1
|
Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution. Commun Biol 2022; 5:951. [PMID: 36097054 PMCID: PMC9467995 DOI: 10.1038/s42003-022-03926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Photosystem I (PSI) is a light driven electron pump transferring electrons from Cytochrome c6 (Cyt c6) to Ferredoxin (Fd). An understanding of this electron transfer process is hampered by a paucity of structural detail concerning PSI:Fd interface and the possible binding sites of Cyt c6. Here we describe the high resolution cryo-EM structure of Thermosynechococcus elongatus BP-1 PSI in complex with Fd and a loosely bound Cyt c6. Side chain interactions at the PSI:Fd interface including bridging water molecules are visualized in detail. The structure explains the properties of mutants of PsaE and PsaC that affect kinetics of Fd binding and suggests a molecular switch for the dissociation of Fd upon reduction. Calorimetry-based thermodynamic analyses confirms a single binding site for Fd and demonstrates that PSI:Fd complexation is purely driven by entropy. A possible reaction cycle for the efficient transfer of electrons from Cyt c6 to Fd via PSI is proposed. In order to aid the understanding of the electron transfer process within the cyanobacterial photosystem I, its structure - when complexed with Ferredoxin - is determined at 1.97 Å resolution.
Collapse
|
2
|
Caspy I, Borovikova-Sheinker A, Klaiman D, Shkolnisky Y, Nelson N. The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. NATURE PLANTS 2020. [PMID: 33020607 DOI: 10.1038/s41477-020-00779-779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ability of photosynthetic organisms to use sunlight as a sole source of energy is endowed by two large membrane complexes-photosystem I (PSI) and photosystem II (PSII). PSI and PSII are the fundamental components of oxygenic photosynthesis, providing oxygen, food and an energy source for most living organisms on Earth. Currently, high-resolution crystal structures of these complexes from various organisms are available. The crystal structures of megadalton complexes have revealed excitation transfer and electron-transport pathways within the various complexes. PSI is defined as plastocyanin-ferredoxin oxidoreductase but a high-resolution structure of the entire triple supercomplex is not available. Here, using a new cryo-electron microscopy technique, we solve the structure of native plant PSI in complex with its electron donor plastocyanin and the electron acceptor ferredoxin. We reveal all of the contact sites and the modes of interaction between the interacting electron carriers and PSI.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anna Borovikova-Sheinker
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Klaiman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoel Shkolnisky
- School of Mathematical Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Caspy I, Borovikova-Sheinker A, Klaiman D, Shkolnisky Y, Nelson N. The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. NATURE PLANTS 2020; 6:1300-1305. [PMID: 33020607 DOI: 10.1038/s41477-020-00779-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
The ability of photosynthetic organisms to use sunlight as a sole source of energy is endowed by two large membrane complexes-photosystem I (PSI) and photosystem II (PSII). PSI and PSII are the fundamental components of oxygenic photosynthesis, providing oxygen, food and an energy source for most living organisms on Earth. Currently, high-resolution crystal structures of these complexes from various organisms are available. The crystal structures of megadalton complexes have revealed excitation transfer and electron-transport pathways within the various complexes. PSI is defined as plastocyanin-ferredoxin oxidoreductase but a high-resolution structure of the entire triple supercomplex is not available. Here, using a new cryo-electron microscopy technique, we solve the structure of native plant PSI in complex with its electron donor plastocyanin and the electron acceptor ferredoxin. We reveal all of the contact sites and the modes of interaction between the interacting electron carriers and PSI.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anna Borovikova-Sheinker
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Klaiman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoel Shkolnisky
- School of Mathematical Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Kubota-Kawai H, Mutoh R, Shinmura K, Sétif P, Nowaczyk MM, Rögner M, Ikegami T, Tanaka H, Kurisu G. X-ray structure of an asymmetrical trimeric ferredoxin-photosystem I complex. NATURE PLANTS 2018; 4:218-224. [PMID: 29610537 DOI: 10.1038/s41477-018-0130-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI), a large protein complex located in the thylakoid membrane, mediates the final step in light-driven electron transfer to the stromal electron carrier protein ferredoxin (Fd). Here, we report the first structural description of the PSI-Fd complex from Thermosynechococcus elongatus. The trimeric PSI complex binds three Fds in a non-equivalent manner. While each is recognized by a PSI protomer in a similar orientation, the distances between Fds and the PSI redox centres differ. Fd binding thus entails loss of the exact three-fold symmetry of the PSI's soluble subunits, inducing structural perturbations which are transferred to the lumen through PsaF. Affinity chromatography and nuclear magnetic resonance analyses of PSI-Fd complexes support the existence of two different Fd-binding states, with one Fd being more tightly bound than the others. We propose a dynamic structural basis for productive complex formation, which supports fast electron transfer between PSI and Fd.
