 43:214-21. [PMID: 20851776 DOI: 10.1016/j.biocel.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 08/24/2010] [Accepted: 09/06/2010] [Indexed: 12/18/2022]
Abstract
Orthotopic liver transplant represent the state of the art treatment for terminal liver pathologies such as cirrhosis in adults and hemochromatosis in neonates. A limited supply of transplantable organs in relationship to the demand means that many patients will succumb to disease before an organ becomes available. One promising alternative to liver transplant is therapy based on the transplant of liver progenitor cells. These cells may be derived from the patient, expanded in vitro, and transplanted back to the diseased liver. Inborn metabolic disorders represent the most attractive target for liver progenitor cell therapy, as many of these disorders may be corrected by repopulation of only a portion of the liver by healthy cells. Another potential application for liver progenitor cell therapy is the seeding of bio-artificial liver matrix. These ex vivo bioreactors may someday be used to bridge critically ill patients to other treatments. Conferring a selective growth advantage to the progenitor cell population remains an obstacle to therapy development. Understanding the molecular signaling mechanisms and micro-environmental cues that govern liver progenitor cell phenotype may someday lead to strategies for providing this selective growth advantage. The discovery of a population of cells within the bone marrow possessing the ability to differentiate into hepatocytes may provide an easily accessible source of cells for liver therapies.
Collapse
Affiliation(s)
- Thomas Shupe
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610-0275, USA.
| | | |
Collapse
|
10
|
Pintilie DG, Shupe TD, Oh SH, Salganik SV, Darwiche H, Petersen BE. Hepatic stellate cells' involvement in progenitor-mediated liver regeneration. J Transl Med 2010; 90:1199-208. [PMID: 20440274 PMCID: PMC2912420 DOI: 10.1038/labinvest.2010.88] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Earlier studies conducted by our laboratory have shown that suppression of transforming growth factor-beta (TGFbeta)-mediated upregulation of connective tissue growth factor (CTGF) by iloprost resulted in a greatly diminished oval cell response to 2-acetylaminofluorene/partial hepatectomy (2AAF/PH) in rats. We hypothesized that this effect is due to decreased activation of hepatic stellate cells. To test this hypothesis, we maintained rats on a diet supplemented with 2% L-cysteine as a means of inhibiting stellate cell activation during the oval cell response to 2AAF/PH. In vitro experiments show that L-cysteine did, indeed, prevent the activation of stellate cells while exerting no direct effect on oval cells. Desmin immunostaining of liver sections from 2AAF/PH animals indicated that maintenance on the L-cysteine diet resulted in an 11.1-fold decrease in the number of activated stellate cells within the periportal zones. The total number of cells proliferating in the periportal zones of livers from animals treated with L-cysteine was drastically reduced. Further analyses showed a greater than fourfold decrease in the magnitude of the oval cell response in animals maintained on the L-cysteine diet as determined by immunostaining for both OV6 and alpha-fetoprotein (AFP). Global liver expression of AFP as measured by real-time PCR was shown to be decreased 4.7-fold in the L-cysteine-treated animals. These data indicate that the activation of hepatic stellate cells is required for an appropriate oval cell response to 2AAF/PH.
