1
|
Schartner J, Güldenhaupt J, Katharina Gaßmeyer S, Rosga K, Kourist R, Gerwert K, Kötting C. Highly stable protein immobilizationviamaleimido-thiol chemistry to monitor enzymatic activity. Analyst 2018; 143:2276-2284. [DOI: 10.1039/c8an00301g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining a novel protein immobilisation method with multivariate curve resolution enables the direct observation of biocatalysis by ATR-FTIR spectroscopy.
Collapse
Affiliation(s)
- Jonas Schartner
- Department of Biophysics
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Jörn Güldenhaupt
- Department of Biophysics
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | | | - Katharina Rosga
- Department of Biophysics
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Klaus Gerwert
- Department of Biophysics
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Carsten Kötting
- Department of Biophysics
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
2
|
Interaction of small molecules with fungal laccase: A Surface Plasmon Resonance based study. Enzyme Microb Technol 2016; 82:110-114. [DOI: 10.1016/j.enzmictec.2015.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 07/17/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022]
|
3
|
Schartner J, Hoeck N, Güldenhaupt J, Mavarani L, Nabers A, Gerwert K, Kötting C. Chemical Functionalization of Germanium with Dextran Brushes for Immobilization of Proteins Revealed by Attenuated Total Reflection Fourier Transform Infrared Difference Spectroscopy. Anal Chem 2015; 87:7467-75. [PMID: 26102158 DOI: 10.1021/acs.analchem.5b01823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein immobilization studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) difference spectroscopy is an emerging field enabling the study of proteins at atomic detail. Gold or glass surfaces are frequently used for protein immobilization. Here, we present an alternative method for protein immobilization on germanium. Because of its high refractive index and broad spectral window germanium is the best material for ATR-FT-IR spectroscopy of thin layers. So far, this technique was mainly used for protein monolayers, which lead to a limited signal-to-noise ratio. Further, undesired protein-protein interactions can occur in a dense layer. Here, the germanium surface was functionalized with thiols and stepwise a dextran brush was generated. Each step was monitored by ATR-FT-IR spectroscopy. We compared a 70 kDa dextran with a 500 kDa dextran regarding the binding properties. All surfaces were characterized by atomic force microscopy, revealing thicknesses between 40 and 110 nm. To analyze the capability of our system we utilized N-Ras on mono-NTA (nitrilotriacetic acid) functionalized dextran, and the amount of immobilized Ras corresponded to several monolayers. The protein stability and loading capacity was further improved by means of tris-NTA for immobilization. Small-molecule-induced changes were revealed with an over 3 times higher signal-to-noise ratio compared to monolayers. This improvement may allow the observation of very small and so far hidden changes in proteins upon stimulus. Furthermore, we immobilized green fluorescent protein (GFP) and mCherry simultaneously enabling an analysis of the surface by fluorescence microscopy. The absence of a Förster resonance energy transfer (FRET) signal demonstrated a large protein-protein distance, indicating an even distribution of the protein within the dextran.
Collapse
Affiliation(s)
- Jonas Schartner
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Nina Hoeck
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Jörn Güldenhaupt
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Laven Mavarani
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Andreas Nabers
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Carsten Kötting
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| |
Collapse
|
4
|
Mani V, Wasalathanthri DP, Joshi AA, Kumar CV, Rusling JF. Highly efficient binding of paramagnetic beads bioconjugated with 100,000 or more antibodies to protein-coated surfaces. Anal Chem 2012; 84:10485-91. [PMID: 23121341 PMCID: PMC3514570 DOI: 10.1021/ac3028257] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the first kinetic characterization of 1 μm diameter superparamagnetic particles (MP) decorated with over 100,000 antibodies binding to protein antigens attached to flat surfaces. Surface plasmon resonance (SPR) was used to show that these antibody-derivatized MPs (MP-Ab(2)) exhibit irreversible binding with 100-fold increased association rates compared to free antibodies. The estimated upper limit for the dissociation constant of MP-Ab(2) from the SPR sensor surface is 5 fM, compared to 3-8 nM for the free antibodies. These results are explained by up to 2000 interactions of MP-Ab(2) with protein-decorated surfaces. Findings are consistent with highly efficient capture of protein antigens in solution by the MP-Ab(2) and explain in part the utility of these beads for ultrasensitive protein detection into the fM and aM range. Aggregation of these particles on the SPR chip, probably due to residual magnetic microdomains in the particles, also contributes to ultrasensitive detection and may also help drive the irreversible binding.