Collapse
Affiliation(s)
- Hisako Kubota-Kawai
- Institute for Protein Research, Osaka University, Osaka, Japan
- National Institute for Basic Biology, Aichi, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Kanako Shinmura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Pierre Sétif
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan.
- Department of Macromolecular Science, Graduate School of Science, Osaka, Japan.
| |
Collapse
|
5
|
Kapoor K, Cashman DJ, Nientimp L, Bruce BD, Baudry J. Binding Mechanisms of Electron Transport Proteins with Cyanobacterial Photosystem I: An Integrated Computational and Experimental Model. J Phys Chem B 2018; 122:1026-1036. [PMID: 29211957 DOI: 10.1021/acs.jpcb.7b08307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stromal domain (PsaC, D, and E) of photosystem I (PSI) in cyanobacteria accepts electrons from PsaA and PsaB of photosystem I (PSI). These electrons are then used in the reduction of transiently bound ferredoxin (Fd) or flavodoxin. Experimental X-ray and NMR structures are known for all of these protein partners separately, yet to date, there is no known experimental structure of the PSI/Fd complexes in the published literature. Computational models of Fd docked with the stromal domain of cyanobacterial PSI were assembled here starting from X-ray and NMR structures of PSI and Fd. Predicted models of specific regions of protein-protein interactions were built on the basis of energetic frustration, residue conservation and evolutionary importance, as well as from experimental site-directed mutagenesis and cross-linking studies. Microsecond time-scale molecular dynamics simulations of the PSI/Fd complexes suggest, rather than a single complex structure, the possible existence of multiple transient complexes of Fd bound to PSI.
Collapse
Affiliation(s)
- Karan Kapoor
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Derek J Cashman
- Department of Chemistry, Tennessee Technological University , Box 5055, Cookeville, Tennessee 38505-0001, United States
| | - Luke Nientimp
- Department of Chemistry, Tennessee Technological University , Box 5055, Cookeville, Tennessee 38505-0001, United States
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Mignée C, Mutoh R, Krieger-Liszkay A, Kurisu G, Sétif P. Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction. PHOTOSYNTHESIS RESEARCH 2017; 134:251-263. [PMID: 28205062 DOI: 10.1007/s11120-016-0332-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Reduction of ferredoxin by photosystem I (PSI) involves the [4Fe-4S] clusters FA and FB harbored by PsaC, with FB being the direct electron transfer partner of ferredoxin (Fd). Binding of the redox-inactive gallium ferredoxin to PSI was investigated by flash-absorption spectroscopy, studying both the P700+ decay and the reduction of the native iron Fd in the presence of FdGa. FdGa binding resulted in a faster recombination between P700+ and (FA, FB)-, a slower electron escape from (FA, FB)- to exogenous acceptors, and a decreased amount of intracomplex FdFe reduction, in accordance with competitive binding between FdFe and FdGa. [FdGa] titrations of these effects revealed that the dissociation constant for the PSI:FdGa complex is different whether (FA, FB) is oxidized or singly reduced. This difference in binding, together with the increase in the recombination rate, could both be attributed to a c. -30 mV shift of the midpoint potential of (FA, FB), considered as a single electron acceptor, due to FdGa binding. This effect of FdGa binding, which can be extrapolated to FdFe because of the highly similar structure and the identical charge of the two Fds, should help irreversibility of electron transfer within the PSI:Fd complex. The effect of Fd binding on the individual midpoint potentials of FA and FB is also discussed with respect to the possible consequences on intra-PSI electron transfer and on the escape process.
