1
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
2
|
Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 2009; 76:215-28. [PMID: 19483103 DOI: 10.1124/mol.109.056705] [Citation(s) in RCA: 528] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sex differences in pharmacokinetics and pharmacodynamics characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Sex-based differences in drug metabolism are the primary cause of sex-dependent pharmacokinetics and reflect underlying sex differences in the expression of hepatic enzymes active in the metabolism of drugs, steroids, fatty acids and environmental chemicals, including cytochromes P450 (P450s), sulfotransferases, glutathione transferases, and UDP-glucuronosyltransferases. Studies in the rat and mouse liver models have identified more than 1000 genes whose expression is sex-dependent; together, these genes impart substantial sexual dimorphism to liver metabolic function and pathophysiology. Sex differences in drug metabolism and pharmacokinetics also occur in humans and are due in part to the female-predominant expression of CYP3A4, the most important P450 catalyst of drug metabolism in human liver. The sexually dimorphic expression of P450s and other liver-expressed genes is regulated by the temporal pattern of plasma growth hormone (GH) release by the pituitary gland, which shows significant sex differences. These differences are most pronounced in rats and mice, where plasma GH profiles are highly pulsatile (intermittent) in male animals versus more frequent (nearly continuous) in female animals. This review discusses key features of the cell signaling and molecular regulatory mechanisms by which these sex-dependent plasma GH patterns impart sex specificity to the liver. Moreover, the essential role proposed for the GH-activated transcription factor signal transducer and activator of transcription (STAT) 5b, and for hepatic nuclear factor (HNF) 4alpha, as mediators of the sex-dependent effects of GH on the liver, is evaluated. Together, these studies of the cellular, molecular, and gene regulatory mechanisms that underlie sex-based differences in liver gene expression have provided novel insights into the physiological regulation of both xenobiotic and endobiotic metabolism.
Collapse
Affiliation(s)
- David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
3
|
Li Y, Cui Y, Hart SN, Klaassen CD, Zhong XB. Dynamic patterns of histone methylation are associated with ontogenic expression of the Cyp3a genes during mouse liver maturation. Mol Pharmacol 2009; 75:1171-9. [PMID: 19188337 DOI: 10.1124/mol.108.052993] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytochrome P450 3A (CYP3A) members are major drug-metabolizing enzymes in the liver. Two genes, CYP3A4 and CYP3A7, exhibit a developmental switch in gene expression during liver maturation. CYP3A4 is mainly expressed in adults, whereas CYP3A7 is dominantly expressed during the fetal and neonatal stages. Their ontogenic expression results in developmentally related changes in the capacity to metabolize endogenous and exogenous compounds. Thus, it is desirable to understand the mechanisms controlling the developmental switch. Mice also exhibit a developmental switch between Cyp3a16 (neonatal isoform) and Cyp3a11 (adult isoform) and may serve as a model to study the mechanisms controlling the developmental switch. Because the epigenetic code (e.g., DNA methylation and histone modifications) is implicated in regulating gene expression and cellular differentiation during development, the current study determined the status of DNA methylation, histone-3-lysine-4 dimethylation (H3K4me2) and histone-3-lysine-27 trimethylation (H3K27me3) around the mouse Cyp3a locus at various developmental ages from prenatal, through neonatal, to young adult. DNA was not hypermethylated in the Cyp3a locus at any age. However, increases in Cyp3a16 expression in neonatal livers and Cyp3a11 in adult livers were associated with increases of H3K4me2. Suppression of Cyp3a16 expression in adult livers coincided with decreases of H3K4me2 and increases of H3K27me3 around Cyp3a16. In conclusion, histone modifications of H3K4me2 and H3K27me3 are dynamically changed in a locus-specific manner along the Cyp3a locus. Developmental switch between Cyp3a11 and Cyp3a16 gene expression seems to be due to dynamic changes of histone modifications during postnatal liver maturation.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
4
|
Holloway MG, Miles GD, Dombkowski AA, Waxman DJ. Liver-specific hepatocyte nuclear factor-4alpha deficiency: greater impact on gene expression in male than in female mouse liver. Mol Endocrinol 2008; 22:1274-86. [PMID: 18276827 PMCID: PMC2366185 DOI: 10.1210/me.2007-0564] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/05/2008] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte nuclear factor (HNF)-4alpha is a liver-enriched transcription factor that regulates numerous liver-expressed genes including several sex-specific cytochrome P450 genes. Presently, a liver-specific HNF4alpha-deficient mouse model was used to characterize the impact of liver HNF4alpha deficiency on a global scale using 41,174 feature microarrays. A total of 4994 HNF4alpha-dependent genes were identified, of which about 1000 fewer genes responded to the loss of HNF4alpha in female liver as compared with male liver. Sex differences in the impact of liver HNF4alpha deficiency were even more dramatic when genes showing sex-specific expression were examined. Thus, 372 of the 646 sex-specific genes characterized by a dependence on HNF4alpha responded to the loss of HNF4alpha in males only, as compared with only 61 genes that responded in females only. Moreover, in male liver, 78% of 508 male-specific genes were down-regulated and 42% of 356 female-specific genes were up-regulated in response to the loss of HNF4alpha, with sex specificity lost for 90% of sex-specific genes. This response to HNF4alpha deficiency is similar to the response of male mice deficient in the GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b), where 90% of male-specific genes were down-regulated and 61% of female-specific genes were up-regulated, suggesting these two factors cooperatively regulate liver sex specificity by mechanisms that are primarily active in males. Finally, 203 of 648 genes previously shown to bind HNF4alpha near the transcription start site in mouse hepatocytes were affected by HNF4alpha deficiency in mouse liver, with the HNF4alpha-bound gene set showing a 5-fold enrichment for genes positively regulated by HNF4alpha. Thus, a substantial fraction of the HNF4alpha-dependent genes reported here are likely to be direct targets of HNF4alpha.
