1
|
The nucleolar DExD/H protein Hel66 is involved in ribosome biogenesis in Trypanosoma brucei. Sci Rep 2021; 11:18325. [PMID: 34526538 PMCID: PMC8443567 DOI: 10.1038/s41598-021-97020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.
Collapse
|
2
|
Interaction Networks of Ribosomal Expansion Segments in Kinetoplastids. Subcell Biochem 2021; 96:433-450. [PMID: 33252739 DOI: 10.1007/978-3-030-58971-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expansion segments (ES) are insertions of a few to hundreds of nucleotides at discrete locations on eukaryotic ribosomal RNA (rRNA) chains. Some cluster around 'hot spots' involved in translation regulation and some may participate in biogenesis. Whether ES play the same roles in different organisms is currently unclear, especially since their size may vary dramatically from one species to another and very little is known about their functions. Most likely, ES variation is linked to adaptation to a particular environment. In this chapter, we compare the interaction networks of ES from four kinetoplastid parasites, which have evolved in diverse insect vectors and mammalian hosts: Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani and Leishmania major. Here, we comparatively analyze ribosome structures from these representative kinetoplastids and ascertain meaningful structural differences from mammalian ribosomes. We base our analysis on sequence alignments and three-dimensional structures of 80S ribosomes solved by cryo-electron microscopy (cryo-EM). Striking differences in size are observed between ribosomes of different parasites, indicating that not all ES are expanded equally. Larger ES are not always matched by large surrounding ES or proteins extensions in their vicinity, a particularity that may lead to clues about their biological function. ES display different species-specific patterns of conservation, which underscore the density of their interaction network at the surface of the ribosome. Making sense of the conservation patterns of ES is part of a global effort to lay the basis for functional studies aimed at discovering unique kinetoplastid-specific sites suitable for therapeutic applications against these human and often animal pathogens.
Collapse
|
3
|
Nocua PA, Requena JM, Puerta CJ. Identification of the interactomes associated with SCD6 and RBP42 proteins in Leishmania braziliensis. J Proteomics 2020; 233:104066. [PMID: 33296709 DOI: 10.1016/j.jprot.2020.104066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 02/04/2023]
Abstract
Leishmania are protozoan parasites responsible for leishmaniasis. These parasites present a precise gene regulation that allows them to survive different environmental conditions during their digenetic life cycle. This adaptation depends on the regulation of the expression of a wide variety of genes, which occurs, mainly at the post-transcriptional level. This differential gene expression is achieved by mechanisms based mainly in RNA binding proteins that regulate the translation and/or stability of mRNA targets by interaction with cis elements principally located in the untranslated regions (UTR). In recent studies, our group identified and characterized two proteins, SCD6 and RBP42, as RNA binding proteins in Leishmania braziliensis. To find clues about the cellular processes in which these proteins are involved, this work was aimed to determine the SCD6- and RBP42-interacting proteins (interactome) in L. braziliensis promastigotes. For this purpose, after an in vivo UV cross-linking, cellular extracts were used to immunoprecipitated, by specific antibodies, protein complexes in which SCD6 or RBP42 were present. Protein mass spectrometry analysis of the immunoprecipitated proteins identified 96 proteins presumably associated with SCD6 and 173 proteins associated with RBP42. Notably, a significant proportion of the identified proteins were shared in both interactomes, indicating a possible functional relationship between SCD6 and RBP42. Remarkably, many of the proteins identified in the SCD6 and RBP42 interactomes are related to RNA metabolism and translation processes, and many of them have been described as components of ribonucleoprotein (RNP) granules in Leishmania and related trypanosomatids. Thus, these results support a role of SCD6 and RBP42 in the assembly and/or function of mRNA-protein complexes, participating in the fate (decay/accumulation/translation) of L. braziliensis transcripts. SIGNIFICANCE: Parasites of the Leishmania genus present a particular regulation of gene expression, operating mainly at the post-transcriptional level, surely aimed to modulate quickly both mRNA and protein levels to survive the sudden environmental changes that occur during a parasite's life cycle as it moves from one host to another. This regulation of gene expression processes would be governed by the interaction of mRNA with RNA binding proteins. Nevertheless, the entirety of protein networks involved in these regulatory processes is far from being understood. In this regard, our work is contributing to stablish protein networks in which the L. braziliensis SCD6 and RBP42 proteins are involved; these proteins, in previous works, have been described as RNA binding proteins and found to participate in gene regulation in different cells and organisms. Additionally, our data point out a possible functional relationship between SCD6 and RBP42 proteins as constituents of mRNA granules, like processing bodies or stress granules, which are essential structures in the regulation of gene expression. This knowledge could provide a new approach for the development of therapeutic targets to control Leishmania infections.