Collapse
|
11
|
Tong Z, Chen R, Alt DS, Kemper S, Perbal B, Brigstock DR. Susceptibility to liver fibrosis in mice expressing a connective tissue growth factor transgene in hepatocytes. Hepatology 2009; 50:939-47. [PMID: 19670427 PMCID: PMC2737071 DOI: 10.1002/hep.23102] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Connective tissue growth factor (CCN2) is a matricellular protein that is up-regulated in many fibrotic disorders and coexpressed with transforming growth factor beta. CCN2 promotes fibrogenesis and survival in activated hepatic stellate cells, and injured or fibrotic liver contains up-regulated levels of CCN2 that are produced by a variety of different cell types, including hepatocytes. To investigate CCN2 action in vivo, transgenic FVB mice were created in which the human CCN2 gene was placed under the control of the albumin enhancer promoter to elevate hepatocyte CCN2 levels. Production of human CCN2 (hCCN2) messenger RNA and elevated CCN2 protein levels was demonstrated in transgenic livers, whereas levels of endogenous mouse CCN2 were comparable between transgenic and wild-type mice. Liver histology and liver function tests were unaffected in transgenic animals. However, after chronic administration of CCl(4), alpha-smooth muscle actin (alpha-SMA)-expressing cells and collagen deposition were increased as a function of the dosage of the hCCN2 transgene (hccn2(+/+) > hccn2(+/-) > hccn2(-/-)). Moreover, CCl(4)-induced serum hyaluronic acid, hepatic tissue levels of alpha-SMA or acid-soluble collagen, and messenger RNA expression of alpha-SMA, collagen alpha1 (I), matrix metalloprotease-2, or tissue inhibitor of metalloprotease-1 were greater in transgenic mice than in wild-type mice. Transgenic mice also exhibited enhanced hepatic deposition of collagen 2 weeks after bile duct ligation. CONCLUSION Production of elevated CCN2 levels in hepatocytes of transgenic mice in vivo does not cause hepatic injury or fibrosis per se but renders the livers more susceptible to the injurious actions of other fibrotic stimuli. These studies support a central role of CCN2 in hepatic fibrosis and demonstrate a role of the microenvironment in regulating the profibrotic action of CCN2.
Collapse
Affiliation(s)
- ZhenYue Tong
- Center for Cell and Developmental Biology, The Research Institute at Nationwide Children's Hospital, Columbus Ohio 43205 USA
| | - Ruju Chen
- Center for Cell and Developmental Biology, The Research Institute at Nationwide Children's Hospital, Columbus Ohio 43205 USA
| | - Daniel S Alt
- Center for Cell and Developmental Biology, The Research Institute at Nationwide Children's Hospital, Columbus Ohio 43205 USA
| | - Sherri Kemper
- Center for Cell and Developmental Biology, The Research Institute at Nationwide Children's Hospital, Columbus Ohio 43205 USA
| | - Bernard Perbal
- Laboratoire d'Oncologie, Virale et Moléculaire, UFR de Biochimie, Université Paris 7-D. Diderot, 2 Place Jussieu 75 005, Paris, France
| | - David R Brigstock
- Center for Cell and Developmental Biology, The Research Institute at Nationwide Children's Hospital, Columbus Ohio 43205 USA, Departments of Surgery and Molecular and Cellular Biochemistry, The Ohio State University, Columbus OH 43205 USA
| |
Collapse
|
12
|
Abstract
Connective tissue growth factor (CTGF=CCN2), one of six members of cysteine-rich, secreted, heparin-binding proteins with a modular structure, is recognized as an important player in fibrogenic pathways as deduced from findings in non-hepatic tissues and emerging results from liver fibrosis. Collectively, the data show strongly increased expression in fibrosing tissues and transforming growth factor (TGF-beta)-stimulated expression in hepatocytes, biliary epithelial cells and stellate cells. Functional activity as a mediator of fibre-fibre, fibre-matrix and matrix-matrix interactions, as an enhancer of profibrogenic TGF-beta and several secondary effects owing to TGF-beta enhancement, and as a down-modulator of the bioactivity of bone morphogenetic protein-7 has been proposed. By changing the activity ratio of TGF-beta to its antagonist bone-morphogenetic protein-7, CTGF is proposed as a fibrogenic master switch for epithelial-mesenchymal transition. Consequently, knockdown of CTGF considerably attenuates experimental liver fibrosis. The spill-over of CTGF from the liver into the blood stream proposes this protein as a non-invasive reporter of TGF-beta bioactivity in this organ. Indeed, CTGF-levels in sera correlate significantly with fibrogenic activity. The data suggest CTGF as a multifaceted regulatory protein in fibrosis, which offers important translational aspects for diagnosis and follow-up of hepatic fibrogenesis and as a target for therapeutic interventions. In addition, CTGF-promoter polymorphism might be of importance as a prognostic genetic marker to predict the progression of fibrosis.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany
