1
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
2
|
Molnar C, Heinen JP, Reina J, Llamazares S, Palumbo E, Breschi A, Gay M, Villarreal L, Vilaseca M, Pollarolo G, Gonzalez C. The histone code reader PHD finger protein 7 controls sex-linked disparities in gene expression and malignancy in Drosophila. SCIENCE ADVANCES 2019; 5:eaaw7965. [PMID: 31453329 PMCID: PMC6693905 DOI: 10.1126/sciadv.aaw7965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/11/2019] [Indexed: 05/03/2023]
Abstract
The notable male predominance across many human cancer types remains unexplained. Here, we show that Drosophila l(3)mbt brain tumors are more invasive and develop as malignant neoplasms more often in males than in females. By quantitative proteomics, we have identified a signature of proteins that are differentially expressed between male and female tumor samples. Prominent among them is the conserved chromatin reader PHD finger protein 7 (Phf7). We show that Phf7 depletion reduces sex-dependent differences in gene expression and suppresses the enhanced malignant traits of male tumors. Our results identify potential regulators of sex-linked tumor dimorphism and show that these genes may serve as targets to suppress sex-linked malignant traits.
Collapse
Affiliation(s)
- Cristina Molnar
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jan Peter Heinen
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jose Reina
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Salud Llamazares
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Emilio Palumbo
- CRG, BIST, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
- UPF, Plaça de la Mercè, 10, 08002 Barcelona, Spain
- IMIM, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | - Marina Gay
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Laura Villarreal
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marta Vilaseca
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Giulia Pollarolo
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cayetano Gonzalez
- IRB Barcelona, BIST, Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
- ICREA, Passeig Lluís Companys, 08010 Barcelona, Spain
- Corresponding author.
| |
Collapse
|
3
|
Wang X, Kang JY, Wei L, Yang X, Sun H, Yang S, Lu L, Yan M, Bai M, Chen Y, Long J, Li N, Li D, Huang J, Lei M, Shao Z, Yuan W, Zuo E, Lu K, Liu MF, Li J. PHF7 is a novel histone H2A E3 ligase prior to histone-to-protamine exchange during spermiogenesis. Development 2019; 146:dev.175547. [PMID: 31189663 DOI: 10.1242/dev.175547] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Epigenetic regulation, including histone-to-protamine exchanges, controls spermiogenesis. However, the underlying mechanisms of this regulation are largely unknown. Here, we report that PHF7, a testis-specific PHD and RING finger domain-containing protein, is essential for histone-to-protamine exchange in mice. PHF7 is specifically expressed during spermiogenesis. PHF7 deletion results in male infertility due to aberrant histone retention and impaired protamine replacement in elongated spermatids. Mechanistically, PHF7 can simultaneously bind histone H2A and H3; its PHD domain, a histone code reader, can specifically bind H3K4me3/me2, and its RING domain, a histone writer, can ubiquitylate H2A. Thus, our study reveals that PHF7 is a novel E3 ligase that can specifically ubiquitylate H2A through binding H3K4me3/me2 prior to histone-to-protamine exchange.
Collapse
Affiliation(s)
- Xiukun Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Jun-Yan Kang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Leixin Wei
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China.,Department of Orthopaedic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Hongduo Sun
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Lei Lu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Meng Yan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Meizhu Bai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Yanyan Chen
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Juanjuan Long
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Na Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Dangsheng Li
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai 200031, China
| | - Jing Huang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Ming Lei
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Yuan
- Department of Orthopaedic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Erwei Zuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China .,Research Center of Animal Genomics, Agricultural Genomics Institute at Shengzhen, Chinese Academy of Agricultural Sciences, Shengzhen, Guangdong 518210, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| |
Collapse
|
4
|
Ge LQ, Xia T, Huang B, Gu HT, Song QS, Yang GQ, Liu F, Wu JC. PHF7, a novel male gene influences female fecundity and population growth in Nilaparvata lugens Stål (Hemiptera: Delphacidae). Sci Rep 2017; 7:11611. [PMID: 28912601 PMCID: PMC5599594 DOI: 10.1038/s41598-017-11524-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
PHF7 exhibits male-specific expression in early germ cells, germline stem cells and spermatogonia in insects, and its expression promotes spermatogenesis in germ cells when they are present in a male soma. However, the influence of male-specific PHF7 on female reproductive biology via mating remains unclear. Thus, we investigated the potential impacts of male PHF7, existed in seminal fluid of Nilaparvata lugens (NlPHF7), on fecundity and population growth via mating. Our results revealed that suppressing male NlPHF7 expression by RNAi led to decreases in body weight, soluble accessory gland protein content, arginine content, and reproductive organ development in males, resulting in significant reduction of oviposition periods and fecundity in females, and significant decrease in body weight, fat body and ovarian protein content, yeast-like symbionts abundance, ovarian development and vitellogenin gene expression in their female mating partners. Similarly, suppression of NlPHF7 expression in males mated with the control female reduced population growth and egg hatching rate, but did not influence gender ratio. We infer that NlPHF7 play a role important in stimulating female fecundity via mating. This study provides valuable information by identifying a potentially effective target gene for managing BPH population through RNAi.