Collapse
Affiliation(s)
- Paola A Nocua
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
4
|
Trypanosoma brucei L11 Is Essential to Ribosome Biogenesis and Interacts with the Kinetoplastid-Specific Proteins P34 and P37. mSphere 2019; 4:4/4/e00475-19. [PMID: 31434747 PMCID: PMC6706469 DOI: 10.1128/msphere.00475-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Eukaryotic ribosome biogenesis is an essential cellular process involving tightly coordinated assembly of multiple rRNA and protein components. Much of our understanding of this pathway has come from studies performed with yeast model systems. These studies have identified critical checkpoints in the maturation of the large ribosomal subunit (LSU/60S), one of which is the proper formation and incorporation of the 5S ribonucleoprotein complex (5S RNP). Research on the 5S RNP has identified a complex containing the four proteins L5, L11, Rpf2, and Rrs1 as well as 5S rRNA. Our laboratory has studied the 5S RNP in Trypanosoma brucei, a eukaryotic parasite, and identified the proteins P34 and P37 as essential, parasite-specific members of this complex. We have additionally identified homologues of L5, Rpf2, Rrs1, and 5S rRNA in T. brucei and characterized their roles in this essential process. In this study, we examined the T. brucei homologue of ribosomal protein L11 as a member of the 5S RNP. We showed that TbL11 is essential and that it is important for proper ribosome subunit formation and 60S rRNA processing. Additionally, we identified TbL11 interactions with TbL5 and TbRpf2, as well as novel interactions with the kinetoplast-specific proteins P34 and P37. These findings expand our understanding of a crucial process outside the context of model yeast organisms and highlight differences in an otherwise highly conserved process that could be used to develop future treatments against T. brucei IMPORTANCE The human-pathogenic, eukaryotic parasite Trypanosoma brucei causes human and animal African trypanosomiases. Treatments for T. brucei suffer from numerous hurdles, including adverse side effects and developing resistance. Ribosome biogenesis is one critical process for T. brucei survival that could be targeted for new drug development. A critical checkpoint in ribosome biogenesis is formation of the 5S RNP, which we have shown involves the trypanosome-specific proteins P34 and P37 as well as homologues of Rpf2, Rrs1, and L5. We have identified parasite-specific characteristics of these proteins and involvement in key parts of ribosome biogenesis, making them candidates for future drug development. In this work, we characterized the T. brucei homologue of ribosomal protein L11. We show that it is essential for parasite survival and is involved in ribosome biogenesis and rRNA processing. Furthermore, we identified novel interactions with P34 and P37, characteristics that make this protein a potential target for novel chemotherapeutics.
Collapse
|
5
|
Rink C, Williams N. Unique Interactions of the Nuclear Export Receptors TbMex67 and TbMtr2 with Components of the 5S Ribonuclear Particle in Trypanosoma brucei. mSphere 2019; 4:e00471-19. [PMID: 31413174 PMCID: PMC6695518 DOI: 10.1128/msphere.00471-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic ribosome biogenesis is a complicated and highly conserved biological process. A critical step in ribosome biogenesis is the translocation of the immature ribosomal subunits from the nucleoplasm, across the nucleopore complex, to the cytoplasm where they undergo final maturation. Many nonribosomal proteins are needed to facilitate export of the ribosomal subunits, and one complex participating in export of the pre-60S in Saccharomyces cerevisiae is the heterodimer Mex67-Mtr2. In Trypanomsoma brucei, the process of ribosome biogenesis differs from the yeast process in key steps and is not yet fully characterized. However, our laboratory has previously identified the trypanosome-specific proteins P34/P37 and has shown that P34/P37 are necessary for the formation of the 5S ribonuclear particle (RNP) and for the nuclear export of the pre-60S subunit. We have also shown that loss of TbMex67 or TbMtr2 leads to aberrant ribosome formation, rRNA processing, and polysome formation in T. brucei In this study, we characterize the interaction of TbMex67 and TbMtr2 with the components of the 5S RNP (P34/P37, L5 and 5S rRNA) of the 60S subunit. We demonstrate that TbMex67 directly interacts with P34 and L5 proteins as well as 5S rRNA, while TbMtr2 does not. Using protein sequence alignments and structure prediction modeling, we show that TbMex67 lacks the amino acids previously shown to be essential for binding to 5S rRNA in yeast and in general aligns more closely with the human orthologue (NXF1 or TAP). This work suggests that the T. brucei Mex67-Mtr2 binds ribosomal cargo differently from the yeast system.IMPORTANCETrypanosoma brucei is the causative agent for both African sleeping sickness in humans and nagana in cattle. Ribosome biogenesis in these pathogens requires both conserved and trypanosome-specific proteins to coordinate in a complex pathway. We have previously shown that the trypanosome-specific proteins P34/P37 are essential to the interaction of the TbNmd3-TbXpoI export complex with the 60S ribosomal subunits, allowing their translocation across the nuclear envelope. Our recent studies show that the trypanosome orthologues of the auxiliary export proteins TbMex67-TbMtr2 are required for ribosome assembly, proper rRNA processing, and polysome formation. Here we show that TbMex67-TbMtr2 interact with members of the 60S ribosomal subunit 5S RNP. Although TbMex67 has a unique structure among the Mex67 orthologues and forms unique interactions with the 5S RNP, particularly with trypanosome-specific P34/P37, it performs a conserved function in ribosome assembly. These unique structures and parasite-specific interactions may provide new therapeutic targets against this important parasite.