| | | |
Collapse
|
13
|
Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 2008; 41:771-83. [PMID: 18775791 DOI: 10.1016/j.biocel.2008.07.025] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/25/2008] [Accepted: 07/25/2008] [Indexed: 12/21/2022]
Abstract
Members of the CCN (CYR61/CTGF/NOV) family have emerged as dynamically expressed, extracellular matrix-associated proteins that play critical roles in cardiovascular and skeletal development, injury repair, fibrotic diseases and cancer. The synthesis of CCN proteins is highly inducible by serum growth factors, cytokines, and environmental stresses such as hypoxia, UV exposure, and mechanical stretch. Consisting of six secreted proteins in vertebrate species, CCNs are typically comprised of four conserved cysteine-rich modular domains. They function primarily through direct binding to specific integrin receptors and heparan sulfate proteoglycans, thereby triggering signal transduction events that culminate in the regulation of cell adhesion, migration, proliferation, gene expression, differentiation, and survival. CCN proteins can also modulate the activities of several growth factors and cytokines, including TGF-beta, TNFalpha, VEGF, BMPs, and Wnt proteins, and may thereby regulate a broad array of biological processes. Recent studies have uncovered novel CCN activities unexpected for matricellular proteins, including their ability to induce apoptosis as cell adhesion substrates, to dictate the cytotoxicity of inflammatory cytokines such as TNFalpha, and to promote hematopoietic stem cell self-renewal. As potent regulators of angiogenesis and chondrogenesis, CCNs are essential for successful cardiovascular and skeletal development during embryogenesis. In the adult, the expression of CCN proteins is associated with injury repair and inflammation, and has been proposed as diagnostic or prognostic markers for diabetic nephropathy, hepatic fibrosis, systemic sclerosis, and several types of cancer. Targeting CCN signaling pathways may hold promise as a strategy of rational therapeutic design.
Collapse
Affiliation(s)
- Chih-Chiun Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, United States
| | | |
Collapse
|
14
|
Zhang P, Shi M, Wei Q, Wang K, Li X, Li H, Bu H. Increased Expression of Connective Tissue Growth Factor in Patients with Urethral Stricture. TOHOKU J EXP MED 2008; 215:199-206. [PMID: 18648180 DOI: 10.1620/tjem.215.199] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University
- Department of urology, West China Hospital, Sichuan University
| | - Ming Shi
- Department of urology, West China Hospital, Sichuan University
| | - Qiang Wei
- Department of urology, West China Hospital, Sichuan University
| | - Kunjie Wang
- Department of urology, West China Hospital, Sichuan University
| | - Xiang Li
- Department of urology, West China Hospital, Sichuan University
| | - Hong Li
- Department of urology, West China Hospital, Sichuan University
| | - Hong Bu
- Department of pathology, West China Hospital, Sichuan University
| |
Collapse
|
15
|
Gressner OA, Lahme B, Demirci I, Gressner AM, Weiskirchen R. Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J Hepatol 2007; 47:699-710. [PMID: 17629588 DOI: 10.1016/j.jhep.2007.05.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/26/2007] [Accepted: 05/11/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Connective tissue growth factor (CTGF/CCN2) has been implicated in the pathogenesis of hepatic fibrosis and suggested as a downstream mediator of the fibrogenic master cytokine TGF-beta. METHODS We investigated the effect of TGF-beta1 on CTGF/CCN2 expression in cultured rat hepatic stellate cells and hepatocytes by means of Western and Northern blotting, immunocytochemistry, reporter gene analysis, and metabolic labelling. RESULTS We found that the expression of CTGF/CCN2 in hepatic stellate cells is (i) only marginally (if at all) stimulated by TGF-beta and by a constitutively active type I TGF-beta receptor, (ii) independent from Smad2/3 phosphorylation, (iii) not reduced by TGF-beta1 antagonists or ALK5-receptor inhibitors and (iv) not upregulated during transdifferentiation to myofibroblasts in culture. However, expression and secretion of CTGF/CCN2 in cultured hepatocytes increased spontaneously during culture and was strongly stimulated by TGF-beta1. In bile-duct ligated and CCl(4)-treated rat livers, a strong CTGF/CCN2 expression in hepatocytes was noticed. Endothelin-1 stimulated CTGF/CCN2 expression in stellate cells but not in hepatocytes. Pathway specific signalling inhibitors point to the involvement of non-Smad signalling cascades but their contribution to CTGF/CCN2 regulation is different in both cell types. CONCLUSIONS The results do not reveal a relevant interrelation between TGF-beta function and CTGF/CCN2 expression in hepatic stellate cells, which is in contrast to hepatocytes.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