Collapse
Affiliation(s)
- Minita G Holloway
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
5
|
Murray M. Role of signalling systems in the effects of dietary factors on the expression of mammalian CYPs. Expert Opin Drug Metab Toxicol 2007; 3:185-96. [PMID: 17428150 DOI: 10.1517/17425255.3.2.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Changes in mammalian diets alter the hepatic expression of CYP drug-metabolising enzymes and endobiotic oxidases. Thus, dietary constituents may significantly influence the duration of action of chemicals in tissues. Recent improvements in the mechanistic information on the regulation of constitutive and inducible expression of CYPs has facilitated our understanding as to how dietary factors modulate expression. Altered regulation appears to occur either by direct activation of transcription factors or by indirect modulation of signal transduction pathways. For example, dietary lipid directly activates PPAR-alpha, or other nuclear hormone receptors, to elicit CYP induction, and vitamin A deficiency downregulates the growth hormone-responsive CYP2C11 by perturbing Janus kinase-signal transducers and activators of transcription signalling. This article focuses on the present understanding of the regulation of CYP genes by dietary nutrients.
Collapse
Affiliation(s)
- Michael Murray
- University of Sydney, Pharmacogenomics and Drug Development Group, Faculty of Pharmacy, NSW 2006, Australia.
| |
Collapse
|
6
|
Abstract
In this minireview, the role of various nuclear receptors and transcription factors in the expression of drug disposition genes is summarized. Specifically, the molecular aspects and functional impact of the aryl hydrocarbon receptor (AhR), nuclear factor-E2 p45-related factor 2 (N(r)f2), hepatocyte nuclear factor 1alpha (HNF1alpha), constitutive androstane receptor (LAR), pregnane X receptor (PXR), farnesoid X receptor (FXR), peroxisome proliferator-activated receptor alpha (PPAR(alpha)), hepatocyte nuclear factor 4alpha (HNF4alpha), vitamin D receptor (VDR), liver receptor homolog 1 (LRH1), liver X receptor (LXR(alpha)), small heterodimer partner-1 (SHP-1), and glucocorticoid receptor (GR) on gene expression are detailed. Finally, we discuss some current topics and themes in nuclear receptor-mediated regulation of drug metabolizing enzymes and drug transporters.
Collapse
Affiliation(s)
- Rommel G Tirona
- Department of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
7
|
Wiwi CA, Gupte M, Waxman DJ. Sexually dimorphic P450 gene expression in liver-specific hepatocyte nuclear factor 4alpha-deficient mice. Mol Endocrinol 2004; 18:1975-87. [PMID: 15155787 DOI: 10.1210/me.2004-0129] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hepatocyte nuclear factor (HNF) 4alpha is a liver-enriched nuclear receptor that plays a critical role in regulating the expression of numerous hepatic genes, including members of the cytochrome P450 (CYP) superfamily, several of which are expressed in a sex-dependent manner. Presently, we use a liver-specific Hnf4alpha-deficient mouse model to investigate the role of HNF4alpha in regulating liver-enriched transcription factors and sexually dimorphic Cyps in liver in vivo. Real-time PCR analysis of RNA isolated from livers of wild-type and Hnf4alpha-deficient mice revealed the following: 1) HNF4alpha exerts both positive regulation (Hnfalpha, C/ebpalpha, and C/ebpbeta) and negative regulation (Hnf3alpha and the HNF4alpha coactivator Pgc-1alpha) on liver transcription factor expression; 2) a strong dependence on HNF4alpha characterizes several male-predominant Cyps (2d9 and 8b1), female-predominant Cyps (2b10, 2b13, 3a41, and 3a44) and Cyps, whose expression is sex independent (3a11, 3a25); 3) HNF4alpha confers a unique, positive regulation of two male-expressed genes (Cyp4a12 and GSTpi) and a negative regulation of several female-predominant genes (Cyp2a4, Cyp2b9, Hnf3beta, and Hnf6), both of which are manifest in male but not female mouse liver. These trends were confirmed at the protein level by Western blot analysis using antibodies raised to Cyp2a, Cyp2b, and Cyp3a family members. Thus, HNF4alpha is an essential player in the complex regulatory network of liver-enriched transcription factors and the sexually dimorphic mouse Cyp genes that they regulate. HNF4alpha is proposed to contribute to the sex specificity of liver gene expression by positively regulating a subset of male-specific Cyp genes while concomitantly inhibiting the expression of certain female-specific Cyps and liver transcription factors, by mechanisms that are operative in male, but not female, mouse liver.