Collapse
Affiliation(s)
- Constance Rink
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
| | - Noreen Williams
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Trypanosoma brucei Homologue of Regulator of Ribosome Synthesis 1 (Rrs1) Has Direct Interactions with Essential Trypanosome-Specific Proteins. mSphere 2019; 4:4/4/e00453-19. [PMID: 31391282 PMCID: PMC6686231 DOI: 10.1128/msphere.00453-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development. Studies in eukaryotic ribosome biogenesis have largely been performed in yeast, where they have described a highly complex process involving numerous protein and RNA components. Due to the complexity and crucial nature of this process, a number of checkpoints are necessary to ensure that only properly assembled ribosomes are released into the cytoplasm. Assembly of the 5S ribonucleoprotein (RNP) complex is one of these checkpoints for late-stage 60S subunit maturation. Studies in Saccharomyces cerevisiae have identified the 5S rRNA and four proteins, L5, L11, Rpf2, and Rrs1, as comprising the ribosome-associated 5S RNP. Work from our laboratory has shown that in the eukaryotic pathogen Trypanosoma brucei, the 5S RNP includes trypanosome-specific proteins P34/P37, as well as homologues of L5, Rpf2, and 5S rRNA. In this study, we examine a homologue of Rrs1 and identify it as an additional member of the T. brucei 5S RNP. Using RNA interference, we show that TbRrs1 is essential for the survival of T. brucei and has an important role in ribosome subunit formation and, together with TbRpf2, plays a role in 25/28S and 5.8S rRNA processing. We further show that TbRrs1 is a member of the T. brucei 5S RNP through the identification of novel direct interactions with P34/P37 and 5S rRNA as well as with TbL5 and TbRpf2. These unique characteristics of TbRrs1 highlight the importance of studying ribosome biogenesis in the context of diverse organisms and identify interactions that could be targeted for future drug development. IMPORTANCETrypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development.
Collapse
|
7
|
Brito Querido J, Mancera-Martínez E, Vicens Q, Bochler A, Chicher J, Simonetti A, Hashem Y. The cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein. Structure 2017; 25:1785-1794.e3. [DOI: 10.1016/j.str.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022]
|
8
|
Oliveira C, Carvalho PC, Alves LR, Goldenberg S. The Role of the Trypanosoma cruzi TcNRBD1 Protein in Translation. PLoS One 2016; 11:e0164650. [PMID: 27760165 PMCID: PMC5070865 DOI: 10.1371/journal.pone.0164650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 11/28/2022] Open
Abstract
The regulation of gene expression in trypanosomatids occurs mainly at the post-transcriptional level. Despite the importance of this type of control in Trypanosoma cruzi, few RNA binding proteins have been characterized. The RRM domain (RNA Recognition Motif) is one of the most abundant domains found in RNA-binding proteins in higher eukaryotes. Proteins containing the RRM domain are involved in the majority of post-transcriptional processes regulating gene expression. In this work, we aimed to characterize the protein TcNRBD1 from T. cruzi. TcNRBD1 is an RNA-binding protein that contains 2 RRM domains and is the ortholog of the P34 and P37 proteins from Trypanosoma brucei. The TcNRBD1 protein is expressed in all developmental stages of T. cruzi, and its localization pattern is concentrated at the perinuclear region. TcNRBD1 is associated with polysomes and with the 80S monosomes. Furthermore, sequencing of the mRNAs bound to TcNRBD1 allowed the identification of several transcripts that encode ribosomal proteins. Immunoprecipitation assays followed by mass spectrometry showed that the protein complexes with several ribosomal proteins from both the 40S and 60S subunits. In summary, the results indicate that TcNRBD1 is associated with different parts of the translation process, either by regulating mRNAs that encode ribosomal proteins or by acting in some step of ribosome assembly in T. cruzi.
Collapse
Affiliation(s)
- Camila Oliveira
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
| | - Lysangela Ronalte Alves
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
- * E-mail: (SG); (LRA)
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
- * E-mail: (SG); (LRA)
| |
Collapse
|
9
|
Umaer K, Williams N. Kinetoplastid Specific RNA-Protein Interactions in Trypanosoma cruzi Ribosome Biogenesis. PLoS One 2015; 10:e0131323. [PMID: 26121669 PMCID: PMC4488245 DOI: 10.1371/journal.pone.0131323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022] Open
Abstract
RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ribosome biogenesis in african trypanosomes requires conserved and trypanosome-specific factors. EUKARYOTIC CELL 2014; 13:727-37. [PMID: 24706018 DOI: 10.1128/ec.00307-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention.