16
|
Isbert C, Ritz JP, Roggan A, Schuppan D, Ajubi N, Buhr HJ, Hohenberger W, Germer CT. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection. Lasers Surg Med 2007; 39:42-50. [PMID: 17111416 DOI: 10.1002/lsm.20448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. STUDY DESIGN/MATERIALS AND METHODS Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. RESULTS Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P < 0.001], and in group III (control) [978.92 +/- 87.57; P < 0.003]. Forty-eight hours after the intervention intrahepatic mRNA expression level of HGF in group II (resection) was almost twofold higher than in group I (laser) [7.2 +/- 1.0 c/mf vs. 3.9 +/- 0.4 c/mf; P<0.01]. Fourteen days after the intervention intrahepatic mRNA expression level of CTGF in group I (laser) was higher than in group II (resection) [13.89 +/- 0.77 c/mf vs. 9.09 +/- 0.78 c/mf; P < 0.003]. CONCLUSIONS LITT leads to a decrease of residual tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT.
Collapse
Affiliation(s)
- Christoph Isbert
- Department of Surgery, Klinikum Nuernberg Nord, D-90419 Nuernberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abe K, Suzuki T, Ijiri M, Koyama Y, Isemura M, Kinae N. The anti-fibrotic effect of green tea with a high catechin content in the galactosamine-injured rat liver. Biomed Res 2007; 28:43-8. [PMID: 17379956 DOI: 10.2220/biomedres.28.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previously, we reported that the oral administration of green tea rich in catechins restored levels of several biomarkers increasing in galactosamine-treated rats to nearly control values. These biomarkers included serum transaminase activities, serum concentrations of tumor necrosis factor-alpha and interleukin 1-beta, and the hepatic mRNA expression of these inflammatory cytokines. In the present study, we examined possible anti-fibrotic effects of green tea in galactosamine-induced hepatitis. The results of the reverse transcription and polymerase chain reaction indicated that the increase in gene expression of the alpha1 chain of collagen type 1 and transforming growth factor beta-1 in the injured liver 24 h post-injection of galactosamine was suppressed by the administration of green tea. Masson's trichrome staining demonstrated that the extent of fibrogenesis after 14 days was greater in the galactosamine-injured livers not treated with green tea than the treated ones. These results suggest that the drinking of green tea with a high catechin content may help to prevent and/or attenuate the development of fibrosis in hepatitis.
Collapse
Affiliation(s)
- Kouichi Abe
- Graduate School of Nutritional and Environmental Sciences, and COE for the 21st Century, University of Shizuoka, Yada, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Chiou MJ, Chao TT, Wu JL, Kuo CM, Chen JY. The physiological role of CTGF/CCN2 in zebrafish notochond development and biological analysis of the proximal promoter region. Biochem Biophys Res Commun 2006; 349:750-8. [PMID: 16950203 DOI: 10.1016/j.bbrc.2006.08.095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 08/17/2006] [Indexed: 11/16/2022]
Abstract
During mouse embryogenesis, CTGF/CCN2 is expressed in zones containing hypertrophic chondroctyes and calcifying cartilage such as long bones, ribs, vertebral column, and phalanges. But in fish, its expression is yet unclear. Development of the vertebrae is morphologically similar among vertebrates, indicating that the underlying mechanism regulating the process is highly conserved during evolution. Analysis of 3.2kb of the CTGF/CCN2 proximal promoter sequence revealed a consensus TATAA box, putative AP1, Brn-2, CdxA, C/EBP alpha, C/EBP beta, C-Ets-, delta E, HFH-2, and HSF2 binding sites. Transient expression experiments with a 5'-deletion revealed at least 4 regulatory regions in the zebrafish CTGF/CCN2 gene, 2 with a stimulatory effect on transcription and 2 with an apparent inhibitory effect after IGF-I treatment in the ZFL cell line. To study the promoter-specific expression, we constructed a series of CTGF/CCN2 (3.0-, 2.5-, 2.0-, 1.5-, 1.0-, and 0.4-kb) promoter-driven green fluorescent protein (GFP) fragments encoding the GFP cDNA transgene which was microinjected into zebrafish embryos. Morphological studies of transgenic zebrafish indicated that the CTGF/CCN2 promoter-driven GFP transcripts appeared in the notochord. Targeted knockdown of the CTGF/CCN2 gene by two antisense morpholino oligonucleotides resulted in disruptions to notochord development. From a comparative point of view, this study of the CTGF/CCN2 gene in zebrafish may correlate well with those previously published on the mouse. These molecular results suggest that CTGF/CCN2 plays an important role in notochord development and is required for general embryonic development.
