1
|
König L, Brixius‐Anderko S, Milhim M, Tavouli‐Abbas D, Hutter MC, Hannemann F, Bernhardt R. Identification and circumvention of bottlenecks in CYP21A2‐mediated premedrol production using recombinantEscherichia coli. Biotechnol Bioeng 2019; 117:901-911. [DOI: 10.1002/bit.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Lisa König
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | - Mohammed Milhim
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | | | - Frank Hannemann
- Department of Biochemistry Saarland University Saarbrücken Germany
| | - Rita Bernhardt
- Department of Biochemistry Saarland University Saarbrücken Germany
| |
Collapse
|
2
|
Xia C, Shen AL, Duangkaew P, Kotewong R, Rongnoparut P, Feix J, Kim JJP. Structural and Functional Studies of the Membrane-Binding Domain of NADPH-Cytochrome P450 Oxidoreductase. Biochemistry 2019; 58:2408-2418. [PMID: 31009206 PMCID: PMC6873807 DOI: 10.1021/acs.biochem.9b00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR), the essential flavoprotein of the microsomal cytochrome P450 monooxygenase system, is anchored in the phospholipid bilayer by its amino-terminal membrane-binding domain (MBD), which is necessary for efficient electron transfer to cytochrome P450. Although crystallographic and kinetic studies have established the structure of the soluble catalytic domain and the role of conformational motions in the control of electron transfer, the role of the MBD is largely unknown. We examined the role of the MBD in P450 catalysis through studies of amino-terminal deletion mutants and site-directed spin labeling. We show that the MBD spans the membrane and present a model for the orientation of CYPOR on the membrane capable of forming a complex with cytochrome P450. EPR power saturation measurements of CYPOR mutants in liposomes containing a lipid/Ni(II) chelate identified a region of the soluble domain interacting with the membrane. The deletion of more than 29 residues from the N-terminus of CYPOR decreases cytochrome P450 activity concomitant with alterations in electrophoretic mobility and an increased resistance to protease digestion. The altered kinetic properties of these mutants are consistent with electron transfer through random collisions rather than via formation of a stable CYPOR-P450 complex. Purified MBD binds weakly to cytochrome P450, suggesting that other interactions are also required for CYPOR-P450 complex formation. We propose that the MBD and flexible tether region of CYPOR, residues 51-63, play an important role in facilitating the movement of the soluble domain relative to the membrane and in promoting multiple orientations that permit specific interactions of CYPOR with its varied partners.
Collapse
Affiliation(s)
- Chuanwu Xia
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Anna L Shen
- McArdle Laboratory for Cancer Research , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Panida Duangkaew
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
- Department of Biochemistry, Faculty of Science , Mahidol University , Bangkok 10400 , Thailand
| | - Rattanawadee Kotewong
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
- Department of Biochemistry, Faculty of Science , Mahidol University , Bangkok 10400 , Thailand
| | - Pornpimol Rongnoparut
- Department of Biochemistry, Faculty of Science , Mahidol University , Bangkok 10400 , Thailand
| | - Jimmy Feix
- Department of Biophysics , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Jung-Ja P Kim
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| |
Collapse
|
3
|
Different inhibitory effects of azole-containing drugs and pesticides on CYP2C9 polymorphic forms: An in vitro study. Toxicol In Vitro 2018; 50:249-256. [DOI: 10.1016/j.tiv.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022]
|
4
|