Collapse
Affiliation(s)
- Clara Mignée
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Anja Krieger-Liszkay
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Pierre Sétif
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
7
|
Sétif P, Mutoh R, Kurisu G. Dynamics and energetics of cyanobacterial photosystem I:ferredoxin complexes in different redox states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:483-496. [DOI: 10.1016/j.bbabio.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
8
|
Cashman DJ, Zhu T, Simmerman RF, Scott C, Bruce BD, Baudry J. Molecular interactions between photosystem I and ferredoxin: an integrated energy frustration and experimental model. J Mol Recognit 2015; 27:597-608. [PMID: 25178855 DOI: 10.1002/jmr.2384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/21/2014] [Accepted: 04/18/2014] [Indexed: 11/10/2022]
Abstract
The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X-ray and NMR structures of PSI and Fd, respectively. Predictions of potential protein-protein interaction regions are based on experimental site-directed mutagenesis and cross-linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory to bring together regions of high energetic frustration on each of the interacting proteins. The results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. This study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies.
Collapse
Affiliation(s)
- Derek J Cashman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, University of Tennessee, Oak Ridge, TN, 37831, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
10
|
Kargul J, Barber J. Structure and Function of Photosynthetic Reaction Centres. MOLECULAR SOLAR FUELS 2011. [DOI: 10.1039/9781849733038-00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extensive biochemical, biophysical, molecular biological and structural studies on a wide range of prokaryotic and eukaryotic photosynthetic organisms has revealed common features of their reaction centres where light induced charge separation and stabilization occurs. There is little doubt that all reaction centres have evolved from a common ancestor and have been optimized to maximum efficiency. As such they provide principles that can be used as a blueprint for developing artificial photo-electrochemical catalytic systems to generate solar fuels. This chapter summarises the common features of the organization of cofactors, electron transfer pathways and protein environments of reaction centres of anoxygenic and oxygenic phototrophs. In particular, the latest molecular details derived from X-ray crystallography are discussed in context of the specific catalytic functions of the Type I and Type II reaction centres.
Collapse
Affiliation(s)
- Joanna Kargul
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| | - James Barber
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
11
|
Winkler M, Kawelke S, Happe T. Light driven hydrogen production in protein based semi-artificial systems. BIORESOURCE TECHNOLOGY 2011; 102:8493-8500. [PMID: 21696949 DOI: 10.1016/j.biortech.2011.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/04/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
Photobiological hydrogen production has recently attracted interest in terms of being a potential source for an alternative energy carrier. Especially the natural light driven hydrogen metabolism of unicellular green algae appears as an attractive blueprint for a clean and potentially unlimited dihydrogen source. However, the efficiency of in vivo systems is limited by physiological and evolutionary constraints and scientists only begin to understand the regulatory networks influencing cellular hydrogen production. A growing number of projects aim at circumventing these limitations by focusing on semi-artificial systems. They reconstitute parts of the native electron transfer chains in vitro, combining photosystem I as a photoactive element with a proton reducing catalytic element such as hydrogenase enzymes or noble metal nanoparticles. This review summarizes various approaches and discusses limitations that have to be overcome in order to establish economically applicable systems.