Collapse
|
11
|
Sakyiama J, Zimmer SL, Ciganda M, Williams N, Read LK. Ribosome biogenesis requires a highly diverged XRN family 5'->3' exoribonuclease for rRNA processing in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2013; 19:1419-1431. [PMID: 23974437 PMCID: PMC3854532 DOI: 10.1261/rna.038547.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/10/2013] [Indexed: 05/30/2023]
Abstract
Although biogenesis of ribosomes is a crucial process in all organisms and is thus well conserved, Trypanosoma brucei ribosome biogenesis, of which maturation of rRNAs is an early step, has multiple points of divergence. Our aim was to determine whether in the processing of the pre-rRNA precursor molecule, 5'→3' exoribonuclease activity in addition to endonucleolytic cleavage is necessary in T. brucei as in other organisms. Our approach initiated with the bioinformatic identification of a putative 5'→3' exoribonuclease, XRNE, which is highly diverged from the XRN2/Rat1 enzyme responsible for rRNA processing in other organisms. Tagging this protein in vivo allowed us to classify XRNE as nucleolar by indirect immunofluorescence and identify by copurification interacting proteins, many of which were ribosomal proteins, ribosome biogenesis proteins, and/or RNA processing proteins. To determine whether XRNE plays a role in ribosome biogenesis in procyclic form cells, we inducibly depleted the protein by RNA interference. This resulted in the generation of aberrant preprocessed 18S rRNA and 5' extended 5.8S rRNA, implicating XRNE in rRNA processing. Polysome profiles of XRNE-depleted cells demonstrated abnormal features including an increase in ribosome small subunit abundance, a decrease in large subunit abundance, and defects in polysome assembly. Furthermore, the 5' extended 5.8S rRNA in XRNE-depleted cells was observed in the large subunit, monosomes, and polysomes in this gradient. Therefore, the function of XRNE in rRNA processing, presumably due to exonucleolytic activity very early in ribosome biogenesis, has consequences that persist throughout all biogenesis stages.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Cell Nucleolus
- Cells, Cultured
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Immunoprecipitation
- Molecular Sequence Data
- Organelle Biogenesis
- Polyribosomes/genetics
- Polyribosomes/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
- Tandem Mass Spectrometry
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/growth & development
Collapse
Affiliation(s)
- Joseph Sakyiama
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Martin Ciganda
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Noreen Williams
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| |
Collapse
|
12
|
Defining the RNA-protein interactions in the trypanosome preribosomal complex. EUKARYOTIC CELL 2013; 12:559-66. [PMID: 23397568 DOI: 10.1128/ec.00004-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, 5S rRNA is transcribed in the nucleoplasm and requires the ribosomal protein L5 to deliver it to the nucleolus for ribosomal assembly. The trypanosome-specific proteins P34 and P37 form a novel preribosomal complex with the eukaryotic conserved L5-5S rRNA complex in the nucleoplasm. Previous results suggested that P34 acts together with L5 to bridge the interaction with 5S rRNA and thus to stabilize 5S rRNA, an important role in the early steps of ribosomal biogenesis. Here, we have delineated the domains of the two protein components, L5 and P34, and regions of the RNA partner, 5S rRNA, that are critical for protein-RNA interactions within the complex. We found that the L18 domain of L5 and the N terminus and RNA recognition motif of P34 bind 5S rRNA. We showed that Trypanosoma brucei L5 binds the β arm of 5S rRNA, while P34 binds loop A/stem V of 5S rRNA. We demonstrated that 5S rRNA is able to enhance the association between the protein components of the complex, L5 and P34. Both loop A/stem V and the β arm of 5S rRNA can separately enhance the protein-protein association, but their effects are neither additive nor synergistic. Domains in the two proteins for protein-protein and protein-RNA interactions overlap or are close to each other. This suggests that 5S rRNA binding might cause conformational changes in L5 and P34 and might also bridge the interactions, thus enhancing binding between the protein partners of this novel complex.
Collapse
|
13
|
Wang L, Ciganda M, Williams N. Association of a novel preribosomal complex in Trypanosoma brucei determined by fluorescence resonance energy transfer. EUKARYOTIC CELL 2013; 12:322-9. [PMID: 23264640 PMCID: PMC3571310 DOI: 10.1128/ec.00316-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/13/2012] [Indexed: 01/21/2023]
Abstract
We have previously reported that the trypanosome-specific proteins P34 and P37 form a unique preribosomal complex with ribosomal protein L5 and 5S rRNA in the nucleoplasm. We hypothesize that this novel trimolecular complex is necessary for stabilizing 5S rRNA in Trypanosoma brucei and is essential for the survival of the parasite. In vitro quantitative analysis of the association between the proteins L5 and P34 is fundamental to our understanding of this novel complex and thus our ability to exploit its unique characteristics. Here we used in vitro fluorescence resonance energy transfer (FRET) to analyze the association between L5 and P34. First, we demonstrated that FRET can be used to confirm the association between L5 and P34. We then determined that the binding constant for L5 and P34 is 0.60 ± 0.03 μM, which is in the range of protein-protein binding constants for RNA binding proteins. In addition, we used FRET to identify the critical regions of L5 and P34 involved in the protein-protein association. We found that the N-terminal APK-rich domain and RNA recognition motif (RRM) of P34 and the L18 domain of L5 are important for the association of the two proteins with each other. These results provide us with the framework for the discovery of ways to disrupt this essential complex.
Collapse
Affiliation(s)
- Lei Wang
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | | | | |
Collapse
|
14
|
Ciganda M, Prohaska K, Hellman K, Williams N. A novel association between two trypanosome-specific factors and the conserved L5-5S rRNA complex. PLoS One 2012; 7:e41398. [PMID: 22859981 PMCID: PMC3409183 DOI: 10.1371/journal.pone.0041398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Kimberly Prohaska
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Kristina Hellman
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ciganda M, Williams N. Characterization of a novel association between two trypanosome-specific proteins and 5S rRNA. PLoS One 2012; 7:e30029. [PMID: 22253864 PMCID: PMC3257258 DOI: 10.1371/journal.pone.0030029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/12/2011] [Indexed: 11/20/2022] Open
Abstract
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:523-33. [PMID: 21957041 DOI: 10.1002/wrna.74] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
17
|
Clayton C, Michaeli S. 3' processing in protists. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:247-55. [PMID: 21957009 DOI: 10.1002/wrna.49] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Molecular biologists have traditionally focused on the very small corner of eukaryotic evolution that includes yeast and animals; even plants have been neglected. In this article, we describe the scant information that is available concerning RNA processing in the other four major eukaryotic groups, especially pathogenic protists. We focus mainly on polyadenylation and nuclear processing of stable RNAs. These processes have--where examined--been shown to be conserved, but there are many novel details. We also briefly mention other processing reactions such as splicing.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany.