Collapse
Affiliation(s)
- Lin-Quan Ge
- School of Plant Protection Yangzhou University, Yangzhou, 225009, P.R. China.
| | - Ting Xia
- School of Plant Protection Yangzhou University, Yangzhou, 225009, P.R. China
| | - Bo Huang
- School of Plant Protection Yangzhou University, Yangzhou, 225009, P.R. China
| | - Hao-Tian Gu
- School of Plant Protection Yangzhou University, Yangzhou, 225009, P.R. China
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, 1-31 Agriculture Building, Columbia, MO, 65211, USA
| | - Guo-Qing Yang
- School of Plant Protection Yangzhou University, Yangzhou, 225009, P.R. China
| | - Fang Liu
- School of Plant Protection Yangzhou University, Yangzhou, 225009, P.R. China
| | - Jin-Cai Wu
- School of Plant Protection Yangzhou University, Yangzhou, 225009, P.R. China.
| |
Collapse
|
5
|
Wei L, Wang X, Yang S, Yuan W, Li J. Efficient generation of the mouse model with a defined point mutation through haploid cell-mediated gene editing. J Genet Genomics 2017; 44:461-463. [DOI: 10.1016/j.jgg.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
6
|
Ahn J, Park YJ, Chen P, Lee TJ, Jeon YJ, Croce CM, Suh Y, Hwang S, Kwon WS, Pang MG, Kim CH, Lee SS, Lee K. Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells. PLoS One 2017; 12:e0175787. [PMID: 28414809 PMCID: PMC5393594 DOI: 10.1371/journal.pone.0175787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
The testis has been identified as the organ in which a large number of tissue-enriched genes are present. However, a large portion of transcripts related to each stage or cell type in the testis still remains unknown. In this study, databases combined with confirmatory measurements were used to investigate testis-enriched genes, localization in the testis, developmental regulation, gene expression profiles of testicular disease, and signaling pathways. Our comparative analysis of GEO DataSets showed that 24 genes are predominantly expressed in testis. Cellular locations of 15 testis-enriched proteins in human testis have been identified and most of them were located in spermatocytes and round spermatids. Real-time PCR revealed that expressions of these 15 genes are significantly increased during testis development. Also, an analysis of GEO DataSets indicated that expressions of these 15 genes were significantly decreased in teratozoospermic patients and polyubiquitin knockout mice, suggesting their involvement in normal testis development. Pathway analysis revealed that most of those 15 genes are implicated in various sperm-related cell processes and disease conditions. This approach provides effective strategies for discovering novel testis-enriched genes and their expression patterns, paving the way for future characterization of their functions regarding infertility and providing new biomarkers for specific stages of spematogenesis.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Yoo-Jin Park
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Chen
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Tae Jin Lee
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Young-Jun Jeon
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeonbuk, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Republic of Korea
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, Republic of Korea
| | - Sang Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Regulation of rat tetratricopeptide repeat domain 29 gene expression by follicle-stimulating hormone. Biosci Biotechnol Biochem 2012; 76:1540-3. [PMID: 22878202 DOI: 10.1271/bbb.120293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We screened the gene that encodes tetratricopeptide repeat domain 29 (Ttc29) in the maturing rat testis. Gene expression was determined by Northern blotting of 7-week-old rat testes, and a strong signal was detected close to the 18S rRNA band in addition to two weak high-molecular-weight signals. In situ hybridization revealed that Ttc29 was expressed primarily in the spermatocytes. We evaluated the effect of gonadotropin on Ttc29 expression using hypophysectomized rats. The pituitary was removed from 3-week-old rats, gonadotropin was injected at 5 weeks, and Ttc29 expression was determined at 7 weeks. Although testicular development and hyperplasia of interstitial cells were observed following chorionic gonadotropin treatment after hypophysectomy, Ttc29 expression was upregulated by treatment with follicle-stimulating hormone. Ttc29 encodes axonemal dynein, a component of sperm flagella. Taken together, these data indicate that axonemal dynein expression starts in the spermatocytes and is regulated by follicle-stimulating hormone.