Yantsevich AV, Dzichenka YV, Ivanchik AV, Shapiro MA, Trawkina M, Shkel TV, Gilep AA, Sergeev GV, Usanov SA. [Proteomic analysis of contaminants in recombinant membrane hemeproteins expressed in E. coli and isolated by metal affinity chromatography]. APPL BIOCHEM MICRO+ 2018; 53:173-87. [PMID: 29508978 DOI: 10.1134/s000368381702017x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Contaminating proteins have been identified by “shotgun” proteomic analysis in 14 recombinant preparations of human membrane heme- and flavoproteins expressed in Escherichia coli and purified by immobilized metal ion affinity chromatography. Immobilized metal ion affinity chromatography of ten proteins was performed on Ni2+-NTA-sepharose 6B, and the remaining four proteins were purified by ligand affinity chromatography on 2',5'-ADP-sepharose 4B. Proteomic analysis allowed to detect 50 protein impurities from E. coli. The most common contaminant was Elongation factor Tu2. It is characterized by a large dipole moment and a cluster arrangement of acidic amino acid residues that mediate the specific interaction with the sorbent. Peptidyl prolyl-cis-trans isomerase SlyD, glutamine-fructose-6-phosphate aminotransferase, and catalase HPII that contained repeating HxH, QxQ, and RxR fragments capable of specific interaction with the sorbent were identified among the protein contaminants as well. GroL/GroS chaperonins were probably copurified due to the formation of complexes with the target proteins. The Ni2+ cations leakage from the sorbent during lead to formation of free carboxyl groups that is the reason of cation exchanger properties of the sorbent. This was the putative reason for the copurification of basic proteins, such as the ribosomal proteins of E. coli and the widely occurring uncharacterized protein YqjD. The results of the analysis revealed variation in the contaminant composition related to the type of protein expressed. This is probably related to the reaction of E. coli cell proteome to the expression of a foreign protein. We concluded that the nature of the protein contaminants in a preparation of a recombinant protein purified by immobilized metal ion affinity chromatography on a certain sorbent could be predicted if information on the host cell proteome were available.
Collapse
|
5
|
Yablokov E, Florinskaya A, Medvedev A, Sergeev G, Strushkevich N, Luschik A, Shkel T, Haidukevich I, Gilep A, Usanov S, Ivanov A. Thermodynamics of interactions between mammalian cytochromes P450 and b5. Arch Biochem Biophys 2017; 619:10-15. [DOI: 10.1016/j.abb.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
|
6
|
Miyamoto M, Yamashita T, Yasuhara Y, Hayasaki A, Hosokawa Y, Tsujino H, Uno T. Membrane Anchor of Cytochrome P450 Reductase Suppresses the Uncoupling of Cytochrome P450. Chem Pharm Bull (Tokyo) 2015; 63:286-94. [DOI: 10.1248/cpb.c15-00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Yuki Yasuhara
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Yukari Hosokawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Tadayuki Uno
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
7
|
Sushko TA, Gilep AA, Yantsevich AV, Usanov SA. Role of microsomal steroid hydroxylases in Δ7-steroid biosynthesis. BIOCHEMISTRY (MOSCOW) 2013; 78:282-9. [PMID: 23586722 DOI: 10.1134/s0006297913030103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CYP17 (steroid 17α-hydroxylase/17,20-lyase) is a key enzyme in steroid hormone biosynthesis. It catalyzes two independent reactions at the same active center and has a unique ability to differentiate Δ(4)-steroids and Δ(5)-steroids in the 17,20-lyase reaction. The present work presents a complex experimental analysis of the role of CYP17 in the metabolism of 7-dehydrosteroids. The data indicate the existence of a possible alternative pathway of steroid hormone biosynthesis using 7-dehydrosteroids. The major reaction products of CYP17 catalyzed hydroxylation of 7-dehydropregnenolone have been identified. Catalytic activity of CYP17 from different species with 7-dehydropregnenolone has been estimated. It is shown that CYP21 cannot use Δ(5)-Δ(7) steroids as a substrate.
Collapse
Affiliation(s)
- T A Sushko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.