| | | |
Collapse
|
18
|
Prohaska K, Williams N. Assembly of the Trypanosoma brucei 60S ribosomal subunit nuclear export complex requires trypanosome-specific proteins P34 and P37. EUKARYOTIC CELL 2009; 8:77-87. [PMID: 18723605 PMCID: PMC2620753 DOI: 10.1128/ec.00234-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/14/2008] [Indexed: 12/30/2022]
Abstract
We previously identified two Trypanosoma brucei RNA binding proteins, P34 and P37, and determined that they are essential for proper ribosomal assembly in this organism. Loss of these proteins via RNA interference is lethal and causes a decrease in both 5S rRNA levels and formation of 80S ribosomes, concomitant with a decrease in total cellular protein synthesis. These data suggest that these proteins are involved at some point in the ribosomal biogenesis pathway. In the current study, we have performed subcellular fractionation in conjunction with immune capture experiments specific for 60S ribosomal proteins and accessory factors in order to determine when and where P34 and P37 are involved in the ribosomal biogenesis pathway. These studies demonstrate that P34 and P37 associate with the 60S ribosomal subunit at the stage of the nucleolar 90S particle and remain associated subsequent to nuclear export. In addition, P34 and P37 associate with conserved 60S ribosomal subunit nuclear export factors exportin 1 and Nmd3, suggesting that they are components of the 60S ribosomal subunit nuclear export complex in T. brucei. Most significantly, the pre-60S complex does not associate with exportin 1 or Nmd3 in the absence of P34 and P37. These results demonstrate that, although T. brucei 60S ribosomal subunits utilize a nuclear export complex similar to that described for other organisms, trypanosome-specific factors are essential to the process.
Collapse
Affiliation(s)
- Kimberly Prohaska
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, New York 14214, USA
| | | |
Collapse
|
19
|
Hellman K, Prohaska K, Williams N. Trypanosoma brucei RNA binding proteins p34 and p37 mediate NOPP44/46 cellular localization via the exportin 1 nuclear export pathway. EUKARYOTIC CELL 2007; 6:2206-13. [PMID: 17921352 PMCID: PMC2168238 DOI: 10.1128/ec.00176-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 09/21/2007] [Indexed: 11/20/2022]
Abstract
We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to interact with a family of nucleolar phosphoproteins, NOPP44/46, in Trypanosoma brucei. These proteins are nearly identical, the major difference being an 18-amino-acid insert in the N terminus of p37. In order to characterize the interaction between p34 and p37 and NOPP44/46, we have utilized an RNA interference (RNAi) cell line that specifically targets p34 and p37. Within these RNAi cells, we detected a disruption of a higher-molecular-weight complex containing NOPP44/46, as well as a dramatic increase in nuclear NOPP44/46 protein levels. We demonstrated that no change occurred in NOPP44/46 mRNA steady-state levels or stability, nor was there a change in cellular protein levels. These results led us to investigate whether p34 and p37 regulate NOPP44/46 cellular localization. Examination of the p34 and p37 amino acid sequences revealed a leucine-rich nuclear export signal, which interacts with the nuclear export factor exportin 1. Immune capture experiments demonstrated that p34, p37, and NOPP44/46 associate with exportin 1. When these experiments were performed with p34/p37 RNAi cells, NOPP44/46 no longer associated with exportin 1. Sequential immune capture experiments demonstrated that p34, p37, NOPP44/46, and exportin 1 exist in a common complex. Inhibiting exportin 1-mediated nuclear export led to an increase in nuclear NOPP44/46 proteins, indicating that they are exported from the nucleus via this pathway. Together, our results demonstrate that p34 and p37 regulate NOPP44/46 cellular localization by facilitating their association with exportin 1.
Collapse
Affiliation(s)
- Kristina Hellman
- Department of Microbiology and Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, 253 Biomedical Research Building, University at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
20
|
Hellman KM, Ciganda M, Brown SV, Li J, Ruyechan W, Williams N. Two trypanosome-specific proteins are essential factors for 5S rRNA abundance and ribosomal assembly in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1766-72. [PMID: 17715362 PMCID: PMC2043393 DOI: 10.1128/ec.00119-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 08/14/2007] [Indexed: 11/20/2022]
Abstract
We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to bind 5S rRNA in Trypanosoma brucei. These two proteins are nearly identical, with one major difference, an 18-amino-acid insert in the N-terminal region of p37, as well as three minor single-amino-acid differences. Homologues to p34 and p37 have been found only in other trypanosomatids, suggesting that these proteins are unique to this ancient family. We have employed RNA interference (RNAi) studies in order to gain further insight into the interaction between p34 and p37 with 5S rRNA in T. brucei. In our p34/p37 RNAi cells, decreased expression of the p34 and p37 proteins led to morphological alterations, including loss of cell shape and vacuolation, as well as to growth arrest and ultimately to cell death. Disruption of a higher-molecular-weight complex containing 5S rRNA occurs as well as a dramatic decrease in 5S rRNA levels, suggesting that p34 and p37 serve to stabilize 5S rRNA. In addition, an accumulation of 60S ribosomal subunits was observed, accompanied by a significant decrease in overall protein synthesis within p34/p37 RNAi cells. Thus, the loss of the trypanosomatid-specific proteins p34 and p37 correlates with a diminution in 5S rRNA levels as well as a decrease in ribosome activity and an alteration in ribosome biogenesis.
