1
|
Ono H, Koop D, Holland LZ. Nodal and Hedgehog synergize in gill slit formation during development of the cephalochordate Branchiostoma floridae. Development 2018; 145:dev.162586. [PMID: 29980563 DOI: 10.1242/dev.162586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Abstract
The larval pharynx of the cephalochordate Branchiostoma (amphioxus) is asymmetrical. The mouth is on the left, and endostyle and gill slits are on the right. At the neurula, Nodal and Hedgehog (Hh) expression becomes restricted to the left. To dissect their respective roles in gill slit formation, we inhibited each pathway separately for 20 min at intervals during the neurula stage, before gill slits penetrate, and monitored the effects on morphology and expression of pharyngeal markers. The results pinpoint the short interval spanning the gastrula/neurula transition as the critical period for specification and positioning of future gill slits. Thus, reduced Nodal signaling shifts the gill slits ventrally, skews the pharyngeal domains of Hh, Pax1/9, Pax2/5/8, Six1/2 and IrxC towards the left, and reduces Hh and Tbx1/10 expression in endoderm and mesoderm, respectively. Nodal auto-regulates. Decreased Hh signaling does not affect gill slit positions or Hh or Nodal expression, but it does reduce the domain of Gli, the Hh target, in the pharyngeal endoderm. Thus, during the neurula stage, Nodal and Hh cooperate in gill slit development - Hh mediates gill slit formation and Nodal establishes their left-right position.
Collapse
Affiliation(s)
- Hiroki Ono
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Demian Koop
- Discipline of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
2
|
Messina A, Lan L, Incitti T, Bozza A, Andreazzoli M, Vignali R, Cremisi F, Bozzi Y, Casarosa S. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling. Stem Cells 2015; 33:2496-508. [PMID: 25913744 DOI: 10.1002/stem.2043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 01/27/2023]
Abstract
It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.
Collapse
Affiliation(s)
| | - Lei Lan
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | - Yuri Bozzi
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simona Casarosa
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| |
Collapse
|
3
|
Ogawa-Otomo A, Kurisaki A, Ito Y. Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis. Biochem Biophys Res Commun 2014; 456:476-81. [PMID: 25482442 DOI: 10.1016/j.bbrc.2014.11.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Hemoglobin synthesis by erythrocytes continues throughout a vertebrate's lifetime. The mechanism of mammalian heme synthesis has been studied for many years; aminolevulinate synthase 2 (ALAS2), a heme synthetase, is associated with X-linked dominant protoporphyria in humans. Amphibian and mammalian blood cells differ, but little is known about amphibian embryonic hemoglobin synthesis. We investigated the function of the Xenopus alas2 gene (Xalas2) in primitive amphibian erythrocytes and found that it is first expressed in primitive erythroid cells before hemoglobin alpha 3 subunit (hba3) during primary hematopoiesis and in the posterior ventral blood islands at the tailbud stage. Xalas2 is not expressed during secondary hematopoiesis in the dorsal lateral plate. Hemoglobin was barely detectable by o-dianisidine staining and hba3 transcript levels decreased in Xalas2-knockdown embryos. These results suggest that Xalas2 might be able to synthesize hemoglobin during hematopoiesis and mediate erythrocyte differentiation by regulating hba3 expression in Xenopus laevis.
Collapse
Affiliation(s)
- Asako Ogawa-Otomo
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Akira Kurisaki
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan.
| |
Collapse
|
4
|
Chandramore K, Ito Y, Takahashi S, Asashima M, Ghaskadbi S. Cloning of noggin gene from hydra and analysis of its functional conservation using Xenopus laevis embryos. Evol Dev 2010; 12:267-74. [PMID: 20565537 DOI: 10.1111/j.1525-142x.2010.00412.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hydra, a member of phylum Cnidaria that arose early in evolution, is endowed with a defined axis, organized nervous system, and active behavior. It is a powerful model system for the elucidation of evolution of developmental mechanisms in animals. Here, we describe the identification and cloning of noggin-like gene from hydra. Noggin is a secreted protein involved at multiple stages of vertebrate embryonic development including neural induction and is known to exert its effects by inhibiting the bone morphogenetic protein (BMP)-signaling pathway. Sequence analysis revealed that hydra Noggin shows considerable similarity with its orthologs at the amino acid level. When microinjected in the early Xenopus embryos, hydra noggin mRNA induced a secondary axis in 100% of the injected embryos, demonstrating functional conservation of hydra noggin in vertebrates. This was further confirmed by the partial rescue of Xenopus embryos by hydra noggin mRNA from UV-induced ventralization. By using animal cap assay in Xenopus embryos, we demonstrate that these effects of hydra noggin in Xenopus embryos are because of inhibition of BMP signaling by Noggin. Our data indicate that BMP/Noggin antagonism predates the bilaterian divergence and is conserved during the evolution.
