1
|
Yurube T, Buchser WJ, Zhang Z, Silwal P, Lotze MT, Kang JD, Sowa GA, Vo NV. Rapamycin mitigates inflammation-mediated disc matrix homeostatic imbalance by inhibiting mTORC1 and inducing autophagy through Akt activation. JOR Spine 2024; 7:e1303. [PMID: 38222800 PMCID: PMC10782056 DOI: 10.1002/jsp2.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Background Low back pain is a global health problem that originated mainly from intervertebral disc degeneration (IDD). Autophagy, negatively regulated by the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, prevents metabolic and degenerative diseases by removing and recycling damaged cellular components. Despite growing evidence that autophagy occurs in the intervertebral disc, the regulation of disc cellular autophagy is still poorly understood. Methods Annulus fibrosus (rAF) cell cultures derived from healthy female rabbit discs were used to test the effect of autophagy inhibition or activation on disc cell fate and matrix homeostasis. Specifically, different chemical inhibitors including rapamycin, 3-methyladenine, MK-2206, and PP242 were used to modulate activities of different proteins in the PI3K/Akt/mTOR signaling pathway to assess IL-1β-induced cellular senescence, apoptosis, and matrix homeostasis in rAF cells grown under nutrient-poor culture condition. Results Rapamycin, an inhibitor of mTOR complex 1 (mTORC1), reduced the phosphorylation of mTOR and its effector p70/S6K in rAF cell cultures. Rapamycin also induced autophagic flux as measured by increased expression of key autophagy markers, including LC3 puncta number, LC3-II expression, and cytoplasmic HMGB1 intensity and decreased p62/SQSTM1 expression. As expected, IL-1β stimulation promoted rAF cellular senescence, apoptosis, and matrix homeostatic imbalance with enhanced aggrecanolysis and MMP-3 and MMP-13 expression. Rapamycin treatment effectively mitigated IL-1β-mediated inflammatory stress changes, but these alleviating effects of rapamycin were abrogated by chemical inhibition of Akt and mTOR complex 2 (mTORC2). Conclusions These findings suggest that rapamycin blunts adverse effects of inflammation on disc cells by inhibiting mTORC1 to induce autophagy through the PI3K/Akt/mTOR pathway that is dependent on Akt and mTORC2 activities. Hence, our findings identify autophagy, rapamycin, and PI3K/Akt/mTOR signaling as potential therapeutic targets for IDD treatment.
Collapse
Affiliation(s)
- Takashi Yurube
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - William J. Buchser
- Damage Associated Molecular Pattern Molecule Laboratory, Department of Surgery, Hillman Cancer CenterUniversity of Pittsburgh Cancer Institute, University of PittsburghPittsburghPennsylvaniaUSA
| | - Zhongying Zhang
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Prashanta Silwal
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| | - Michael T. Lotze
- Damage Associated Molecular Pattern Molecule Laboratory, Department of Surgery, Hillman Cancer CenterUniversity of Pittsburgh Cancer Institute, University of PittsburghPittsburghPennsylvaniaUSA
| | - James D. Kang
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopedics, Brigham and Women's Hospital, School of MedicineHarvard UniversityBostonMassachusettsUSA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| | - Nam V. Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Tilwani RK, Vessillier S, Pingguan-Murphy B, Lee DA, Bader DL, Chowdhury TT. Oxygen tension modulates the effects of TNFα in compressed chondrocytes. Inflamm Res 2016; 66:49-58. [PMID: 27658702 PMCID: PMC5209429 DOI: 10.1007/s00011-016-0991-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN Oxygen tension and biomechanical signals are factors that regulate inflammatory mechanisms in chondrocytes. We examined whether low oxygen tension influenced the cells response to TNFα and dynamic compression. MATERIALS AND METHODS Chondrocyte/agarose constructs were treated with varying concentrations of TNFα (0.1-100 ng/ml) and cultured at 5 and 21 % oxygen tension for 48 h. In separate experiments, constructs were subjected to dynamic compression (15 %) and treated with TNFα (10 ng/ml) and/or L-NIO (1 mM) at 5 and 21 % oxygen tension using an ex vivo bioreactor for 48 h. Markers for catabolic activity (NO, PGE2) and tissue remodelling (GAG, MMPs) were quantified by biochemical assay. ADAMTS-5 and MMP-13 expression were examined by real-time qPCR. 2-way ANOVA and a post hoc Bonferroni-corrected t test were used to analyse data. RESULTS TNFα dose-dependently increased NO, PGE2 and MMP activity (all p < 0.001) and induced MMP-13 (p < 0.05) and ADAMTS-5 gene expression (pp < 0.01) with values greater at 5 % oxygen tension than 21 %. The induction of catabolic mediators by TNFα was reduced by dynamic compression and/or L-NIO (all p < 0.001), with a greater inhibition observed at 5% than 21 %. The stimulation of GAG synthesis by dynamic compression was greater at 21 % than 5 % oxygen tension and this response was reduced with TNFα or reversed with L-NIO. CONCLUSIONS The present findings revealed that TNFα increased production of NO, PGE2 and MMP activity at 5 % oxygen tension. The effects induced by TNFα were reduced by dynamic compression and/or the NOS inhibitor, linking both types of stimuli to reparative activities. Future therapeutics should develop oxygen-sensitive antagonists which are directed to interfering with the TNFα-induced pathways.