Collapse
Affiliation(s)
- Vigneshwaran Mani
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269, USA
| | - Dhanuka P. Wasalathanthri
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269, USA
| | - Amit A. Joshi
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269, USA
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06032, USA
- School of Chemistry, National University of Ireland at Galway, Ireland
| |
Collapse
|
5
|
Wu G, Berka V, Tsai AL. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes. J Inorg Biochem 2011; 105:1226-37. [PMID: 21763233 DOI: 10.1016/j.jinorgbio.2011.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/09/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022]
Abstract
Efficient electron transfer from reductase domain to oxygenase domain in nitric oxide synthase (NOS) is dependent on the binding of calmodulin (CaM). Rate constants for the binding of CaM to NOS target peptides was only determined previously by surface plasmon resonance (SPR) (Biochemistry 35, 8742-8747, 1996) suggesting that the binding of CaM to NOSs is slow and does not support the fast electron transfer in NOSs measured in previous and this studies. To resolve this contradiction, the binding rates of holo Alexa 350 labeled T34C/T110W CaM (Alexa-CaM) to target peptides from three NOS isozymes were determined using fluorescence stopped-flow. All three target peptides exhibited fast k(on) constants at 4.5°C: 6.6×10(8)M(-1)s(-1) for nNOS(726-749), 2.9×10(8)M(-1)s(-1) for eNOS(492-511) and 6.1×10(8)M(-1)s(-1) for iNOS(507-531), 3-4 orders of magnitude faster than those determined previously by SPR. Dissociation rates of NOS target peptides from Alexa-CaM/peptide complexes were measured by Ca(2+) chelation with ETDA: 3.7s(-1) for nNOS(726-749), 4.5s(-1) for eNOS(492-511), and 0.063s(-1) for iNOS(507-531). Our data suggest that the binding of CaM to NOS is fast and kinetically competent for efficient electron transfer and is unlikely rate-limiting in NOS catalysis. Only iNOS(507-531) was able to bind apo Alexa-CaM, but in a very different conformation from its binding to holo Alexa-CaM.
Collapse
Affiliation(s)
- Gang Wu
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
6
|
Characterizing the interaction between aptamers and human IgE by use of surface plasmon resonance. Anal Bioanal Chem 2007; 390:1059-65. [PMID: 18084750 DOI: 10.1007/s00216-007-1697-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 10/09/2007] [Accepted: 10/11/2007] [Indexed: 02/06/2023]
Abstract
Human immunoglobulin E (hIgE) is such an important protein, because of its involvement in allergic disease, that it is of significance to study the interactions between it and its recognizing elements. In this report an analytical strategy based on surface plasmon resonance (SPR) was developed to probe the pattern of interaction between hIgE and its recognizing molecules, including aptamers and antibodies. The affinity constants of hIgE for the antibody and the aptamer were compared first; the aptamer has more affinity than the antibody for human IgE. To study their pattern of interaction, three different binding approaches, including adding the antibody and the streptavidin-coupled aptamer to the sensing surface, were designed. The results showed that hIgE captured on the sensing surface could form a multivalent complex with the aptamer. An ELISA-like assay using the aptamer as both capture and detection probes was then developed. This work highlights an SPR method for characterizing the interaction between the protein and aptamers that is useful for study of biomolecular interaction patterns and binding properties.
Collapse
|
7
|
Svitel J, Boukari H, Van Ryk D, Willson RC, Schuck P. Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation. Biophys J 2007; 92:1742-58. [PMID: 17158569 PMCID: PMC1796841 DOI: 10.1529/biophysj.106.094615] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/16/2006] [Indexed: 11/18/2022] Open
Abstract
Many techniques rely on the binding activity of surface-immobilized proteins, including antibody-based affinity biosensors for the detection of analytes, immunoassays, protein arrays, and surface plasmon resonance biosensors for the study of thermodynamic and kinetic aspects of protein interactions. To study the functional homogeneity of the surface sites and to characterize their binding properties, we have recently proposed a computational tool to determine the distribution of affinity and kinetic rate constants from surface binding progress curves. It is based on modeling the experimentally measured binding signal as a superposition of signals from binding to sites spanning a range of rate and equilibrium constants, with regularization providing the most parsimonious distribution consistent with the data. In the present work, we have expanded the scope of this approach to include a compartment-like transport step, which can describe competitive binding to different surface sites in a zone of depleted analyte close to the sensor surface. This approach addresses a major difficulty in the analysis of surface binding where both transport limitation as well as unknown surface site heterogeneity may be present. In addition to the kinetic binding parameters of the ensemble of surface sites, it can provide estimates for effective transport rate constants. Using antibody-antigen interactions as experimental model systems, we studied the effects of the immobilization matrix and of the analyte flow-rate on the effective transport rate constant. Both were experimentally observed to influence mass transport. The approximate description of mass transport by a compartment model becomes critical when applied to strongly transport-controlled data, and we examined the limitations of this model. In the presence of only moderate mass transport limitation the compartment model provides a good description, but this approximation breaks down for strongly transport-limited surface binding. In the latter regime, we report experimental evidence for the formation of gradients within the sensing volume of the evanescent field biosensor used.