Collapse
Affiliation(s)
- Christopher A Wiwi
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
8
|
Fradette C, Souich PD. Hypoxia-inducible factor-1 and activator protein-1 modulate the upregulation of CYP3A6 induced by hypoxia. Br J Pharmacol 2003; 140:1146-54. [PMID: 14559859 PMCID: PMC1574128 DOI: 10.1038/sj.bjp.0705543] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
1. Moderate hypoxia in vivo and serum from rabbits subjected to moderate hypoxia (SHYPO) in vitro reduce CYP1A1 and 1A2 p450 isoforms and upregulate CYP3A6. The aim of this project was to investigate the signal transduction pathways implicated in the upregulation of CYP3A6 expression by hypoxia. 2. Hypoxia in vivo and SHYPO in vitro increased the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and c-jun, as well as CYP3A6. By electrophoresis mobility shift assay, it was shown that HIF-1 and activator protein-1 (AP-1) bind to CYP3A6 oligonucleotide probe after exposure to hypoxia in vivo and SHYPO in vitro. The effects of hypoxia in vivo or SHYPO in vitro were reproduced by CoCl2 and lead acetate, activators of HIF-1 and AP-1, respectively. 2. PD98059, a p42/44 MAPK inhibitor, prevented the increase of CYP3A6 and c-jun, but did not impede the increase of HIF-1alpha and binding to CYP3A6 oligonucleotide probe. Genistein, an inhibitor of protein tyrosine kinases (PTKs), prevented the increase in HIF-1alpha, c-jun and CYP3A6, as well as HIF-1 and AP-1 binding to CYP3A6 oligonucleotide probe. Moreover, hypoxia in vivo induced constitutive androstane receptor (CAR) as well as CAR binding to the CYP3A6 oligonucleotide probe, but not the pregnane X receptor. 4. In conclusion, hypoxia in vivo and SHYPO induce the expression of CYP3A6. The in vitro induction of CYP3A6 by SHYPO is PTK- and p42/44 MAPK-dependent. The present data support the hypothesis that HIF-1 and AP-1 are part of the signalling pathway leading to CYP3A6 induction by hypoxia.
Collapse
Affiliation(s)
- Caroline Fradette
- Department of Pharmacology, Faculty of Medicine, University of Montréal, PO Box 6128, Stat. Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Patrick du Souich
- Department of Pharmacology, Faculty of Medicine, University of Montréal, PO Box 6128, Stat. Centre-Ville, Montréal, Québec, Canada H3C 3J7
- Author for correspondence:
| |
Collapse
|
9
|
Riddick DS, Lee C, Bhathena A, Timsit YE. The 2001 Veylien Henderson Award of the Society of Toxicology of Canada. Positive and negative transcriptional regulation of cytochromes P450 by polycyclic aromatic hydrocarbons. Can J Physiol Pharmacol 2003; 81:59-77. [PMID: 12665258 DOI: 10.1139/y03-003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most responses to aromatic hydrocarbons such as 3-methylcholanthrene (MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin are mediated by the aromatic hydrocarbon receptor (AHR). The AHR regulates induction of drug-metabolizing enzymes such as cytochrome P450 1A1. However, the expression of several genes of biological significance is decreased by these chemicals. We are examining the mechanisms by which aromatic hydrocarbons suppress constitutive hepatic cytochromes P450, especially the male-specific rat liver cytochrome P450 2C11 (CYP2C11), which is regulated by pulsatile growth hormone (GH) secretion. Aromatic hydrocarbons suppress CYP2C11 via a transcriptional mechanism both in vivo and in cultured hepatocytes, and the AHR appears to be involved; however, studies of protein-DNA interactions and reporter genes driven by the CYP2C11 5'-flanking region have not provided a definitive mechanism for this response. MC attenuates the ability of GH to stimulate hepatic CYP2C11 expression in hypophysectomized (hypx) male rats, and this prompted studies of effects of aromatic hydrocarbons on hepatic GH signaling pathways as a novel aspect of endocrine disruption. Our studies with hypx rats also suggest that the hepatic AHR protein is regulated by a pituitary factor(s). The goal of these molecular mechanistic studies is to improve our understanding of how environmental contaminants modulate the expression of genes coding for xenobiotic- and hormone-metabolizing enzymes.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology, Medical Sciences Building, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | | | | | | |
Collapse
|