Collapse
|
8
|
Xia Y, Tang L, Yao L, Wan B, Yang X, Yu L. Literature and patent analysis of the cloning and identification of human functional genes in China. SCIENCE CHINA. LIFE SCIENCES 2012; 55:268-282. [PMID: 22527523 DOI: 10.1007/s11427-012-4299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative.
Collapse
Affiliation(s)
- Yan Xia
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
9
|
Ge LQ, Cheng Y, Wu JC, Jahn GC. Proteomic analysis of insecticide triazophos-induced mating-responsive proteins of Nilaparvata lugens Stål (Hemiptera: Delphacidae). J Proteome Res 2011; 10:4597-612. [PMID: 21800909 DOI: 10.1021/pr200414g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a classic example of a resurgent pest induced by insecticides. It has been demonstrated that triazophos treatment causes an increase in the content of male accessory gland proteins (Acps) that can be transferred to females via mating, influencing female reproduction. However, the mechanism of this type of insecticide-induced Acps in males and the subsequent stimulation of reproduction in females are not well understood. To identify changes in the types of Acps and reproductive proteins in mated females, we conducted a comparative proteomic analysis. Six samples were categorized into four different groups: (1) untreated unmated males compared to treated unmated males (UUM vs TUM); (2) treated unmated males compared to treated mated males (TUM vs TMM); (3) untreated unmated females compared to treated unmated females (UUF vs TUF); (4) treated unmated females compared to treated mated females (TUF vs TMF). Protein expression changes among the four different groups were examined by two-dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Of the 500-600 reproducibly detected protein spots on each gel, 107 protein spots were differentially expressed between the four different groups. Of the 63 proteins identified by LC-MS/MS analysis, 38 were up-regulated and 25 were down-regulated in the four different groups. Some novel proteins related to fecundity were observed including spermatogenesis-associated protein 5, testis development protein NYD-SP6, arginine kinase, actin-5C, vitellogenin, and ovarian serine protease nudel. The elevated expression of novel fecundity proteins in six samples of N. lugens females and males due to exposure to triazophos was confirmed by quantitative real-time PCR (qRT-PCR). The results suggest that these proteins may participate in the reproductive process of N. lugens adult females and males. Our findings fill a gap in understanding the relationship between insecticide-treated males and the stimulated reproduction of N. lugens females.
Collapse
Affiliation(s)
- Lin-Quan Ge
- School of Plant Protection, Yangzhou University , Yangzhou 225009, PR China
| | | | | | | |
Collapse
|
10
|
Steilmann C, Cavalcanti MCO, Bergmann M, Kliesch S, Weidner W, Steger K. Aberrant mRNA expression of chromatin remodelling factors in round spermatid maturation arrest compared with normal human spermatogenesis. Mol Hum Reprod 2010; 16:726-33. [DOI: 10.1093/molehr/gaq054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 2010; 115:5376-84. [PMID: 20410506 DOI: 10.1182/blood-2010-01-263855] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The identification of transcriptional regulatory networks, which control tissue-specific development and function, is of central importance to the understanding of lymphocyte biology. To decipher transcriptional networks in T-cell development and differentiation we developed a browsable expression atlas and applied a novel quantitative method to define gene sets most specific to each of the represented cell subsets and tissues. Using this system, body atlas size datasets can be used to examine gene enrichment profiles from a cell/tissue perspective rather than gene perspective, thereby identifying highly enriched genes within a cell type, which are often key to cellular differentiation and function. A systems analysis of transcriptional regulators within T cells during different phases of development and differentiation resulted in the identification of known key regulators and uncharacterized coexpressed regulators. ZBTB25, a BTB-POZ family transcription factor, was identified as a highly T cell-enriched transcription factor. We provide evidence that ZBTB25 functions as a negative regulator of nuclear factor of activated T cells (NF-AT) activation, such that RNA interference mediated knockdown resulted in enhanced activation of target genes. Together, these findings suggest a novel mechanism for NF-AT mediated gene expression and the compendium of expression data provides a quantitative platform to drive exploration of gene expression across a wide range of cell/tissue types.