Collapse
Affiliation(s)
- Kalpana Chandramore
- Zoology Group, Division of Animal Sciences, Agharkar Research Institute, Pune-411 004, India
| | | | | | | | | |
Collapse
|
5
|
Yagi Y, Ito Y, Kuhara S, Tashiro K. Cephalic hedgehog expression is regulated directly by Sox17 in endoderm development of Xenopus laevis. Cytotechnology 2008; 57:151-9. [PMID: 19003160 DOI: 10.1007/s10616-008-9127-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/18/2008] [Indexed: 11/28/2022] Open
Abstract
In early development of animals, hedgehog (Hh) genes function as morphogen in the axis determination and the organ formation. In Xenopus, three hedgehog genes, sonic (shh), banded (bhh), and cephalic (chh), were identified and might organize various tissues and organs in embryogenesis. Here, we report the spatial and temporal regulation of Xchh which is expressed in endoderm cells differentiating to digestive organs. Xchh expression in endoderm was inhibited by ectopic expression of the dominant-negative activin receptor, tAR. Moreover, a maternally inherited transcription factor VegT and its downstream regulators activated Xchh expression. These indicates that Xchh is regulated by the factor involved in the cascade originated from VegT via activin/nodal signals. Using the Sox17alpha-VP16-GR construct, we showed that Xchh expression might be induced directly by transcription factor Sox17.
Collapse
Affiliation(s)
- Yumihiko Yagi
- Graduate School of Systems Life Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
6
|
Ito Y, Seno S, Nakamura H, Fukui A, Asashima M. XHAPLN3 plays a key role in cardiogenesis by maintaining the hyaluronan matrix around heart anlage. Dev Biol 2008; 319:34-45. [DOI: 10.1016/j.ydbio.2008.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/22/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
|
7
|
Ezin AM, Skoglund P, Keller R. The presumptive floor plate (notoplate) induces behaviors associated with convergent extension in medial but not lateral neural plate cells of Xenopus. Dev Biol 2006; 300:670-86. [PMID: 17034782 DOI: 10.1016/j.ydbio.2006.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 08/03/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
In previous work (Elul, T., Keller, R., 2000. Monopolar protrusive activity: a new morphogenic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev. Biol. 224, 3-19; Ezin, A.M., Skoglund, P. Keller, R. 2003. The midline (notochord and notoplate) patterns the cell motility underlying convergence and extension of the Xenopus neural plate. Dev. Biol. 256, 100-114), the midline tissues of notochord and overlying notoplate were found to induce the monopolar, medially directed protrusive activity of deep neural cells. This behavior is thought to drive the mediolateral intercalation and convergent extension of the neural plate in Xenopus. Here we address the issue of whether the notochord, the notoplate, or both is essential for this induction. Our strategy was to remove the notochord, leaving the overlying notoplate intact, and determine whether it alone can induce the monopolar, medially directed cell behavior. We first establish that the notoplate (presumptive floor plate), when separated from the underlying notochord in the early neurula (stages 13-14), will independently mature into a floor plate as assayed three criteria: (1) continued expression of an early marker, sonic hedgehog, and a later, marker, F-spondin; (2) the display of the notoplate/floor plate-specific randomly oriented protrusive activity; (3) the characteristic lack of mixing of cells between the notoplate and lateral neural plate. Under these conditions, in the presence of a mature notoplate/floor plate and in the absence of the notochord, the characteristic monopolar, medially directed behavior occurred, but only locally near the midline. These results show that the notoplate/floor plate capacity to induce the medially directed motility is limited in range, and they suggest that the notochord is necessary for the normally observed longer range induction in lateral neural plate cells. This work helps to further the understanding of molecular and tissue interactions required for convergent extension.
Collapse
Affiliation(s)
- Akouavi M Ezin
- Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|