Collapse
Affiliation(s)
- Kristina M Hellman
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
21
|
Jensen BC, Kifer CT, Brekken DL, Randall AC, Wang Q, Drees BL, Parsons M. Characterization of protein kinase CK2 from Trypanosoma brucei. Mol Biochem Parasitol 2006; 151:28-40. [PMID: 17097160 PMCID: PMC1790856 DOI: 10.1016/j.molbiopara.2006.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/30/2006] [Accepted: 10/02/2006] [Indexed: 11/18/2022]
Abstract
CK2 is a ubiquitous but enigmatic kinase. The difficulty in assigning a role to CK2 centers on the fact that, to date, no biologically relevant modulator of its function has been identified. One common theme revolves around a constellation of known substrates involved in growth control, compatible with its concentration in the nucleus and nucleolus. We had previously described the identification of two catalytic subunits of CK2 in Trypanosoma brucei and characterized one of them. Here we report the characterization of the second catalytic subunit, CK2alpha', and the identification and characterization of the regulatory subunit CK2beta. All three subunits are primarily localized to the nucleolus in T. brucei. We also show that CK2beta interacts with the nucleolar protein NOG1, adding to the interaction map which previously linked CK2alpha to the nucleolar protein NOPP44/46, which in turn associates with the rRNA binding protein p37. CK2 activity has four distinctive features: near equal affinity for GTP and ATP, heparin sensitivity, and stimulation by polyamines and polybasic peptides. Sequence comparison shows that the parasite orthologues have mutations in residues previously mapped as important in specifying affinity for GTP and stimulation by both polyamines and polybasic peptides. Studies of the enzymatic activity of the T. brucei CK2s show that both the affinity for GTP and stimulation by polyamines have been lost and only the features of heparin inhibition and stimulation by polybasic peptides are conserved.
Collapse
Affiliation(s)
- Bryan C Jensen
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Charles T Kifer
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Deirdre L Brekken
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Amber C Randall
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
- Department of Pathobiology and
| | - Qin Wang
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
| | - Becky L. Drees
- Department of Genetics and Howard Hughes Medical Institute,
University of Washington, Seattle, WA 98195 USA
| | - Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake Ave N,
Suite 500, Seattle, WA 98108-5219 USA
- Department of Pathobiology and
- *Corresponding author.
, tell: +1-206-256-7315,
FAX: +1-206-256-7229
| |
Collapse
|
22
|
De Gaudenzi J, Frasch AC, Clayton C. RNA-binding domain proteins in Kinetoplastids: a comparative analysis. EUKARYOTIC CELL 2006; 4:2106-14. [PMID: 16339728 PMCID: PMC1317496 DOI: 10.1128/ec.4.12.2106-2114.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA-binding proteins are important in many aspects of RNA processing, function, and destruction. One class of such proteins contains the RNA recognition motif (RRM), which consists of about 90 amino acid residues, including the canonical RNP1 octapeptide: (K/R)G(F/Y)(G/A)FVX(F/Y). We used a variety of homology searches to classify all of the RRM proteins of the three kinetoplastids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. All three organisms have similar sets of RRM-containing protein orthologues, suggesting common posttranscriptional processing and regulatory pathways. Of the 75 RRM proteins identified in T. brucei, only 13 had clear homologues in other eukaryotes, although 8 more could be given putative functional assignments. A comparison with the 18 RRM proteins of the obligate intracellular parasite Encephalitozoon cuniculi revealed just 3 RRM proteins which appear to be conserved at the primary sequence level throughout eukaryotic evolution: poly(A) binding protein, the rRNA-processing protein MRD1, and the nuclear cap binding protein.
Collapse
Affiliation(s)
- Javier De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-UNSAM, Av. Gral Paz 5445, 1650 Buenos Aires, Argentina
| | | | | |
Collapse
|
23
|
Jensen BC, Brekken DL, Randall AC, Kifer CT, Parsons M. Species specificity in ribosome biogenesis: a nonconserved phosphoprotein is required for formation of the large ribosomal subunit in Trypanosoma brucei. EUKARYOTIC CELL 2005; 4:30-5. [PMID: 15643057 PMCID: PMC544161 DOI: 10.1128/ec.4.1.30-35.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the protozoan parasite Trypanosoma brucei, the large rRNA, which is a single 3.4- to 5-kb species in most organisms, is further processed to form six distinct RNAs, two larger than 1 kb (LSU1 and LSU2) and four smaller than 220 bp. The small rRNA SR1 separates the two large RNAs, while the remaining small RNAs are clustered at the 3' end of the precursor rRNA. One would predict that T. brucei possesses specific components to carry out these added processing events. We show here that the trypanosomatid-specific nucleolar phosphoprotein NOPP44/46 is involved in this further processing. Cells depleted of NOPP44/46 by RNA interference had a severe growth defect and demonstrated a defect in large-ribosomal-subunit biogenesis. Concurrent with this defect, a significant decrease in processing intermediates, particularly for SR1, was seen. In addition, we saw an accumulation of aberrant processing intermediates caused by cleavage within either LSU1 or LSU2. Though it is required for large-subunit biogenesis, we show that NOPP44/46 is not incorporated into the nascent particle. Thus, NOPP44/46 is an unusual protein in that it is both nonconserved and required for ribosome biogenesis.