Collapse
Affiliation(s)
- R K Tilwani
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - S Vessillier
- Biotherapeutics Group, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - B Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - D A Lee
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - D L Bader
- Faculty of Health Sciences, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - T T Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
3
|
Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, Lasczkowski G, Rickert M, Schmitz G, Steinmeyer J. Sphingolipids in human synovial fluid--a lipidomic study. PLoS One 2014; 9:e91769. [PMID: 24646942 PMCID: PMC3960152 DOI: 10.1371/journal.pone.0091769] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/13/2014] [Indexed: 02/02/2023] Open
Abstract
Articular synovial fluid (SF) is a complex mixture of components that regulate nutrition, communication, shock absorption, and lubrication. Alterations in its composition can be pathogenic. This lipidomic investigation aims to quantify the composition of sphingolipids (sphingomyelins, ceramides, and hexosyl- and dihexosylceramides) and minor glycerophospholipid species, including (lyso)phosphatidic acid, (lyso)phosphatidylglycerol, and bis(monoacylglycero)phosphate species, in the SF of knee joints from unaffected controls and from patients with early (eOA) and late (lOA) stages of osteoarthritis (OA), and rheumatoid arthritis (RA). SF without cells and cellular debris from 9 postmortem donors (control), 18 RA, 17 eOA, and 13 lOA patients were extracted to measure lipid species using electrospray ionization tandem mass spectrometry - directly or coupled with hydrophilic interaction liquid chromatography. We provide a novel, detailed overview of sphingolipid and minor glycerophospholipid species in human SF. A total of 41, 48, and 50 lipid species were significantly increased in eOA, lOA, and RA SF, respectively when compared with normal SF. The level of 21 lipid species differed in eOA SF versus SF from lOA, an observation that can be used to develop biomarkers. Sphingolipids can alter synovial inflammation and the repair responses of damaged joints. Thus, our lipidomic study provides the foundation for studying the biosynthesis and function of lipid species in health and most prevalent joint diseases.
Collapse
Affiliation(s)
| | - Gerhard Liebisch
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Guenter Lochnit
- Department of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Medical Clinic II/IV, Justus-Liebig-University Giessen, Giessen, Germany
| | - Heiko Klein
- Department of Orthopedics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ulrich Kaesser
- Internistisches Praxiszentrum am Krankenhaus Balserische Stiftung, Giessen, Germany
| | - Gabriele Lasczkowski
- Institute of Forensic Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus Rickert
- Department of Orthopedics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Juergen Steinmeyer
- Department of Orthopedics, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
4
|
Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, Lasczkowski G, Rickert M, Schmitz G, Steinmeyer J. A lipidomic study of phospholipid classes and species in human synovial fluid. ACTA ACUST UNITED AC 2013; 65:2323-33. [PMID: 23784884 DOI: 10.1002/art.38053] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/06/2013] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Membrane phospholipid species contribute to boundary lubrication that is provided by synovial fluid (SF). Altered levels of lubricants can be associated with increased friction, leading to articular cartilage damage. This study was undertaken to determine whether the composition of phospholipid species is altered in diseases of human knee joints. METHODS The study was performed using SF from unaffected controls and patients with early osteoarthritis (OA), late OA, or rheumatoid arthritis (RA). Lipids were extracted from cell- and vesicle-free SF from 9 control donors postmortem and from 17 patients with early OA, 13 patients with late OA, and 18 patients with RA. Phospholipid species were quantified by electrospray ionization tandem mass spectrometry. RESULTS We conducted lipidomic analysis to provide the first detailed overview of phospholipid species in human SF. We identified 130 lipid species belonging to 8 lipid classes (phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, plasmalogens, phosphatidylserine, phosphatidylglycerol, sphingomyelin, and ceramide). Compared to SF from controls, SF from patients with early OA and those with late OA had higher levels of most phospholipid species. Moreover, the concentrations of 64 and 27 phospholipids differed between RA and early OA SF and between RA and late OA SF, respectively. Also, the levels of 66 phospholipid species were altered in early OA versus late OA. CONCLUSION Our data indicate disease- and stage-dependent differences in the relative composition and levels of phospholipid species in human SF. Such alterations might affect articular joint lubrication. Because certain phospholipids scavenge reactive oxygen species (ROS) and are pro- or antiinflammatory, any altered phospholipid level might influence ROS-scavenging activity of SF and the inflammatory status of joints. Thus, phospholipids may be associated with the pathogenesis of OA.