Collapse
|
12
|
Yu Z, Wu B, Tang A, Chen J, Guo X, Qin J, Gui Y, Cai Z. Expression profile of a novel germ cell-specific gene, TSCPA, in mice and human. ACTA ACUST UNITED AC 2009; 29:535-9. [DOI: 10.1007/s11596-009-0502-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Indexed: 11/25/2022]
|
13
|
Brooks WS, Helton ES, Banerjee S, Venable M, Johnson L, Schoeb TR, Kesterson RA, Crawford DF. G2E3 is a dual function ubiquitin ligase required for early embryonic development. J Biol Chem 2008; 283:22304-15. [PMID: 18511420 DOI: 10.1074/jbc.m803238200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
G2E3 is a putative ubiquitin ligase (E3) identified in a microarray screen for mitotic regulatory proteins. It shuttles between the cytoplasm and nucleus, concentrating in nucleoli and relocalizing to the nucleoplasm in response to DNA damage. In this study, we demonstrate that G2E3 is an unusual ubiquitin ligase that is essential in early embryonic development to prevent apoptotic death. This protein has a catalytically inactive HECT domain and two distinct RING-like ubiquitin ligase domains that catalyze lysine 48-linked polyubiquitination. To address in vivo function, we generated a knock-out mouse model of G2E3 deficiency that incorporates a beta-galactosidase reporter gene under control of the endogenous promoter. Animals heterozygous for G2E3 inactivation are phenotypically normal with no overt change in development, growth, longevity, or fertility, whereas G2E3 null embryos die prior to implantation. Although normal numbers of G2E3(-/-) blastocysts are present at embryonic day 3.5, these blastocysts involute in culture as a result of massive apoptosis. Using beta-galactosidase staining as a marker for protein expression, we demonstrate that G2E3 is predominantly expressed within the central nervous system and the early stages of limb bud formation of the developing embryo. In adult animals, the most intense staining is found in Purkinje cell bodies and cells lining the ductus deferens. In summary, G2E3 is a dual function ubiquitin ligase essential for prevention of apoptosis in early embryogenesis.
Collapse
Affiliation(s)
- William S Brooks
- Department of Cell Biology, University of Alabama, Birmingham, Alabama 35233, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rossi P, Lolicato F, Grimaldi P, Dolci S, Di Sauro A, Filipponi D, Geremia R. Transcriptome analysis of differentiating spermatogonia stimulated with kit ligand. Gene Expr Patterns 2007; 8:58-70. [PMID: 18036996 DOI: 10.1016/j.modgep.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/02/2007] [Accepted: 10/17/2007] [Indexed: 01/15/2023]
Abstract
Kit ligand (KL) is a survival factor and a mitogenic stimulus for differentiating spermatogonia. However, it is not known whether KL also plays a role in the differentiative events that lead to meiotic entry of these cells. We performed a wide genome analysis of difference in gene expression induced by treatment with KL of spermatogonia from 7-day-old mice, using gene chips spanning the whole mouse genome. The analysis revealed that the pattern of RNA expression induced by KL is compatible with the qualitative changes of the cell cycle that occur during the subsequent cell divisions in type A and B spermatogonia, i.e. the progressive lengthening of the S phase and the shortening of the G2/M transition. Moreover, KL up-regulates in differentiating spermatogonia the expression of early meiotic genes (for instance: Lhx8, Nek1, Rnf141, Xrcc3, Tpo1, Tbca, Xrcc2, Mesp1, Phf7, Rtel1), whereas it down-regulates typical spermatogonial markers (for instance: Pole, Ptgs2, Zfpm2, Egr2, Egr3, Gsk3b, Hnrpa1, Fst, Ptch2). Since KL modifies the expression of several genes known to be up-regulated or down-regulated in spermatogonia during the transition from the mitotic to the meiotic cell cycle, these results are consistent with a role of the KL/kit interaction in the induction of their meiotic differentiation.