Collapse
Affiliation(s)
- Ming-Jyun Chiou
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan, ROC
| | | | | | | | | |
Collapse
|
19
|
Pahlavan PS, Feldmann RE, Zavos C, Kountouras J. Prometheus' challenge: molecular, cellular and systemic aspects of liver regeneration. J Surg Res 2006; 134:238-51. [PMID: 16458925 DOI: 10.1016/j.jss.2005.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 10/25/2005] [Accepted: 12/15/2005] [Indexed: 02/08/2023]
Abstract
The fascinating aspect of the liver is the capacity to regenerate after injury or resection. A variety of genes, cytokines, growth factors, and cells are involved in liver regeneration. The exact mechanism of regeneration and the interaction between cells and cytokines are not fully understood. There seems to exist a sequence of stages that result in liver regeneration, while at the same time inhibitors control the size of the regenerated liver. It has been proven that hepatocyte growth factor, transforming growth factor, epidermal growth factor, tumor necrosis factor-alpha, interleukins -1 and -6 are the main growth and promoter factors secreted after hepatic injury, partial hepatectomy and after a sequence of different and complex reactions to activate transcription factors, mainly nuclear factor kappaB and signal transduction and activator of transcription-3, affects specific genes to promote liver regeneration. Unraveling the complex processes of liver regeneration may provide novel strategies in the management of patients with end-stage liver disease. In particular, inducing liver regeneration should reduce morbidity for the donor and increase faster recovery for the liver transplantation recipient.
Collapse
Affiliation(s)
- Payam Samareh Pahlavan
- Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
20
|
Khoo YT, Ong CT, Mukhopadhyay A, Han HC, Do DV, Lim IJ, Phan TT. Upregulation of secretory connective tissue growth factor (CTGF) in keratinocyte-fibroblast coculture contributes to keloid pathogenesis. J Cell Physiol 2006; 208:336-43. [PMID: 16705627 DOI: 10.1002/jcp.20668] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Connective tissue growth factor (CTGF) plays a critical role in keloid pathogenesis by promoting collagen synthesis and deposition. Previous work suggested epithelial-mesenchymal interactions as a plausible factor affecting the expression of various growth factors and cytokines by both the epithelial and dermal mesenchymal cells. The aim of this study is to explore the role of epithelial-mesenchymal interactions in modulating CTGF expression. Immunohistochemistry was employed to check CTGF localization in skin tissue. Western blot assay was performed on total protein extracts from skin tissue, cell lysates and conditioned media to detect the basal/expression levels of CTGF. Study groups were subjected to serum stimulation (fibroblast-single cell culture) and pharmacological inhibitors targeted against mTOR (Rapamycin), Sp1 (WP631 and Mitoxanthrone), Smad3 (SB431542), and PI3K (LY294002). Increased localization of CTGF in the basal layer of keloid epidermis and higher expression of CTGF was observed in the keloid tissue extract. Interestingly, lower basal levels of CTGF was observed in fibroblast cell lysates cocultured with keloid keratinocytes compared to normal keratinocytes, while the conditioned media from the former culture consistently demonstrated a higher expression of secreted CTGF as compared to the latter group. These results demonstrate an important role of epithelial-mesenchymal interactions in the regulation of CTGF expression. Fibroblasts treated with inhibitors against mTOR, Sp1, Smad3, and PI3K demonstrated a reduced expression of CTGF, suggesting these signaling pathways to be important in the regulation of CTGF expression. Thus, revealing the therapeutic potentials for inhibitors that are selective for these factors in controlling CTGF expression in fibrotic conditions.
