1
|
Landini P, Egli T, Wolf J, Lacour S. sigmaS, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:1-13. [PMID: 24596257 DOI: 10.1111/1758-2229.12112] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 06/03/2023]
Abstract
Bacterial cells often face hostile environmental conditions, to which they adapt by activation of stress responses. In Escherichia coli, environmental stresses resulting in significant reduction in growth rate stimulate the expression of the rpoS gene, encoding the alternative σ factor σ(S). The σ(S) protein associates with RNA polymerase, and through transcription of genes belonging to the rpoS regulon allows the activation of a 'general stress response', which protects the bacterial cell from harmful environmental conditions. Each step of this process is finely tuned in order to cater to the needs of the bacterial cell: in particular, selective promoter recognition by σ(S) is achieved through small deviations from a common consensus DNA sequence for both σ(S) and the housekeeping σ(70). Recognition of specific DNA elements by σ(S) is integrated with the effects of environmental signals and the interaction with regulatory proteins, in what represents a fascinating example of multifactorial regulation of gene expression. In this report, we discuss the function of the rpoS gene in the general stress response, and review the current knowledge on regulation of rpoS expression and on promoter recognition by σ(S).
Collapse
Affiliation(s)
- Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | | | | | | |
Collapse
|
2
|
Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 2013; 5:a012674. [PMID: 24097899 DOI: 10.1101/cshperspect.a012674] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
3
|
Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2012; 65:189-213. [PMID: 21639793 DOI: 10.1146/annurev-micro-090110-102946] [Citation(s) in RCA: 646] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under conditions of nutrient deprivation or stress, or as cells enter stationary phase, Escherichia coli and related bacteria increase the accumulation of RpoS, a specialized sigma factor. RpoS-dependent gene expression leads to general stress resistance of cells. During rapid growth, RpoS translation is inhibited and any RpoS protein that is synthesized is rapidly degraded. The complex transition from exponential growth to stationary phase has been partially dissected by analyzing the induction of RpoS after specific stress treatments. Different stress conditions lead to induction of specific sRNAs that stimulate RpoS translation or to induction of small-protein antiadaptors that stabilize the protein. Recent progress has led to a better, but still far from complete, understanding of how stresses lead to RpoS induction and what RpoS-dependent genes help the cell deal with the stress.
Collapse
Affiliation(s)
- Aurelia Battesti
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
4
|
Typas A, Becker G, Hengge R. The molecular basis of selective promoter activation by the ?Ssubunit of RNA polymerase. Mol Microbiol 2007; 63:1296-306. [PMID: 17302812 DOI: 10.1111/j.1365-2958.2007.05601.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Different environmental stimuli cause bacteria to exchange the sigma subunit in the RNA polymerase (RNAP) and, thereby, tune their gene expression according to the newly emerging needs. Sigma factors are usually thought to recognize clearly distinguishable promoter DNA determinants, and thereby activate distinct gene sets, known as their regulons. In this review, we illustrate how the principle sigma factor in stationary phase and in stressful conditions in Escherichia coli, sigmaS (RpoS), can specifically target its large regulon in vivo, although it is known to recognize the same core promoter elements in vitro as the housekeeping sigma factor, sigma70 (RpoD). Variable combinations of cis-acting promoter features and trans-acting protein factors determine whether a promoter is recognized by RNAP containing sigmaS or sigma70, or by both holoenzymes. How these promoter features impose sigmaS selectivity is further discussed. Moreover, additional pathways allow sigmaS to compete more efficiently than sigma70 for limiting amounts of core RNAP (E) and thereby enhance EsigmaS formation and effectiveness. Finally, these topics are discussed in the context of sigma factor evolution and the benefits a cell gains from retaining competing and closely related sigma factors with overlapping sets of target genes.
Collapse
Affiliation(s)
- Athanasios Typas
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | | | | |
Collapse
|
5
|
Zhao M, Zhou L, Kawarasaki Y, Georgiou G. Regulation of RraA, a protein inhibitor of RNase E-mediated RNA decay. J Bacteriol 2006; 188:3257-63. [PMID: 16621818 PMCID: PMC1447450 DOI: 10.1128/jb.188.9.3257-3263.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently discovered RraA protein acts as an inhibitor of the essential endoribonuclease RNase E, and we demonstrated that ectopic expression of RraA affects the abundance of more than 700 transcripts in Escherichia coli (K. Lee, X. Zhan, J. Gao, J. Qiu, Y. Feng, R. Meganathan, S. N. Cohen, and G. Georgiou, Cell 114:623-634, 2003). We show that rraA is expressed from its own promoter, P(rraA), located in the menA-rraA intergenic region. Primer extension and lacZ fusion analysis revealed that transcription from P(rraA) is elevated upon entry into stationary phase in a sigma(s)-dependent manner. In addition, the stability of the rraA transcript is dependent on RNase E activity, suggesting the involvement of a feedback circuit in the regulation of the RraA level in E. coli.