Collapse
Affiliation(s)
- Pellegrino Rossi
- Dipartimento di Sanita' Pubblica e Biologia Cellulare, Universita' degli Studi di Roma Tor Vergata, via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Brooks WS, Banerjee S, Crawford DF. G2E3 is a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization. Exp Cell Res 2007; 313:665-76. [PMID: 17239372 PMCID: PMC1876774 DOI: 10.1016/j.yexcr.2006.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 11/29/2022]
Abstract
G2E3 was originally described as a G2/M-specific gene with DNA damage responsive expression. The presence of a conserved HECT domain within the carboxy-terminus of the protein indicated that it likely functions as a ubiquitin ligase or E3. Although HECT domains are known to function in this capacity for many proteins, we demonstrate that a portion of the HECT domain from G2E3 plays an important role in the dynamic subcellular localization of the protein. We have shown that G2E3 is a nucleo-cytoplasmic shuttling protein with nuclear export mediated by a novel nuclear export domain that functions independently of CRM1. In full-length G2E3, a separate region of the HECT domain suppresses the function of the NES. Additionally, G2E3 contains a nucleolar localization signal (NoLS) in its amino terminus. Localization of G2E3 to the nucleolus is a dynamic process, and the protein delocalizes from the nucleolus rapidly after DNA damage. Cell cycle phase-specific expression and highly regulated subcellular localization of G2E3 suggest a possible role in cell cycle regulation and the cellular response to DNA damage.
Collapse
Affiliation(s)
- William S. Brooks
- From the Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| | - Sami Banerjee
- From the Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| | - David F. Crawford
- From the Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35233
- From the Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| |
Collapse
|
16
|
Yu Z, Tang A, Gui Y, Guo X, Zhu H, Long Y, Li Z, Cai Z. Identification and characteristics of a novel testis-specific gene, Tsc21, in mice and human. Mol Biol Rep 2006; 34:127-34. [PMID: 17091336 DOI: 10.1007/s11033-006-9026-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/11/2006] [Indexed: 11/25/2022]
Abstract
Testis-specific genes are essential for spermatogenesis in mammalian male reproduction. We have identified a novel gene, Tsc21, exclusively expressed in mice and human testes from the results of the Affymetrix Genechip analysis in the six developmental stages of testis of postnatal Balb/C mice. The full cDNA length of Tsc21 was 810 bp, with a 543 bp open reading frame encoding a 180 amino acids protein with a predicted molecular weight of 21.040 kDa. A Blast search in the mouse genome database localized the Tsc21 gene to mice chromosome 6C3. Multiple amino acid sequence alignment of human, mouse, and rat homologous genes showed that mice Tsc21 protein was highly homologous with the human Tsc21 gene (70%) and rat Tsc21 gene (86%). The results of reverse transcriptase-polymerase chain reaction analysis showed that the mice Tsc21 is exclusively expressed in the testis and epididymis of mice, and its expression is only detected after the mice is 35 days old. Human Tsc21 is also exclusively expressed in testis of human. Considering the expression profile Tsc21 in mice and human, we propose that Tsc21 may play a role during mammalian male spermatogenesis. Our study should be a basis for function characterization of the Tsc21 gene, leading to the elucidation of the molecular events underlying mammalian male reproduction.