Collapse
|
5
|
Seito N, Yamashita T, Tsukuda Y, Matsui Y, Urita A, Onodera T, Mizutani T, Haga H, Fujitani N, Shinohara Y, Minami A, Iwasaki N. Interruption of glycosphingolipid synthesis enhances osteoarthritis development in mice. ACTA ACUST UNITED AC 2012; 64:2579-88. [PMID: 22391889 DOI: 10.1002/art.34463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Glycosphingolipids (GSLs) are ubiquitous membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions. GSL expression is decreased in the articular cartilage of humans with osteoarthritis (OA). This study was undertaken to determine the functional role of GSLs in cartilage metabolism related to OA pathogenesis in mice. METHODS We generated mice with knockout of the chondrocyte-specific Ugcg gene, which encodes an initial enzyme of major GSL synthesis, using the Cre/loxP system (Col2-Ugcg(-/-) mice). In vivo OA and in vitro cartilage degradation models were used to evaluate the effect of GSLs on the cartilage degradation process. RESULTS Although Col2-Ugcg(-/-) mice developed and grew normally, OA changes in these mice were dramatically enhanced with aging, through the overexpression of matrix metalloproteinase 13 and chondrocyte apoptosis, compared to their wild-type (WT) littermates. Col2-Ugcg(-/-) mice showed more severe instability-induced pathologic OA in vivo and interleukin-1α (IL-1α)-induced cartilage degradation in vitro. IL-1α stimulation of chondrocytes from WT mice significantly increased Ugcg messenger RNA expression and up-regulated GSL metabolism. CONCLUSION Our results indicate that GSL deficiency in mouse chondrocytes enhances the development of OA. However, this deficiency does not affect the development and organization of cartilage tissue in mice at a young age. These findings indicate that GSLs maintain cartilage molecular metabolism and prevent disease progression, although GSLs are not essential for chondrogenesis of progenitor and stem cells and cartilage development in young mice. GSL metabolism in the cartilage is a potential target for developing a novel treatment for OA.
Collapse
|
6
|
Gilbert SJ, Blain EJ, Duance VC, Mason DJ. Sphingomyelinase decreases type II collagen expression in bovine articular cartilage chondrocytes via the ERK signaling pathway. ACTA ACUST UNITED AC 2008; 58:209-20. [PMID: 18163502 DOI: 10.1002/art.23172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Ceramide, a mediator of proinflammatory cytokine signaling, induces cartilage degradation and reduces type II collagen synthesis in articular cartilage. The accumulation of ceramide is associated with arthritis in Farber's disease. The aim of this study was to investigate the mechanism of ceramide-induced down-regulation of type II collagen. METHODS Bovine articular chondrocytes were stimulated with sphingomyelinase (SMase) to increase levels of endogenous ceramide. Components of the ERK pathway were inhibited by Raf-1 kinase inhibitor and the MEK inhibitor, PD98059. Cell extracts were analyzed by Western blotting for ERK-1/2, SOX9, c-Fos, and type II collagen, and the level of c-fos messenger RNA (mRNA) was analyzed by quantitative polymerase chain reaction. Localization of ERK-1/2, SOX9, and c-Fos was assessed by immunocytochemistry and confocal microscopy. RESULTS SMase treatment of chondrocytes caused sustained phosphorylation of ERK-1/2 throughout the cytoplasm and nucleus that was reduced by inhibitors of Raf-1 kinase and MEK-1/2. SMase treatment of chondrocytes also induced translocation of c-Fos to the nucleus and phospho-SOX9 to the cytoplasm and increased expression of c-fos mRNA. Type II collagen expression, which was down-regulated by SMase treatment, was restored by the MEK-1/2 inhibitor, PD98059. CONCLUSION SMase down-regulates type II collagen in articular chondrocytes via activation of the ERK signaling cascade, redistribution of SOX9, and recruitment of c-Fos. This new mechanism for cartilage degradation provides potential targets for future treatment of arthritic disease.