Collapse
Affiliation(s)
- Meng Zhao
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
6
|
Typas A, Hengge R. Role of the spacer between the -35 and -10 regions in sigmas promoter selectivity in Escherichia coli. Mol Microbiol 2006; 59:1037-51. [PMID: 16420370 DOI: 10.1111/j.1365-2958.2005.04998.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vitro, the sigma(s) subunit of RNA polymerase (RNAP), RpoS, recognizes nearly identical -35 and -10 promoter consensus sequences as the vegetative sigma70. In vivo, promoter selectivity of RNAP holoenzyme containing either sigma(s) (Esigma(s)) or sigma70 (Esigma70) seems to be achieved by the differential ability of the two holoenzymes to tolerate deviations from the promoter consensus sequence. In this study, we suggest that many natural sigma(s)-dependent promoters possess a -35 element, a feature that has been considered as not conserved among sigma(s)-dependent promoters. These -35 hexamers are mostly non-optimally spaced from the -10 region, but nevertheless functional. A +/- 2 bp deviation from the optimal spacer length of 17 bp or the complete absence of a -35 consensus sequence decreases overall promoter activity, but at the same time favours Esigma(s) in its competition with Esigma70 for promoter recognition. On the other hand, the reduction of promoter activity due to shifting of the -35 element can be counterbalanced by an activity-stimulating feature such as A/T-richness of the spacer region without compromising Esigma(s) selectivity. Based on mutational analysis of sigma(s), we suggest a role of regions 2.5 and 4 of sigma(s) in sensing sub-optimally located -35 elements.
Collapse
Affiliation(s)
- Athanasios Typas
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | | |
Collapse
|
7
|
Lacour S, Leroy O, Kolb A, Landini P. Substitutions in Region 2.4 of σ70 Allow Recognition of the σS-Dependent aidB Promoter. J Biol Chem 2004; 279:55255-61. [PMID: 15507429 DOI: 10.1074/jbc.m410855200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strict dependence of transcription from the aidB promoter (PaidB) on the Esigma(S) form of RNA polymerase is because of the presence of a C nucleotide as the first residue of the -10 promoter sequence (-12C), which does not allow an open complex formation by Esigma(70). In this report, sigma(70) mutants carrying either the Q437H or the T440I single amino acid substitutions, which allow -12C recognition by sigma(70), were tested for their ability to carry out transcription from PaidB. The Gln-437 and Thr-440 residues are located in region 2.4 of sigma(70) and correspond to Gln-152 and Glu-155 in sigma(S). Interestingly, the Q437H mutant of sigma(70), but not T440I, was able to promote an open complex formation and to initiate transcription at PaidB. In contrast to T440I, a T440E mutant was proficient in carrying out transcription from PaidB. No sigma(70) mutant displayed significantly increased interaction with a PaidB mutant in which the -12C was substituted by a T (PaidB((C12T))), which is also efficiently recognized by wild type sigma(70). The effect of the T440E mutation suggests that the corresponding Glu-155 residue in sigma(S) might be involved in -12C recognition. However, substitution to alanine of the Glu-155 residue, as well as of Gln-152, in the sigma(S) protein did not significantly affect Esigma(S) interaction with PaidB. Our results reiterate the importance of the -12C residue for sigma(S)-specific promoter recognition and strongly suggest that interaction with the -10 sequence and open complex formation are carried out by different determinants in the two sigma factors.
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
8
|
Checroun C, Bordes P, Leroy O, Kolb A, Gutierrez C. Interactions between the 2.4 and 4.2 regions of sigmaS, the stress-specific sigma factor of Escherichia coli, and the -10 and -35 promoter elements. Nucleic Acids Res 2004; 32:45-53. [PMID: 14704342 PMCID: PMC373267 DOI: 10.1093/nar/gkh155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 11/06/2003] [Accepted: 11/06/2003] [Indexed: 11/14/2022] Open
Abstract
The sigmas subunit of Escherichia coli RNA polymerase holoenzyme (EsigmaS) is a key factor of gene expression upon entry into stationary phase and in stressful conditions. The selectivity of promoter recognition by EsigmaS and the housekeeping Esigma70 is as yet not clearly understood. We used a genetic approach to investigate the interaction of sigmaS with its target promoters. Starting with down-promoter variants of a sigmaS promoter target, osmEp, altered in the -10 or -35 elements, we isolated mutant forms of sigmaS suppressing the promoter defects. The activity of these suppressors on variants of osmEp and ficp, another target of sigmaS, indicated that sigmaS is able to interact with the same key features within a promoter sequence as sigma70. Indeed, (i) sigmaS can recognize the -35 element of some but not all its target promoters, through interactions with its 4.2 region; and (ii) amino acids within the 2.4 region participate in the recognition of the -10 element. More specifically, residues Q152 and E155 contribute to the strong preference of sigmaS for a C in position -13 and residue R299 can interact with the -31 nucleotide in the -35 element of the target promoters.