Collapse
Affiliation(s)
- Zhendong Yu
- Laboratory of Male Reproductive Medicine, Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Peking University, Shenzhen 518036, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu JH, Qiu W, Wang YW, Xu J, Tong JX, Gao LJ, Xu WH, Wu YQ. Gene expression profile and overexpression of apoptosis-related genes (NGFI-B and Gadd 45 gamma) in early phase of Thy-1 nephritis model. Cell Tissue Res 2006; 326:159-68. [PMID: 16736195 DOI: 10.1007/s00441-006-0214-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 04/07/2006] [Indexed: 11/30/2022]
Abstract
Mesangioproliferative glomerulonephritis (MPGN) is a disease of high incidence in humans. Rat Thy-1 nephritis (Thy-1 N), namely, anti-thymocyte serum (ATS)-induced nephritis, is considered to be an animal model for studying MPGN. Although previous studies have demonstrated that glomerular mesangial cell (GMCs) injury might be a feature of Thy-1 N, the mechanism of the disease (i.e., GMC apoptosis) remains unclear. We have examined the pathologic changes of GMCs and the gene expression profile of renal tissues in Thy-1 N. The pathologic changes of Thy-1 N include three phages: GMC apoptosis (40 min), necrosis (2 h), and proliferation (5 days). Many TUNEL-positive cells are found 40 min after administration of ATS. Concomitantly, 341 genes are up-regulated, whereas 392 genes are down-regulated, as shown by microarrays analysis. The mRNA and protein of two of the up-regulated genes (nerve growth factor induced protein I-B, NGFI-B; growth arrest- and DNA-damage-inducible protein 45 gamma, Gadd 45 gamma) in the GMC apoptotic phase of Thy-1 N are markedly elevated, as observed by real-time polymerase chain reaction and immunohistochemistry. Our data indicate that pathologic changes of Thy-1 N are involved in the abnormal gene profile. The overexpression of the NGFI-B and Gadd 45 gamma genes may be associated with GMC apoptosis of Thy-1 N.
Collapse
Affiliation(s)
- Jing-hua Xu
- Department of Immunology, Nanjing Medical University, Nanjing Hanzhong Road 140, Jiangsu Province, 210029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Basak S, Chrétien M, Mbikay M, Basak A. In vitro elucidation of substrate specificity and bioassay of proprotein convertase 4 using intramolecularly quenched fluorogenic peptides. Biochem J 2004; 380:505-14. [PMID: 14972029 PMCID: PMC1224175 DOI: 10.1042/bj20031405] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 01/05/2004] [Accepted: 02/18/2004] [Indexed: 11/17/2022]
Abstract
The fourth member of Ca2+-dependent mammalian secretory subtilase, PC4 (proprotein convertase 4), is primarily expressed in testicular germ cell and ovarian macrophage. Its role in sperm fertilization and in early embryonic development has been demonstrated earlier through several studies, including those with PC4 null mice. A number of physiological substrates found in reproductive tissues have been postulated or identified for PC4 by various biochemical studies. These include growth factors IGF-1 (insulin-like growth factor-1) and IGF-2, hormonal polypeptide proPACAP (where PACAP stands for pituitary adenylate cyclase-activating polypeptide) and a number of surface proteins of ADAM (ADisintegrin And Metalloproteinase-like) family such as ADAM-1 (fertilin a), ADAM-2 (fertilin b), ADAM-3 (procyritestin) and ADAM-5. To provide further evidence in support of this notion and also to study the substrate specificity and bioassay of PC4, a series of intramolecularly quenched fluorogenic peptides containing the cleavage sites and several mutants were prepared. A comparative kinetic analysis and measurement of Vmax (app)/Km (app) ratio of these fluorogenic substrates against PC4 and PC7 revealed that the mutant variants of h (human) proPACAP and m (mouse) ADAM-5 derived peptides Q-PACAP141-151-mutant [Abz-141RVKNKGRRI150P151SY(NO2)-A-CONH2] (150A151Y replaced by PS) and Q-ADAM-5380-388-mutant [Abz-380E381PKPARRP388RY(NO2)A-CONH2] (381R replaced by P) are most efficiently and selectively cleaved by PC4. Using these two and Q-IGF-263-71 peptides, we showed that the sperm extract of normal adult mice is much higher when compared with that of PC4-null mice. This suggests that these fluorogenic peptides are useful for specific bioassay of PC4 activity. In addition, kinetic studies with various peptidyl-MCA indicate that the hexapeptide Ac-KTKQLR-MCA (where MCA stands for 4-methyl coumaryl-7-amide) is most efficiently and selectively cleaved by PC4 at RMCA, making it another effective agent for bioassay of PC4 activity. The study concludes that the most probable sequence motif for recognition by PC4 is KXKXXR or KXXR, where X is any amino acid other than cysteine and that it prefers proline at P3, P5 and/or P2' positions. It was also revealed that PC4 is a good candidate processing enzyme for growth factors IGF-1 and -2, neuropeptide proPACAP and several ADAM proteins such as ADAM-1, -2, -3 and -5.