Collapse
|
7
|
Gilbert SJ, Blain EJ, Jones P, Duance VC, Mason DJ. Exogenous sphingomyelinase increases collagen and sulphated glycosaminoglycan production by primary articular chondrocytes: an in vitro study. Arthritis Res Ther 2007; 8:R89. [PMID: 16696862 PMCID: PMC1779424 DOI: 10.1186/ar1961] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/18/2006] [Accepted: 04/20/2006] [Indexed: 01/15/2023] Open
Abstract
We previously established a role for the second messenger ceramide in protein kinase R (PKR)-mediated articular cartilage degradation. Ceramide is known to play a dual role in collagen gene regulation, with the effect of ceramide on collagen promoter activity being dependent on its concentration. Treatment of cells with low doses of sphingomyelinase produces small increases in endogenous ceramide. We investigated whether ceramide influences articular chondrocyte matrix homeostasis and, if so, the role of PKR in this process. Bovine articular chondrocytes were stimulated for 7 days with sphingomyelinase to increase endogenous levels of ceramide. To inhibit PKR, 2-aminopurine was added to duplicate cultures. De novo sulphated glycosaminoglycan and collagen synthesis were measured by adding [35S]-sulphate and [3H]-proline to the media, respectively. Chondrocyte phenotype was investigated using RT-PCR and Western blot analysis. Over 7 days, sphingomyelinase increased the release of newly synthesized sulphated glycosaminoglycan and collagen into the media, whereas inhibition of PKR in sphingomyelinase-treated cells reduced the level of newly synthesized sulphated glycosaminoglycan and collagen. Sphingomyelinase treated chondrocytes expressed col2a1 mRNA, which is indicative of a normal chondrocyte phenotype; however, a significant reduction in type II collagen protein was detected. Therefore, small increments in endogenous ceramide in chondrocytes appear to push the homeostatic balance toward extracellular matrix synthesis but at the expense of the chondrocytic phenotype, which was, in part, mediated by PKR.
Collapse
Affiliation(s)
- Sophie J Gilbert
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Emma J Blain
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Pamela Jones
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Victor C Duance
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Deborah J Mason
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| |
Collapse
|
8
|
Patwari P, Gao G, Lee JH, Grodzinsky AJ, Sandy JD. Analysis of ADAMTS4 and MT4-MMP indicates that both are involved in aggrecanolysis in interleukin-1-treated bovine cartilage. Osteoarthritis Cartilage 2005; 13:269-77. [PMID: 15780640 PMCID: PMC2771540 DOI: 10.1016/j.joca.2004.10.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 10/25/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the mechanism of aggrecanolysis in interleukin-1 (IL-1)-treated cartilage tissue by examining the time course of aggrecan cleavages and the tissue and medium content of membrane type 4-matrix metalloproteinases (MT4-MMP) and a disintegrin and metalloproteinase with thrombospondin type I motifs (ADAMTS)4. METHODS Articular cartilage explants were harvested from newborn bovine femoropatellar groove. The effects of IL-1 treatment with or without aggrecanase blockade were investigated by Western analysis of aggrecan fragment generation, ADAMTS4 species (p68 and p53), and MT4-MMP, as well as by realtime PCR (polymerase chain reaction) for ADAMTS4 and 5. Aggrecanase was blocked with mannosamine (ManN), an inhibitor of glycosylphosphatidylinositol anchor synthesis, and esculetin (EST), an inhibitor of MMP-1, MMP-3, and MMP-13 gene expression. RESULTS IL-1 treatment caused a major increase in MT4-MMP abundance in the tissue and medium. ADAMTS4 (p68) was abundant in fresh cartilage and this was retained in the tissue in untreated cartilage. IL-1 treatment for 6 days caused a marked loss of p68 from the cartilage and the appearance of p53 in the medium. Addition of either 1.35 mM ManN or 31-500 microM EST blocked IL-1-mediated aggrecanolysis and this was accompanied by nearly complete inhibition of the MT4-MMP increase, the p68 loss and the formation of p53. IL-1 treatment increased mRNA abundance for ADAMTS4 ( approximately 3-fold) and ADAMTS5 ( approximately 10-fold) but this was not accompanied by a marked change in enzyme protein abundance. CONCLUSION These studies support a central role for MT4-MMP in IL-1-induced cartilage aggrecanolysis and are consistent with the identification of p68 as the aggrecanase that cleaves within the CS2 domain, and of p53 as the aggrecanase that generates G1-NITEGE. Since the induction by IL-1 was not accompanied by marked changes in total ADAMTS4 protein, but rather in partial conversion of p68 to p53 and release of both from the tissue, we conclude that aggrecanolysis in this model system results from MT4-MMP-mediated processing of a resident pool of ADAMTS4 and release of the p68 and p53 from their normal association with the cell surface.