Collapse
Affiliation(s)
- Claire Checroun
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100 CNRS-Université Toulouse III, 118, Route de Narbonne, 31062, Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
9
|
Lacour S, Kolb A, Landini P. Nucleotides from -16 to -12 determine specific promoter recognition by bacterial sigmaS-RNA polymerase. J Biol Chem 2003; 278:37160-8. [PMID: 12853450 DOI: 10.1074/jbc.m305281200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alternative sigma factor sigmaS, mainly active in stationary phase of growth, recognizes in vitro a -10 promoter sequence almost identical to the one for the main sigma factor, sigma70, thus raising the problem of how specific promoter recognition by sigmaS-RNA polymerase (EsigmaS) is achieved in vivo. We investigated the promoter features involved in selective recognition by EsigmaS at the strictly sigmaS-dependent aidB promoter. We show that the presence of a C nucleotide as first residue of the aidB -10 sequence (-12C), instead of the T nucleotide canonical for sigma70-dependent promoters, is the major determinant for selective recognition by EsigmaS. The presence of the -12C does not allow formation of an open complex fully proficient in transcription initiation by Esigma70. The role of -12C as specific determinant for promoter recognition by EsigmaS was confirmed by sequence analysis of known EsigmaS-dependent promoters as well as site-directed mutagenesis at the promoters of the csgB and sprE genes. We propose that EsigmaS, unlike Esigma70, can recognize both C and T as the first nucleotide in the -10 sequence. Additional promoter features such as the presence of a C nucleotide at position -13, contributing to open complex formation by EsigmaS, and a TG motif found at the unusual -16/-15 location, possibly contributing to initial binding to the promoter, also represent important factors for sigmaS-dependent transcription. We propose a new sequence, TG(N)0-2CCATA(c/a)T, as consensus -10 sequence for promoters exclusively recognized by EsigmaS.
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
10
|
Jöres L, Wagner R. Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J Biol Chem 2003; 278:16834-43. [PMID: 12621053 DOI: 10.1074/jbc.m300196200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of stable RNA genes is known to be dramatically reduced in the presence of guanosine tetraphosphate (ppGpp), the mediator of the stringent response. Using in vitro transcription systems with ribosomal RNA P1 promoters, we have analyzed which step of the initiation cycle is inhibited by the effector ppGpp. We show that formation of the ternary transcription initiation complex consisting of RNA polymerase holoenzyme, the promoter DNA, and the first initiating nucleotide triphosphate is the major step at which ppGpp exerts its regulation. Neither primary binding of RNA polymerase to the promoter nor isomerization to the open binary complexes or the subsequent promoter clearance steps contributes notably to the observed inhibition. The effect of ppGpp-dependent inhibition in the formation of the ternary transcription initiation complex could be mimicked by nucleotide derivatives known to bind to the RNA polymerase active center. Using these model compounds, almost identical inhibition characteristics were observed as seen with ppGpp. The results support the previously published model, which suggests that ppGpp-dependent inhibition is based on competition between the inhibitor molecules and NTP substrates for access to the active center of RNA polymerase.
Collapse
Affiliation(s)
- Lars Jöres
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
11
|
Hengge-Aronis R. Stationary phase gene regulation: what makes an Escherichia coli promoter sigmaS-selective? Curr Opin Microbiol 2002; 5:591-5. [PMID: 12457703 DOI: 10.1016/s1369-5274(02)00372-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The general stress sigma factor sigma(S) and the vegetative sigma(70) are highly related and recognise the same core promoter elements. Nevertheless, they clearly control different sets of genes in vivo. Recent studies have demonstrated that Esigma(S) selectivity is based on modular combinations of several sequence and structural features of a promoter, to which also trans-acting factors can strongly contribute. These results throw novel light on the details of transcription initiation, as well as on the co-evolution of sigma factors and their cognate promoter sequences.
Collapse
Affiliation(s)
- Regine Hengge-Aronis
- Institute of Biology, Microbiology, Freie Universität Berlin, Königin-Luise-Strasse12-16, Berlin, Germany.
| |
Collapse
|