Watanabe Y, Suzuki O, Haruyama T, Akaike T. Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis.
J Cell Biochem 2003;
89:244-53. [PMID:
12704788 DOI:
10.1002/jcb.10501]
[Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interferon-gamma (IFN-gamma) induces cell-cycle arrest and p53-independent apoptosis in primary cultured hepatocytes. However, the detailed mechanism, including regulating molecules, is still unclear. In this study, we found that IFN-gamma induced generation of reactive oxygen species (ROS) in primary hepatocytes and that pyrrolidinedithiocarbamate (PDTC), an anti-oxidant reagent, completely suppressed IFN-gamma-induced hepatic apoptosis. PDTC blocked apoptosis downstream from IRF-1 and upstream from caspase activation, suggesting that the generation of ROS occurred between these stages. However, IFN-gamma also induced the generation of ROS in IRF-1-deficient hepatocytes, cells insensitive to IFN-gamma-induced apoptosis. Moreover, a general cyclooxygenase (COX) inhibitor, indomethacin (but not the cyclooxygenase 2-specific inhibitor, NS-398) also inhibited the apoptosis without blocking the generation of ROS. Both PDTC and indomethacin also blocked IFN-gamma-induced release of cytochrome c from mitochondria. These results suggest that ROS are not the only or sufficient mediators of IFN-gamma-induced hepatic apoptosis. In contrast, we also found that IFN-gamma induced endoplasmic reticulum (ER) stress proteins, CHOP/GADD153 and caspase 12, in wild-type primary hepatocytes, but induced only caspase 12 and not CHOP/GADD153 protein in IRF-1-deficient hepatocytes. These results suggest that IFN-gamma induces ER stress in primary hepatocytes. Both the ROS and ER stress induced by IFN-gamma may be complementary mediators that induce apoptosis in primary hepatocytes.
Collapse