Collapse
Affiliation(s)
- Ying Ting Khoo
- Department of Surgery, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
21
|
Pi L, Oh SH, Shupe T, Petersen BE. Role of connective tissue growth factor in oval cell response during liver regeneration after 2-AAF/PHx in rats. Gastroenterology 2005; 128:2077-88. [PMID: 15940639 PMCID: PMC3756499 DOI: 10.1053/j.gastro.2005.03.081] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Recruitment and proliferation of Thy-1+ oval cells is a hallmark of liver regeneration after 2-acetylaminofluorene (2-AAF)/partial hepatectomy (PHx) in rats. To understand the molecular mechanism underlying this process, we investigated the role of connective tissue growth factor (CTGF), one of the candidate genes differentially expressed in Thy-1+ oval cells, in this liver injury model. METHODS Northern and Western analyses were performed to examine the induction of CTGF in total liver homogenate. Quantitative real-time polymerase chain reaction (PCR), immunofluorescent staining, and in situ hybridization were performed to confirm the expression and localization of CTGF in Thy-1+ oval cells. Finally, a known inhibitor of CTGF synthesis, Iloprost, was administered to 2-AAF/PHx treated rats to investigate the effect of Iloprost on oval cell response. RESULTS CTGF was found to be up-regulated at both the RNA and protein levels and occurred concurrently with an up-regulation of transforming growth factor beta1 (TGF-beta1). Sorted Thy-1+ oval cells expressed a high level of CTGF gene in a quantitative PCR assay. Colocalization of Thy-1 antigen and ctgf signals by in situ hybridization further confirmed that Thy-1+ oval cells were a source of CTGF. Iloprost administration blocked CTGF induction in treated animals but did not affect TGF-beta1 expression. The inhibition of CTGF induction by Iloprost was associated with a significant decrease in oval cell proliferation and a lower level of alpha-fetoprotein expression as compared with control animals. CONCLUSIONS These results show that CTGF induction is important for robust oval cell response after 2-AAF/PHx treatment in rats.
Collapse
Affiliation(s)
- Liya Pi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville 32610-0275, USA
| | | | | | | |
Collapse
|
22
|
Higashi N, Sato M, Kojima N, Irie T, Kawamura K, Mabuchi A, Senoo H. Vitamin A storage in hepatic stellate cells in the regenerating rat liver: With special reference to zonal heterogeneity. ACTA ACUST UNITED AC 2005; 286:899-907. [PMID: 16086432 DOI: 10.1002/ar.a.20230] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, hepatic stellate cells (HSCs) within liver lobules store about 80% of the total body vitamin A in lipid droplets in their cytoplasm, and these cells show zonal heterogeneity in terms of vitamin A-storing capacity. Vitamin A is essential for the growth and differentiation of cells, and it is well known that liver cells including HSCs show a remarkable growth capacity after partial hepatectomy (PHx). However, the status of vitamin A storage in HSCs in the liver regeneration is not yet known. Therefore, we conducted the present study to examine vitamin A storage in these cells during liver regeneration. Morphometry at the electron microscopic level, fluorescence microscopy for vitamin A autofluorescence, and immunofluorescence microscopy for desmin and alpha-smooth muscle actin (alpha-SMA) were performed on sections of liver from male Wistar strain rats at various times after the animal had been subjected to 70% PHx. The mean area of vitamin A-storing lipid droplets per HSC gradually decreased toward 3 days after PHx, and then returned to normal within 14 days after it. However, the heterogeneity of vitamin A-storing lipid droplet area per HSC within the hepatic lobule disappeared after PHx and did not return to normal by 14 days thereafter, even though the liver volume had returned to normal. These results suggest that HSCs alter their vitamin A-storing capacity during liver regeneration and that the recovery of vitamin A homeostasis requires a much longer time than that for liver volume.