Collapse
Affiliation(s)
- Bryan C Jensen
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219, USA
| | | | | | | | | |
Collapse
|
24
|
Ryan CM, Read LK. UTP-dependent turnover of Trypanosoma brucei mitochondrial mRNA requires UTP polymerization and involves the RET1 TUTase. RNA (NEW YORK, N.Y.) 2005; 11:763-73. [PMID: 15811918 PMCID: PMC1370761 DOI: 10.1261/rna.7248605] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Trypanosoma brucei mitochondria possess a unique RNA decay pathway in which rapid degradation of polyadenylated mRNAs is dependent on the addition of UTP, as measured by in organello pulse chase assays. To determine the mechanism by which UTP stimulates the degradation of polyadenylated RNAs, we performed in organello pulse chase assays under different conditions. Treatment of mitochondria with proteinase K revealed that UTP does not act through a receptor on the surface of the mitochondria. To determine if the UTP-stimulated RNA decay pathway is triggered by the mitochondrial energy state or ATP:UTP ratio, increasing ATP was added to a constant amount of UTP during the chase period of the assay. Results indicate that rapid turnover is responsive to UTP and not the ATP:UTP ratio. Experiments using UTP analogs demonstrate that UTP polymerization into RNAs is necessary for UTP-dependent degradation. Furthermore, experiments performed with RNAi cells indicate that the RET1 terminal uridylyl transferase (TUTase) is required for UTP-dependent decay of polyadenylated RNAs. Overall, these results show that degradation of polyadenylated RNAs in T. brucei mitochondria can occur through a unique mechanism that requires the polymerization of UTP into RNAs, presumably by the RET1 TUTase.
Collapse
Affiliation(s)
- Christopher M Ryan
- Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
25
|
Gomes GG, Peter Urményi T, Rondinelli E, Williams N, Silva R. TcRRMs and Tcp28 genes are intercalated and differentially expressed in Trypanosoma cruzi life cycle. Biochem Biophys Res Commun 2004; 322:985-92. [PMID: 15336561 DOI: 10.1016/j.bbrc.2004.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Indexed: 10/26/2022]
Abstract
The identification and characterization of RNA binding proteins in Trypanosoma cruzi are particularly relevant as they play key roles in the regulatory mechanisms of gene expression. In this work, we have identified coding sequences for the proteins, named TcRRM1 and TcRRM2, in the EST database generated by the T. cruzi genomic initiative. TcRRM1 and TcRRM2 contain two RNA binding domains (RRM) and are very similar to two Trypanosoma brucei RNA binding proteins previously reported, Tbp34 and Tbp37, and to a not yet annotated ORF in Leishmania major genome project. The T. cruzi RRM genes are organized in tandem, alternating with copies of Tcp28, a gene of unknown function. However, TcRRM transcript accumulation is higher in the spheromastigote stage, while Tcp28 transcripts accumulate more in the trypomastigote stage suggesting developmental regulation.
Collapse
|
26
|
Li J, Ruyechan WT, Williams N. Stage-specific translational efficiency and protein stability regulate the developmental expression of p37, an RNA binding protein from Trypanosoma brucei. Biochem Biophys Res Commun 2003; 306:918-23. [PMID: 12821129 DOI: 10.1016/s0006-291x(03)01084-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously characterized two novel RNA binding proteins, p34 and p37, from Trypanosoma brucei. Their sequences do not show significant homology to other proteins but are highly homologous to one another. The p34 and p37 proteins are developmentally regulated, with p34 the predominant protein in the procyclic stage and p37 nearly exclusively expressed in the bloodstream cells. In vivo metabolic labeling of procyclic cells showed that p34 and p37 were differentially translated, with levels of p34 approximately fourfold higher than p37. The newly synthesized p34 and p37 exhibited differential stability in the procyclic stage. In vitro analysis confirmed this observation and further suggested that this differential stability may be due to a trypsin-like cysteine protease activity in procyclic extracts that selectively degraded the p37 protein. Taken together, these results indicate that the developmental regulation of the T. brucei RNA binding protein, p37, occurs at both translational and post-translational levels.