Collapse
Affiliation(s)
- Sarmistha Basak
- Diseases of Aging Program, Regional Protein Chemistry Center, Ottawa Health Research Institute, 725 Parkdale Ave, Ottawa, ON, Canada K1Y 4E9
| | | | | | | |
Collapse
|
19
|
Wang H, Zhou Z, Xu M, Li J, Xiao J, Xu ZY, Sha J. A spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J Mol Med (Berl) 2004; 82:317-24. [PMID: 14985855 DOI: 10.1007/s00109-004-0526-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 01/02/2004] [Indexed: 11/28/2022]
Abstract
Spermatogenesis is an essential stage in the human reproductive process. In a previously study aiming to determine which genes might be involved in spermatogenesis, we compared the gene expression profiles of adult and fetal testes by hybridizing cDNA probes prepared from adult and fetal testes to membranes dotted with gene clones derived from a commercial human testis library. We identified 266 differentially expressed genes that showed higher expression levels in adult testes, indicating their potential roles in spermatogenesis. In the present study, we applied the same cDNA microarray technique to the analysis of gene expression in the spermatozoa of normal fertile men and found 149 genes that were expressed at higher levels in adult testis. A further study of five sperm motility-related genes selected from this profile by real-time PCR revealed that there was significant difference in the expression levels of two genes ( TPX-1, testis-specific protein 1 and LDHC, lactate dehydrogenase C, transcript variant 1) between normal ( n=29) and motility impaired ( n=24) semen samples, indicating that these genes are involved in sperm function. Our results demonstrated that spermatogenesis-related gene profiling could help to assess sperm quality in humans, and further study of these genes will help us to elucidate the mechanisms involved in spermatogenesis and diseases relating to human infertility.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Microarrays offer biologists comprehensive and powerful tools to analyze the involvement of genes in developmental processes at an unprecedented scale. Microarrays that employ defined sequences will permit us to elucidate genetic relationships and responses, while those that employ undefined DNA sequences (ESTs, cDNA, or genomic libraries) will help us to discover new genes, relate them to documented gene networks, and examine the way in which genes (and the process that they themselves control) are regulated. With access to broad new avenues of research come strategic and logistical headaches, most of which are embodied in the reams of data that are created over the course of an experiment. The solutions to these problems have provided interesting computational tools, which will allow us to compile huge data sets and to construct a genome-wide view of development. We are on the threshold of a new vista of possibilities where we might consider in comprehensive and yet specific detail, for example, the degree to which diverse organisms utilize similar genetic networks to achieve similar ends.
Collapse
Affiliation(s)
- Adnan Ali
- Department of Biological Sciences, University of Windsor, 401 Sunset, Windsor, Ontario, Canada N9B 3P4.
| | | |
Collapse
|
21
|
Cheng LJ, Zhou ZM, Li JM, Zhu H, Zhu H, Zhou YD, Wang LR, Lin M, Sha JH. Expression of a novel HsMCAK mRNA splice variant, tsMCAK gene, in human testis. Life Sci 2002; 71:2741-57. [PMID: 12383881 DOI: 10.1016/s0024-3205(02)02079-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Identification of specifically expressed genes in the adult or fetal testis is very important for the study of genes related to the development and function of the testis. In this study, a human adult testis cDNA microarray was constructed and hybridized with 33P-labeled human adult and embryo testis cDNA probes, respectively. After differential display analyzing, a number of new genes related to the development of testis and spermatogenesis had been identified. One of these new genes is tsMCAK. tsMCAK was expressed 2.62 folds more in human adult testis than fetal testis. The full length of tsMCAK is 2401 bp and contains a 2013 bp open reading frame, encoding a 671-amino-acid protein. Sequence analysis showed that it has a central kinesin motor domain and is homologous to HsMCAK gene of the somatic cells. Blasting human genome database localized tsMCAK to human chromosome 1P34 and further investigation showed that it is a splice variant of HsMCAK. The tissue distribution of tsMCAK was determined by RT-PCR and it is expressed highly and specifically in the testis. Southern blot studies of its expression in patients with infertility indicated its specific expression in spermatogenic cells and its correlation with male infertility. The above results suggested that tsMCAK is a candidate gene for the testis-specific KRPs and its specific expression in the testis was correlated with spermatogenesis and may be correlated with male infertility.
Collapse
Affiliation(s)
- Li Jun Cheng
- Key Laboratory of Reproductive Medicine, Center of Human Functional Genomics, Nanjing Medical University, Hanzhong Road, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|