Collapse
Affiliation(s)
- Nobuyo Higashi
- Department of Cell Biology and Histology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 2004; 81:355-63. [PMID: 14663501 DOI: 10.1139/o03-069] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connective tissue growth factor (CTGF, CCN2), a member of the CCN family of proteins, is a cysteine-rich proadhesive matricellular protein that plays an essential role in the formation of blood vessels, bone, and connective tissue. As expression of this protein is potently induced by transforming growth factor-beta (TGFbeta), it has been hypothesized that CTGF mediates several of the downstream actions of TGFbeta. In particular, CTGF is profibrotic, as CTGF is overexpressed in fibrotic disease and synergizes with TGFbeta to promote sustained fibrosis in vivo. Over the last several years, key data regarding the developmental role and structure and function relationship of CTGF have emerged. In addition, increased information concerning the mechanisms underlying the control of CTGF expression in normal and fibrotic cells and the signal transduction pathways through which CTGF acts on cells has been uncovered. This review summarizes the current state of knowledge regarding CTGF biology.
Collapse
Affiliation(s)
- Andrew Leask
- Center for Rheumatology, Department of Medicine, Royal Free, University College London, Rowland Hill Sreet, London NW3 @PF, U.K.
| | | |
Collapse
|
24
|
Bustos M, Beraza N, Lasarte JJ, Baixeras E, Alzuguren P, Bordet T, Prieto J. Protection against liver damage by cardiotrophin-1: a hepatocyte survival factor up-regulated in the regenerating liver in rats. Gastroenterology 2003; 125:192-201. [PMID: 12851883 DOI: 10.1016/s0016-5085(03)00698-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Cardiotrophin-1 (CT-1) is a member of the interleukin 6 (IL-6) family of cytokines, which protect cardiac myocytes against thermal and ischemic insults. In this study, we investigated the expression of CT-1 by liver cells and its possible hepatoprotective properties. METHODS We analyzed the production, signaling, and antiapoptotic properties of CT-1 in hepatocytes and the expression of this cytokine during liver regeneration. We also investigated whether CT-1 might exert protective effects in animal models of liver damage. RESULTS We found that CT-1 is up-regulated during liver regeneration and exerts potent antiapoptotic effects on hepatocytic cells. Hepatocytes cultured under serum starvation or stimulated with the pro-apoptotic cytokine transforming growth factor beta (TGF-beta) produce CT-1, which behaves as an autocrine/paracrine survival factor. Treatment with an adenovirus encoding CT-1 efficiently protects rats against fulminant liver failure after subtotal hepatectomy, an intervention that causes 91% mortality in control animals whereas 54% of those receiving CT-1 gene therapy were long-term survivors. This protective effect was associated with reduced caspase-3 activity and activation of the antiapoptotic signaling cascades signal transducer and activator of transcription (Stat-3), extracellular regulated kinases (Erk) 1/2, and Akt in the remnant liver. Gene transfer of CT-1 to the liver also abrogated Concanavalin A (Con-A) liver injury and activated antiapoptotic pathways in the hepatic tissue. Similar protection was obtained by treating the animals with 5 microg of recombinant CT-1 given intravenously before Con-A administration. CONCLUSIONS We show that CT-1 is a hepatocyte survival factor that efficiently reduces hepatocellular damage in animal models of acute liver injury. Our data point to CT-1 as a new promising hepatoprotective therapy.