Collapse
Affiliation(s)
- Martin Winkler
- Ruhr-Universität Bochum, Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, 44780 Bochum, Germany
| | | | | |
Collapse
|
12
|
Amunts A, Nelson N. Plant Photosystem I Design in the Light of Evolution. Structure 2009; 17:637-50. [DOI: 10.1016/j.str.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 11/26/2022]
|
13
|
Sétif P, Hirasawa M, Cassan N, Lagoutte B, Tripathy JN, Knaff DB. New Insights into the Catalytic Cycle of Plant Nitrite Reductase. Electron Transfer Kinetics and Charge Storage. Biochemistry 2009; 48:2828-38. [DOI: 10.1021/bi802096f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pierre Sétif
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Masakazu Hirasawa
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Nicolas Cassan
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Bernard Lagoutte
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Jatindra N. Tripathy
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - David B. Knaff
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| |
Collapse
|
14
|
Amunts A, Nelson N. Functional organization of a plant Photosystem I: evolution of a highly efficient photochemical machine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:228-37. [PMID: 18272382 DOI: 10.1016/j.plaphy.2007.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Indexed: 05/05/2023]
Abstract
Despite its enormous complexity, a plant Photosystem I (PSI) is arguably the most efficient nano-photochemical machine in Nature. It emerged as a homodimeric structure containing several chlorophyll molecules over 3.5 billion years ago, and has perfected its photoelectric properties ever since. The recently determined structure of plant PSI, which is at the top of the evolutionary tree of this kind of complexes, provided the first relatively high-resolution structural model of the supercomplex containing a reaction center (RC) and a peripheral antenna (LHCI) complexes. The RC is highly homologous to that of the cyanobacterial PSI and maintains the position of most transmembrane helices and chlorophylls during 1.5 years of separate evolution. The LHCI is composed of four nuclear gene products (Lhca1-Lhca4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and their assembly into dimers. In this respect, we describe structural elements, which establish the biological significance of a plant PSI and discuss structural variance from the cyanobacterial version. The present comprehensive structural analysis summarizes our current state of knowledge, providing the first glimpse at the architecture of this highly efficient photochemical machine at the atomic level.
Collapse
Affiliation(s)
- Alexey Amunts
- Biochemistry Department, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Sherman Building, Room 531, Tel Aviv 69978, Israel.
| | | |
Collapse
|
15
|
Utschig LM, Chen LX, Poluektov OG. Discovery of Native Metal Ion Sites Located on the Ferredoxin Docking Side of Photosystem I. Biochemistry 2008; 47:3671-6. [DOI: 10.1021/bi800038d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lin X. Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
16
|
Jolley C, Ben-Shem A, Nelson N, Fromme P. Structure of plant photosystem I revealed by theoretical modeling. J Biol Chem 2005; 280:33627-36. [PMID: 15955818 DOI: 10.1074/jbc.m500937200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem (PS) I is a large membrane protein complex vital for oxygenic photosynthesis, one of the most important biological processes on the planet. We present an "atomic" model of higher plant PSI, based on theoretical modeling using the recent 4.4 angstroms x-ray crystal structure of PSI from pea. Because of the lack of information on the amino acid side chains in the x-ray structural model and the high cofactor content in this system, novel modeling techniques were developed. Our model reveals some important structural features of plant PSI that were not visible in the crystal structure, and our model sheds light on the evolutionary relationship between plant and cyanobacterial PSI.
Collapse
Affiliation(s)
- Craig Jolley
- Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85281-1504, USA
| | | | | | | |
Collapse
|
17
|
Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Salamini F, Leister D. Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:839-52. [PMID: 14996217 DOI: 10.1111/j.1365-313x.2004.02011.