1
|
Medlock AE, Dailey HA. New Avenues of Heme Synthesis Regulation. Int J Mol Sci 2022; 23:ijms23137467. [PMID: 35806474 PMCID: PMC9267699 DOI: 10.3390/ijms23137467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
During erythropoiesis, there is an enormous demand for the synthesis of the essential cofactor of hemoglobin, heme. Heme is synthesized de novo via an eight enzyme-catalyzed pathway within each developing erythroid cell. A large body of data exists to explain the transcriptional regulation of the heme biosynthesis enzymes, but until recently much less was known about alternate forms of regulation that would allow the massive production of heme without depleting cellular metabolites. Herein, we review new studies focused on the regulation of heme synthesis via carbon flux for porphyrin synthesis to post-translations modifications (PTMs) that regulate individual enzymes. These PTMs include cofactor regulation, phosphorylation, succinylation, and glutathionylation. Additionally discussed is the role of the immunometabolite itaconate and its connection to heme synthesis and the anemia of chronic disease. These recent studies provide new avenues to regulate heme synthesis for the treatment of diseases including anemias and porphyrias.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA 30602, USA
- Correspondence: (A.E.M.); (H.A.D.)
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: (A.E.M.); (H.A.D.)
| |
Collapse
|
2
|
Abstract
Heme, which is composed of iron and the small organic molecule protoporphyrin, is an essential component of hemoglobin as well as a variety of physiologically important hemoproteins. During erythropoiesis, heme synthesis is induced before, and is essential for, globin synthesis. Although all cells possess the ability to synthesize heme, there are distinct differences between regulation of the pathway in developing erythroid cells and all other types of cells. Disorders that compromise the ability of the developing red cell to synthesize heme can have profound medical implications. The biosynthetic pathway for heme and key regulatory features are reviewed herein, along with specific human genetic disorders that arise from defective heme synthesis such as X-linked sideroblastic anemia and erythropoietic protoporphyria.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
3
|
Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1617-32. [PMID: 22575458 DOI: 10.1016/j.bbamcr.2012.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 04/19/2012] [Indexed: 12/17/2022]
Abstract
The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
4
|
Han L, Lu J, Pan L, Wang X, Shao Y, Han S, Huang B. Histone acetyltransferase p300 regulates the transcription of human erythroid-specific 5-aminolevulinate synthase gene. Biochem Biophys Res Commun 2006; 348:799-806. [PMID: 16904069 DOI: 10.1016/j.bbrc.2006.07.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
Erythroid-specific 5-aminolevulinate synthase (ALAS2) catalyzes the rate-limiting step in heme biosynthesis of erythroid cells. Here, we show that treatment of erythroid K562 cells with HDAC inhibitors sodium butyrate or Trichostatin A gave rise to a significant increase in ALAS2 gene transcripts, with a concurrent increase in acetylation level of histone H4 at the ALAS2 gene promoter. Histone acetyltransferase p300 bound withALAS2 promoter and overexpression of p300 increased both the promoter reporter expression and endogenous mRNA level of ALAS2. Additionally, two functional Sp1 sites located in ALAS2 promoter were identified. Both of the GATA-1 sites and all the Sp1 sites at the ALAS2 promoter contributed to the transcription synergistic action with p300. These data implicated a close relationship between the acetylation modification of histone at the ALAS2 promoter and the regulation of this gene. Meanwhile, this work identified that ALAS2 is a novel target gene for p300/CBP action as histone acetyltransferases.