Collapse
Affiliation(s)
- P Patwari
- Massachusetts Institute of Technology, Department of Electrical Engineering, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
9
|
Gilbert SJ, Duance VC, Mason DJ. Does protein kinase R mediate TNF-alpha- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? Arthritis Res Ther 2003; 6:R46-R55. [PMID: 14979937 PMCID: PMC400415 DOI: 10.1186/ar1024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 10/14/2003] [Accepted: 10/21/2003] [Indexed: 02/08/2023] Open
Abstract
We investigated the role of the proinflammatory cytokine TNF-alpha, the second messenger C2-ceramide, and protein kinase R (PKR) in bovine articular cartilage degradation. Bovine articular cartilage explants were stimulated with C2-ceramide or TNF-alpha for 24 hours. To inhibit the activation of PKR, 2-aminopurine was added to duplicate cultures. Matrix metalloproteinase (MMP) expression and activation in the medium were analysed by gelatin zymography, proteoglycan release by the dimethylmethylene blue assay, and cell viability by the Cytotox 96(R) assay. C2-ceramide treatment of cartilage explants resulted in a significant release of both pro- and active MMP-2 into the medium. Small increases were also seen with TNF-alpha treatment. Incubation of explants with 2-aminopurine before TNF-alpha or C2-ceramide treatment resulted in a marked reduction in expression and activation of both MMP-2 and MMP-9. TNF-alpha and C2-ceramide significantly increased proteoglycan release into the medium, which was also inhibited by cotreatment with 2-aminopurine. A loss of cell viability was observed when explants were treated with TNF-alpha and C2-ceramide, which was found to be regulated by PKR. We have shown that C2-ceramide and TNF-alpha treatment of articular cartilage result in the increased synthesis and activation of MMPs, increased release of proteoglycan, and increased cell death. These effects are abrogated by treatment with the PKR inhibitor 2-aminopurine. Collectively, these results suggest a novel role for PKR in the synthesis and activation of MMPs and support our hypothesis that PKR and its activator, PACT, are implicated in the cartilage degradation that occurs in arthritic disease.
Collapse
Affiliation(s)
- Sophie J Gilbert
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | | | |
Collapse
|
10
|
Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 2003; 5:94-103. [PMID: 12718749 PMCID: PMC165039 DOI: 10.1186/ar630] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 01/14/2003] [Accepted: 01/21/2003] [Indexed: 11/28/2022] Open
Abstract
The loss of extracellular matrix macromolecules from the cartilage results in serious impairment of joint function. Metalloproteinases called 'aggrecanases' that cleave the Glu373-Ala374 bond of the aggrecan core protein play a key role in the early stages of cartilage destruction in rheumatoid arthritis and in osteoarthritis. Three members of the ADAMTS family of proteinases, ADAMTS-1, ADAMTS-4 and ADAMTS-5, have been identified as aggrecanases. Matrix metalloproteinases, which are also found in arthritic joints, cleave aggrecans, but at a distinct site from the aggrecanases (i.e. Asn341-Phe342). The present review discuss the enzymatic properties of the three known aggrecanases, the regulation of their activities, and their role in cartilage matrix breakdown during the development of arthritis in relation to the action of matrix metalloproteinases.
Collapse
Affiliation(s)
- Hideaki Nagase
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|