| | | | | | | |
Collapse
|
8
|
Sushko TA, Gilep AA, Usanov SA. Mechanism of intermolecular interactions of microsomal cytochrome P450s CYP17 and CYP21 involved in steroid hormone biosynthesis. BIOCHEMISTRY (MOSCOW) 2012; 77:585-92. [DOI: 10.1134/s0006297912060041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Role of the interface between the FMN and FAD domains in the control of redox potential and electronic transfer of NADPH-cytochrome P450 reductase. Biochem J 2011; 435:197-206. [PMID: 21265736 DOI: 10.1042/bj20101984] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CPR (NADPH-cytochrome P450 reductase) is a multidomain protein containing two flavin-containing domains joined by a connecting domain thought to control the necessary movements of the catalytic domains during electronic cycles. We present a detailed biochemical analysis of two chimaeric CPRs composed of the association of human or yeast FMN with the alternative connecting/FAD domains. Despite the assembly of domains having a relatively large evolutionary distance between them, our data support the idea that the integrity of the catalytic cycle is conserved in our chimaeric enzymes, whereas the recognition, interactions and positioning of both catalytic domains are probably modified. The main consequences of the chimaerogenesis are a decrease in the internal electron-transfer rate between both flavins correlated with changes in the geometry of chimaeric CPRs in solution. Results of the present study highlight the role of the linker and connecting domain in the recognition at the interfaces between the catalytic domains and the impact of interdomain interactions on the redox potentials of the flavins, the internal electron-transfer efficiency and the global conformation and dynamic equilibrium of the CPRs.
Collapse
|
10
|
At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:200-9. [PMID: 20619364 DOI: 10.1016/j.bbapap.2010.06.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022]
Abstract
Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C₂₁ steroids (progesterone derivatives) and delta5-C₂₁ steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C₁₉-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed.
Collapse
|
11
|
Yantsevich AV, Gilep AA, Usanov SA. Electron transfer properties and catalytic competence of cytochrome b5 in the fusion protein Hmwb5-EGFP in reactions catalyzed by cytochrome P450 3A4. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:862-73. [PMID: 19817686 DOI: 10.1134/s0006297909080070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present paper we describe studies on molecular mechanisms of protein-protein interactions between cytochrome P450 3A4 (CYP3A4) and cytochrome b(5), the latter being incorporated into the artificial recombinant protein Hmwb(5)-EGFP containing full-length cytochrome b(5) (functional module) and a mutant form of the green fluorescent protein EGFP (signal module) fused into a single polypeptide chain. It is shown that cytochrome b(5) within the fusion protein Hmwb(5)-EGFP can be reduced by NADPH-cytochrome P450 reductase in the presence of NADPH, the rate of reduction being dependent on solution ionic strength, indicating that the signal module does not prevent the interaction of the flavo- and hemeproteins. Interaction of cytochrome P450 3A4 and Hmwb(5)-EGFP was estimated based on spin equilibrium shift of cytochrome P450 3A4 to high-spin state in the presence of Hmwb(5)-EGFP, as well as based on steady-state fluorescence anisotropy of the EGFP component of the fusion protein in the presence of CYP3A4. The engineering of chimeric protein Hmwb(5)-EGFP gives an independent method to determine dissociation constant for the complex of cytochrome P450 and cytochrome b(5) that is less sensitive to environmental factors compared to spectrophotometric titration used before. Reconstitution of catalytic activity of cytochrome P450 3A4 in the reaction of testosterone 6beta-hydroxylation in the presence of Hmwb(5)-EGFP indicates that cytochrome b(5) in the fusion protein is able to stimulate the hydroxylation reaction. Using other fusion proteins containing either cytochrome b(5) or its hydrophilic domain to reconstitute catalytic activity of cytochrome P450 3A4 showed that the hydrophobic domain of cytochrome b(5) participates not only in hemeprotein interaction, but also in electron transfer from cytochrome b(5) to cytochrome P450.