Collapse
Affiliation(s)
- Juraj Svitel
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
8
|
Vetter D. Chemical microarrays, fragment diversity, label-free imaging by plasmon resonance--a chemical genomics approach. J Cell Biochem 2003; 39:79-84. [PMID: 12552606 DOI: 10.1002/jcb.10408] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemical genomics aim to create synergy between synthetic small molecule chemistry and biosciences employing genomic tools and information. Central to chemical genomics is the discovery of bioactive compounds from novel targets for pharmaceutical lead development. The field is challenged both by the multitude and novelty of protein and other biomacromolecular targets to be studied. Affinity fingerprints, data sets of binding interactions between collections of chemicals and their macromolecular receptors, hold promise to guide drug design and study protein function for groups of related compounds and families of biomacromolecules. Despite their fundamental relevance, neither experimental protocols nor databases of quantitative and comprehensive description of binding interactions for small molecule ligands and biomacromolecular receptors are available. Chemical microarrays in combination with label-free imaging provide a novel route towards the systematic and standardized acquisition and application of such affinity fingerprint information.
Collapse
Affiliation(s)
- Dirk Vetter
- Graffinity Pharmaceuticals AG, Im Neuenheimer Feld 518-519, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Liu X, Wei J, Song D, Zhang Z, Zhang H, Luo G. Determination of affinities and antigenic epitopes of bovine cardiac troponin I (cTnI) with monoclonal antibodies by surface plasmon resonance biosensor. Anal Biochem 2003; 314:301-9. [PMID: 12654317 DOI: 10.1016/s0003-2697(02)00696-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A surface plasmon resonance (SPR) biosensor based on wavelength modulation was used for real-time detection of the interaction of three monoclonal antibodies and antigens of bovine cardiac troponin I (cTnI). In order to recognize antigenic epitopes of bovine cTnI, two experimental modes were applied. In the first experimental mode, three monoclonal antibodies were divided into three groups and three experiments were performed on biosensor surfaces prepared with protein A. In the second experimental mode, antigen was immobilized on the biosensor surface prepared by the amine-coupling method and three monoclonal antibodies were detected in turn. The results obtained by the two modes are consistent. In addition, the affinities of the monoclonal antibodies for the antigen were also determined by the association rate and the disassociation rate in real-time. These results validate the biosensor technology and illustrate how biosensors based on wavelength modulation can be used to study the interaction of monoclonal antibodies and antigens in real time.
Collapse
Affiliation(s)
- Xia Liu
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
We have assembled references of 700 articles published in 2001 that describe work performed using commercially available optical biosensors. To illustrate the technology's diversity, the citation list is divided into reviews, methods and specific applications, as well as instrument type. We noted marked improvements in the utilization of biosensors and the presentation of kinetic data over previous years. These advances reflect a maturing of the technology, which has become a standard method for characterizing biomolecular interactions.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
11
|
Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU. Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:263-276. [PMID: 12410806 DOI: 10.1046/j.1365-313x.2002.01420.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The twisted dwarf1 (twd1) mutant from Arabidopsis thaliana was identified in a screen for plant architecture mutants. The TWD1 gene encodes a 42 kDa FK506-binding protein (AtFKBP42) that possesses similarity to multidomain PPIases such as mammalian FKBP51 and FKBP52, which are known to be components of mammalian steroid hormone receptor complexes. We report here for the first time the stoichiometry and dissociation constant of a protein complex from Arabidopsis that consists of AtHsp90 and AtFKBP42. Recombinant AtFKBP42 prevents aggregation of citrate synthase in almost equimolar concentrations, and can be cross-linked to calmodulin. In comparison to one active and one inactive FKBP domain in FKBP52, AtFKBP42 lacks the PPIase active FKBP domain. While FKBP52 is found in the cytosol and translocates to the nucleus, AtFKBP42 was predicted to be membrane-localized, as shown by electron microscopy.
Collapse
Affiliation(s)
- Thilo Kamphausen
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, Germany
| | | | | | | | | |
Collapse
|