Collapse
Affiliation(s)
- Jinlei Li
- Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, 253 Biomedical Research Building, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
27
|
Szymański M, Barciszewska MZ, Erdmann VA, Barciszewski J. 5 S rRNA: structure and interactions. Biochem J 2003; 371:641-51. [PMID: 12564956 PMCID: PMC1223345 DOI: 10.1042/bj20020872] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 01/28/2003] [Accepted: 02/04/2003] [Indexed: 11/17/2022]
Abstract
5 S rRNA is an integral component of the large ribosomal subunit in all known organisms. Despite many years of intensive study, the function of 5 S rRNA in the ribosome remains unknown. Advances in the analysis of ribosome structure that have revealed the crystal structures of large ribosomal subunits and of the complete ribosome from various organisms put the results of studies on 5 S rRNA in a new perspective. This paper summarizes recently published data on the structure and function of 5 S rRNA and its interactions in complexes with proteins, within and outside the ribosome.
Collapse
Affiliation(s)
- Maciej Szymański
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12, 61704 Poznan, Poland
| | | | | | | |
Collapse
|
28
|
Abstract
Trypanosomes, protozoan parasites of the order Kinetoplastida, control gene expression essentially through post-transcriptional mechanisms. Several motifs located mainly in the 3' untranslated region, such as AU-rich elements (AREs), were recently shown to modulate mRNA half-life, and are able to modify mRNA abundance in vivo through the interaction with specific RNA-binding proteins. Along with the detection of an active exosome, decapping activities and a regulated 3' to 5' exonuclease activity stimulated by AREs, these results suggest that modulation of mRNA stability is essential in trypanosomes. These regulatory processes are specific for different developmental stages and thus relevant for allowing trypanosomes to adapt to variable environmental conditions.
Collapse
Affiliation(s)
- Iván D'Orso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-UNSAM, Av. Gral. Paz s/n, Edificio 24, INTI, 1650 -, Buenos Aires, San Martín, Argentina
| | | | | |
Collapse
|
29
|
Pelletier M, Read LK. RBP16 is a multifunctional gene regulatory protein involved in editing and stabilization of specific mitochondrial mRNAs in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2003; 9:457-68. [PMID: 12649497 PMCID: PMC1370412 DOI: 10.1261/rna.2160803] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 12/27/2002] [Indexed: 05/20/2023]
Abstract
RBP16 is a Trypanosoma brucei mitochondrial RNA-binding protein that associates with guide RNAs (gRNAs), mRNAs, and ribosomal RNAs. Based on its inclusion in the multifunctional Y-box protein family and its ability to bind multiple RNA classes, we hypothesized that RBP16 plays a role in diverse aspects of mitochondrial gene regulation. To gain insight into RBP16 function, we generated cells expressing less than 10% of wild-type RBP16 levels by tetracycline-regulated RNA interference (RNAi). Poisoned primer extension analyses revealed that edited, but not unedited, CYb mRNA is reduced by approximately 98% in tetracycline-induced RBP16 RNAi cells, suggesting that RBP16 is critical for CYb RNA editing. The down-regulation of CYb editing in RBP16 RNAi transfectants apparently entails a defect in gRNA utilization, as gCYb[560] abundance is similar in uninduced and induced cells. We observed a surprising degree of specificity regarding the ability of RBP16 to modulate editing, as editing of mRNAs other than CYb is not significantly affected upon RBP16 disruption. However, the abundance of the never edited mitochondrial RNAs COI and ND4 is reduced by 70%-80% in RBP16 RNAi transfectants, indicating an additional role for RBP16 in the stabilization of these mRNAs. Analysis of RNAs bound to RBP16 immunoprecipitated from wild-type cells reveals that RBP16 is associated with multiple gRNA sequence classes in vivo, including those whose abundance and usage appear unaffected by RBP16 disruption. Overall, our results indicate that RBP16 is an accessory factor that regulates the editing and stability of specific populations of mitochondrial mRNAs.
Collapse
Affiliation(s)
- Michel Pelletier
- Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York-Buffalo School of Medicine, Buffalo, New York 14214, USA
| | | |
Collapse
|
30
|
Pitula JS, Park J, Parsons M, Ruyechan WT, Williams N. Two families of RNA binding proteins from Trypanosoma brucei associate in a direct protein-protein interaction. Mol Biochem Parasitol 2002; 122:81-9. [PMID: 12076772 DOI: 10.1016/s0166-6851(02)00076-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously reported the identification of two closely related RNA binding proteins from Trypanosoma brucei, termed p34 and p37. The predicted primary structures of the two proteins are highly homologous with one major difference, an 18 amino acid insertion in the N-terminal region of p37. These two proteins are localized to the nucleus based on immunofluorescence microscopy. Recently, we have shown that p34 and p37 interact with T. brucei 5S rRNA. In order to gain further insight into their function, we have utilized protein affinity chromatography and immune capture approaches to identify T. brucei proteins which associate with p34 and p37. We demonstrate here an interaction of both p34 and p37 with the NOPP44/46 proteins, identified in T. brucei as a family of tyrosine-phosphorylated RNA binding proteins primarily localized to the nucleolus. This interaction was mapped to the RNA-binding region of p34/p37 and an acidic region of NOPP44/46 by protein affinity chromatography using recombinant deletion constructs of p34 and p37 and yeast two-hybrid analysis. These data may suggest a role for p34 and p37 and NOPP44/46 in the import and/or assembly pathway of T. brucei 5S rRNA in ribosome biogenesis.
Collapse
Affiliation(s)
- Joseph S Pitula
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, 14214, USA
| | | | | | | | | |
Collapse
|