Collapse
Affiliation(s)
- A V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Belarus
| | | | | |
Collapse
|
12
|
Yantsevich AV, Gilep AA, Usanov SA. Conformational stability of cytochrome b5, enhanced green fluorescent protein, and their fusion protein Hmwb5-EGFP. BIOCHEMISTRY (MOSCOW) 2009; 74:518-27. [PMID: 19538125 DOI: 10.1134/s000629790905006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conformational stabilities of chimeric protein Hmwb(5)-EGFP and its constituents (cytochrome b(5) and enhanced green fluorescent protein) in guanidine hydrochloride solutions are reported in this paper. Intensity of fluorescence of tryptophan residues, intensity of EGFP fluorescence in the visible region, absorbance of cytochrome b(5) heme and EGFP fluorophore, and fluorescence anisotropy were used to follow the unfolding process. Thermodynamic parameters of protein unfolding were obtained using different approaches. The data were analyzed using a two-stage model and a linear extrapolation method. Unfolding of protein molecules was additionally monitored by measuring Stern-Volmer constants for tryptophan fluorescence quenching by acrylamide, cesium, and iodide. The accessibility of tryptophan residues of both components in the fusion molecule is lower than in the separate molecules. The thermodynamic stability of the protein globules in the fusion protein is much lower than in the individual protein molecules in solution, the difference in free energy of unfolding being more considerable for cytochrome b(5) (29 +/- 4 and 13 +/- 2 kJ/mol) than for EGFP (26 +/- 0.9 and 20 +/- 2.7 kJ/mol). The data indicate that artificial protein fusion can greatly affect total structural stability, and in the case of cytochrome b(5) and EGFP it results in decrease in free energy of transition from native to denatured unfolded form and consequently to decrease in thermodynamic stability of protein globules compared to the separate proteins.
Collapse
Affiliation(s)
- A V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Belarus
| | | | | |
Collapse
|
13
|
Pechurskaya TA, Lukashevich OP, Gilep AA, Usanov SA. Engineering, expression, and purification of “soluble” human cytochrome P45017α and its functional characterization. BIOCHEMISTRY (MOSCOW) 2008; 73:806-11. [DOI: 10.1134/s0006297908070092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Pechurskaya TA, Harnastai IN, Grabovec IP, Gilep AA, Usanov SA. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s. Biochem Biophys Res Commun 2006; 353:598-604. [PMID: 17188650 DOI: 10.1016/j.bbrc.2006.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/08/2006] [Indexed: 11/23/2022]
Abstract
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.
Collapse
Affiliation(s)
- Tatiana A Pechurskaya
- Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141, Belarus
| | | | | | | | | |
Collapse
|
15
|
Bonina TA, Gilep AA, Estabrook RW, Usanov SA. Engineering of proteolytically stable NADPH-cytochrome P450 reductase. BIOCHEMISTRY (MOSCOW) 2005; 70:357-65. [PMID: 15823091 DOI: 10.1007/s10541-005-0122-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
NADPH-cytochrome P450 reductase (CPR) is a membrane-bound flavoprotein that interacts with the membrane via its N-terminal hydrophobic sequence (residues 1-56). CPR is the main electron transfer component of hydroxylation reactions catalyzed by microsomal cytochrome P450s. The membrane-bound hydrophobic domain of NADPH-cytochrome P450 reductase is easily removed during limited proteolysis and is the subject of spontaneous digestion of membrane-binding fragment at the site Lys56-Ile57 by intracellular trypsin-like proteases that makes the flavoprotein very unstable during purification or expression in E. coli. The removal of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase results in loss of the ability of the flavoprotein to interact and transfer electrons to cytochrome P450. In the present work, by replacement of the lysine residue (Lys56) with Gln using site directed mutagenesis, we prepared the full-length flavoprotein mutant Lys56Gln stable to spontaneous proteolysis but possessing spectral and catalytic properties of the wild type flavoprotein. Limited proteolysis with trypsin and protease from Staphylococcus aureus of highly purified and membrane-bound Lys56Gln mutant of the flavoprotein as well as wild type NADPH-cytochrome P450 reductase allowed localization of some amino acids of the linker fragment of NADPH-cytochrome P450 reductase relative to the membrane. During prolong incubation or with increased trypsin ratio, the mutant form showed an alternative limited proteolysis pattern, indicating the partial accessibility of another site. Nevertheless, the membrane-bound mutant form is stable to trypsinolysis. Truncated forms of the flavoprotein (residues 46-676 of the mutant or 57-676 of wild type NADPH-cytochrome P450 reductase) are unable to transfer electrons to cytochrome P450c17 or P4503A4, confirming the importance of the N-terminal sequence for catalysis. Based on the results obtained in the present work, we suggest a scheme of structural topology of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase in the membrane.