Collapse
Affiliation(s)
- Matilde Bustos
- Department of Medicine, Division of Hepatology and Gene Therapy, Clinica Universitaria and Medical School, University of Navarra
| | | | | | | | | | | | | |
Collapse
|
25
|
Lim M, Goldstein MH, Tuli S, Schultz GS. Growth Factor, Cytokine and Protease Interactions During Corneal Wound Healing. Ocul Surf 2003; 1:53-65. [PMID: 17075633 DOI: 10.1016/s1542-0124(12)70128-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Healing of corneal injuries is an exceptionally complex process involving the integrated actions of multiple growth factors, cytokines, and proteases produced by epithelial cells, stromal keratocytes, inflammatory cells, and lacrimal gland cells. Following corneal injury, basal epithelial cells migrate and proliferate in response to chemotactic cytokines and mitogenic growth factors, including epidermal growth factor and keratinocyte growth factor. Simultaneously, keratocytes adjacent to the injured area undergo apoptosis under the Fas/Fas ligand system, while more distant keratocytes transform into activated fibroblasts and migrate into the wound, where they begin synthesizing new extracellular matrix components that form the scar tissue under the dominant influence of the TGFb/ CTGF system. Epithelial cells and activated stromal fibroblasts also secrete growth factors and cytokines that have paracrine and autocrine functions. Corneal repair proceeds for the next several weeks to months, during which time the gene expression profile slowly returns to the pre-injury pattern and the provisional scar matrix slowly remodels by actions of matrix metalloproteinases. While minor epithelial injuries heal by regeneration of normal architecture, large stromal injuries heal by repair with irregular scar tissue that impairs the optical properties of the cornea.Also, if the integrated regulation of the wound healing process is interrupted at any point, the wound fails to heal properly and a corneal ulcer develops. Better understanding of the cellular and molecular changes that occur during repair of corneal wounds will provide the opportunity to design agents that selectively modulate key phases of corneal wound healing, resulting in scars that more closely resemble normal corneal architecture.
Collapse
Affiliation(s)
- Mira Lim
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The main non-parenchymal cells of the liver, Kupffer cells, sinusoidal endothelial cells and stellate cells, participate in liver growth with respect to both their own proliferation, and effects on hepatocyte proliferation. In the well-characterised paradigm of 70% partial hepatectomy, they undergo DNA synthesis and cell division 20-24h later than the hepatocyte population. They exert both positive and negative influences on hepatocyte proliferation, including provision of an extracellular matrix-bound reservoir of hepatocyte growth factor that is activated after damage; priming of hepatocytes for DNA synthesis through rapid generation of TNF-alpha and IL-6; and generation of factors at later time points that curb hepatocyte DNA synthesis (IL-1, TGF-beta) and initiate reconstruction and reformation of matrix proteins.
Collapse
Affiliation(s)
- Raza Malik
- Centre for Hepatology, Royal Free and University College Medical School, Rowland Hill Street, Hampstead, NW3 2PF, London, UK
| | | | | |
Collapse
|
27
|
Dambach DM, Watson LM, Gray KR, Durham SK, Laskin DL. Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology 2002; 35:1093-103. [PMID: 11981759 DOI: 10.1053/jhep.2002.33162] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The biological effects of monocyte chemoattractant protein (MCP) 1 are mediated by binding to C-C chemokine receptor (CCR) 2. In the present studies, we used CCR2 knockout (CCR2-/-) mice to examine the role of MCP-1 in acetaminophen-induced macrophage accumulation in the liver, expression of inflammatory cytokines, and hepatotoxicity. We found that hepatic expression of CCR2 and MCP-1 was increased 10-fold and 20-fold, respectively, 12 to 72 hours after administration of acetaminophen to wild-type mice. Expression of these proteins was localized in centrilobular regions of the liver. Whereas MCP-1 was expressed by both hepatocytes and macrophages, CCR2 was identified in inflammatory macrophages. F4/80 is a marker of mature macrophages expressed in large quantities by Kupffer cells. In wild-type mice, a 75% decrease in F4/80-positive macrophages was observed 24 to 48 hours after administration of acetaminophen. In contrast, expression of macrosialin (CD68), a marker of activated macrophages, increased 2-fold 24 to 72 hours after administration of acetaminophen and was associated with inflammatory cells. Although there was a decrease in the overall severity of inflammation and in the number of macrosialin-positive macrophages 72 hours after administration of acetaminophen in CCR2-/- mice, the number of F4/80-positive cells did not change. Loss of CCR2 was also found to alter acetaminophen-induced expression of tumor necrosis factor alpha, monocyte chemoattractant protein 3, and KC/gro. However, the overall outcome of acetaminophen-induced hepatic injury was not affected. In conclusion, these data indicate that MCP-1 and CCR2 contribute to the recruitment of a subset of activated macrophages into the liver during acetaminophen-induced hepatotoxicity that may be important in resolution of tissue injury.
Collapse
Affiliation(s)
- Donna M Dambach
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|