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Arabidopsis thaliana, the D-subunit of photosystem I (PSI-D) is encoded by two functional genes, PsaD1 and PsaD2, which are highly homologous. Knock-out alleles for each of the loci have been identified by a combination of forward and reverse genetics. The double mutant psad1-1 psad2-1 is seedling-lethal, high-chlorophyll-fluorescent and deficient for all tested PSI subunits, indicating that PSI-D is essential for photosynthesis. In addition, psad1-1 psad2-1 plants show a defect in the accumulation of thylakoid multiprotein complexes other than PSI. Of the single-gene mutations, psad2 plants behave like wild-type (WT) plants, whereas psad1-1 markedly affects the accumulation of PsaD mRNA and protein, and photosynthetic electron flow. Additional effects of the psad1-1 mutation include a decrease in growth rate under greenhouse conditions and downregulation of the mRNA expression of most genes involved in the light phase of photosynthesis. In the same mutant, a marked decrease in the levels of PSI and PSII polypeptides is evident, as well as a light-green leaf coloration and increased photosensitivity. Increased dosage of PsaD2 in the psad1-1 background restores the WT phenotype, indicating that PSI-D1 and PSI-D2 have redundant functions.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Abteilung für Pflanzenzüchtung und Ertragsphysiologie, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Haldrup A, Lunde C, Scheller HV. Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem 2003; 278:33276-83. [PMID: 12794067 DOI: 10.1074/jbc.m305106200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSI-D subunit of photosystem I is a hydrophilic subunit of about 18 kDa, which is exposed to the stroma and has an important function in the docking of ferredoxin to photosystem I. We have used an antisense approach to obtain Arabidopsis thaliana plants with only 5-60% of PSI-D. No plants were recovered completely lacking PSI-D, suggesting that PSI-D is essential for a functional PSI in plants. Plants with reduced amounts of PSI-D showed a similar decrease in all other subunits of PSI including the light harvesting complex, suggesting that in the absence of PSI-D, PSI cannot be properly assembled and becomes degraded. Plants with reduced amounts of PSI-D became light-stressed even in low light although they exhibited high non-photochemical quenching (NPQ). The high NPQ was generated by upregulating the level of violaxanthin de-epoxidase and PsbS, which are both essential components of NPQ. Interestingly, the lack of PSI-D affected the redox state of thioredoxin. During the normal light cycle thioredoxin became increasingly oxidized, which was observed as decreasing malate dehydrogenase activity over a 4-h light period. This result shows that photosynthesis was close to normal the first 15 min, but after 2-4 h photoinhibition dominated as the stroma progressively became less reduced. The change in the thiol disulfide redox state might be fatal for the PSI-D-less plants, because reduction of thioredoxin is one of the main switches for the initiation of CO2 assimilation and photoprotection upon light exposure.
Collapse
Affiliation(s)
- Anna Haldrup
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
19
|
Sétif P, Fischer N, Lagoutte B, Bottin H, Rochaix JD. The ferredoxin docking site of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:204-9. [PMID: 12206916 DOI: 10.1016/s0005-2728(02)00279-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction center of photosystem I (PSI) reduces soluble ferredoxin on the stromal side of the photosynthetic membranes of cyanobacteria and chloroplasts. The X-ray structure of PSI from the cyanobacterium Synechococcus elongatus has been recently established at a 2.5 A resolution [Nature 411 (2001) 909]. The kinetics of ferredoxin photoreduction has been studied in recent years in many mutants of the stromal subunits PsaC, PsaD and PsaE of PSI. We discuss the ferredoxin docking site of PSI using the X-ray structure and the effects brought by the PSI mutations to the ferredoxin affinity.
Collapse
Affiliation(s)
- Pierre Sétif
- CEA Saclay, Département de Biologie Joliot-Curie, Service de Bioénergétique and URA CNRS 2096, 91191 Gif sur Yvette, Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Ruffle SV, Mustafa AO, Kitmitto A, Holzenburg A, Ford RC. The location of plastocyanin in vascular plant photosystem I. J Biol Chem 2002; 277:25692-6. [PMID: 11976339 DOI: 10.1074/jbc.m202670200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the binding sites of the electron donor and acceptor proteins of vascular plant photosystem I by electron microscopy/crystallography. Previously, we identified the binding site for the electron acceptor (ferredoxin). In this paper we complete these studies with the characterization of the electron donor (plastocyanin) binding site. After cross-linking, plastocyanin is detected using Fourier difference analysis of two dimensionally ordered arrays of photosystem I located at the periphery of chloroplast grana. Plastocyanin binds in a small cavity on the lumenal surface of photosystem I, close to the center and with a slight bias toward the PsaL subunit of the complex. The recent release of the full coordinates for the cyanobacterial photosystem I reaction center has allowed a detailed comparison between the structures of the eukaryotic and prokaryotic systems. This reveals a very close homology, which is particularly striking for the lumenal side of photosystem I.
Collapse
Affiliation(s)
- Stuart V Ruffle
- School of Biological Sciences, University of Exeter, United Kingdom
| | | | | | | | | |
Collapse
|