Collapse
Affiliation(s)
- T A Bonina
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | | | | | | |
Collapse
|
16
|
Higashimoto Y, Sakamoto H, Hayashi S, Sugishima M, Fukuyama K, Palmer G, Noguchi M. Involvement of NADPH in the interaction between heme oxygenase-1 and cytochrome P450 reductase. J Biol Chem 2004; 280:729-37. [PMID: 15516695 DOI: 10.1074/jbc.m406203200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the physiological degradation of heme at the expense of molecular oxygen using electrons donated by NADPH-cytochrome P450 reductase (CPR). In this study, we investigated the effect of NADP(H) on the interaction of HO-1 with CPR by surface plasmon resonance. We found that HO-1 associated with CPR more tightly in the presence of NADP(+) (K(D) = 0.5 microm) than in its absence (K(D) = 2.4 microm). The HO-1 mutants, K149A, K149A/K153A, and R185A, showed almost no heme degradation activity with NADPH-CPR, whereas they exhibited activity comparable to that of the wild type when sodium ascorbate was used. R185A showed a 100-fold decreased affinity for CPR compared with wild type, even in the presence of NADP(+) (K(D) = 36.3 microm). The affinities of K149A and K149A/K153A for CPR were decreased 7- and 9-fold (K(D) = 16.8 and 21.8 microm), respectively. In contrast to R185A, the affinities of K149A and K149A/K153A were improved by the addition of NADP(+) (K(D) = 5.2 and 9.6 microm, respectively), as was the case with wild type. Computer modeling of the HO-1/CPR complex showed that the guanidino group of Arg(185) is located within the hydrogen bonding distance of 2'-phosphate of NADPH, suggesting that Arg(185) contributes to the binding to CPR through an electrostatic interaction with the phosphate group. On the other hand, Lys(149) is close to a cluster of acidic amino acids near the FMN binding site of CPR. Thus, Lys(149) and Lys(153) appear to interact with CPR in such a way as to orient the redox partners for optimal electron transfer from FMN of CPR to heme of HO-1.
Collapse
Affiliation(s)
- Yuichiro Higashimoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Hayashi S, Omata Y, Sakamoto H, Hara T, Noguchi M. Purification and characterization of a soluble form of rat liver NADPH-cytochrome P-450 reductase highly expressed in Escherichia coli. Protein Expr Purif 2003; 29:1-7. [PMID: 12729719 DOI: 10.1016/s1046-5928(03)00023-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A recombinant cDNA of rat liver NADPH-cytochrome P-450 reductase (CPR), which lacks the N-terminal hydrophobic region, was amplified by PCR and cloned. The N-truncated cDNA named tCPR was ligated into a pBAce vector and expressed. The tCPR protein expressed in Escherichia coli was recovered into the soluble fraction of the cell lysate and purified to homogeneity by three sequential purification procedures; (I) anion-exchange chromatography on a DEAE-cellulose (DE-52) column, (II) affinity chromatography on 2('),5(')-ADP Sepharose 4B, and (III) chromatography on a hydroxyapatite column. The average yield was 47mg per liter of culture medium. The absorption spectrum of the purified tCPR protein was identical to that of a native full-length CPR purified from rat liver, indicating that tCPR also possesses one molecule each of FAD and FMN. The tCPR protein was able to reduce cytochrome c and was also able to assist heme degradation by a soluble form of rat heme oxygenase-1. However, it failed to support the O-deethylation of 7-ethoxycoumarin by cytochrome P-450 1A1, indicating that the presence of the N-terminal hydrophobic domain is necessary for CPR to interact with cytochrome P-450. Previously, to prepare a soluble form of CPR, full-length CPR was treated with proteinases that selectively removed the N-terminal domain. With the expression system established in this study, however, the soluble and biologically active tCPR protein can be readily prepared in large amounts. This expression system will be useful for mechanistic as well as structural studies of CPR.
Collapse
Affiliation(s)
- Shunsuke Hayashi
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | |
Collapse
|