Collapse
Affiliation(s)
- Liping Han
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Drissen R, von Lindern M, Kolbus A, Driegen S, Steinlein P, Beug H, Grosveld F, Philipsen S. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 2005; 25:5205-14. [PMID: 15923635 PMCID: PMC1140573 DOI: 10.1128/mcb.25.12.5205-5214.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Development of red blood cells requires the correct regulation of cellular processes including changes in cell morphology, globin expression and heme synthesis. Transcription factors such as erythroid Kruppel-like factor EKLF (Klf1) play a critical role in erythropoiesis. Mice lacking EKLF die around embryonic day 14 because of defective definitive erythropoiesis, partly caused by a deficit in beta-globin expression. To identify additional target genes, we analyzed the phenotype and gene expression profiles of wild-type and EKLF null primary erythroid progenitors that were differentiated synchronously in vitro. We show that EKLF is dispensable for expansion of erythroid progenitors, but required for the last steps of erythroid differentiation. We identify EKLF-dependent genes involved in hemoglobin metabolism and membrane stability. Strikingly, expression of these genes is also EKLF-dependent in primitive, yolk sac-derived, blood cells. Consistent with lack of upregulation of these genes we find previously undetected morphological abnormalities in EKLF-null primitive cells. Our data provide an explanation for the hitherto unexplained severity of the EKLF null phenotype in erythropoiesis.
Collapse
Affiliation(s)
- Roy Drissen
- Erasmus MC, Department of Cell Biology, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Current models for regulation of heme synthesis during erythropoiesis propose that the first enzyme of the pathway, 5-aminolevulinate synthase (ALAS), is the rate-limiting enzyme. We have examined cellular porphyrin excretion in differentiating murine erythroleukemia cells to determine in situ rate-limiting steps in heme biosynthesis. The data demonstrate that low levels of coproporphyrin and protoporphyrin accumulate in the culture medium under normal growth conditions and that during erythroid differentiation the level of excretion of coproporphyrin increases approximately 100-fold. Iron supplementation lowered, but did not eliminate, porphyrin accumulation. While ALAS induction is necessary for increased heme synthesis, these data indicate that other enzymes, in particular coproporphyrinogen oxidase, represent down-stream rate-limiting steps.
Collapse
Affiliation(s)
- S I Woodard
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
7
|
Analysis of ferrochelatase expression during hematopoietic development of embryonic stem cells. Blood 2000. [DOI: 10.1182/blood.v95.11.3568.011k40_3568_3577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ferrochelatase, the last enzyme in the heme pathway, chelates protoporphyrin IX and iron to form heme and is mutated in protoporphyria. The ferrochelatase gene is expressed in all tissues at low levels to provide heme for essential heme-containing proteins and is up-regulated during erythropoiesis for the synthesis of hemoglobin. The human ferrochelatase promoter contains 2 Sp1 cis-elements and GATA and NF–E2 sites, all of which bind their cognatetrans-acting factors in vitro. To investigate the role of these elements during erythropoiesis, we introduced expression of the green fluorescent protein (EGFP) transgenes driven by various ferrochelatase promoter fragments into a single locus in mouse embryonic stem cells. EGFP expression was monitored during hematopoietic differentiation in vitro using flow cytometry. We show that a promoter fragment containing the Sp1 sites, the NF–E2 and GATA elements, was sufficient to confer developmental-specific expression of the EGFP transgene, with an expression profile identical to that of the endogenous gene. In this system the −0.275 kb NF–E2 cis-element is required for erythroid-enhanced expression, the GATA cis-element functions as a stage-specific repressor and enhancer, and elements located between −0.375kb and −1.1kb are necessary for optimal levels of expression. Ferrochelatase mRNA increased before the primitive erythroid-cell stage without a concomitant increase in ferrochelatase protein, suggesting the presence of a translational control mechanism. Because of the sensitivity of this system, we were able to assess the effect of an A-to-G polymorphism identified in the promoters of patients with protoporphyria. There was no effect of the G haplotype on transcriptional activity of the −1.1 kb transgene.
Collapse
|
8
|
Abstract
AbstractFerrochelatase, the last enzyme in the heme pathway, chelates protoporphyrin IX and iron to form heme and is mutated in protoporphyria. The ferrochelatase gene is expressed in all tissues at low levels to provide heme for essential heme-containing proteins and is up-regulated during erythropoiesis for the synthesis of hemoglobin. The human ferrochelatase promoter contains 2 Sp1 cis-elements and GATA and NF–E2 sites, all of which bind their cognatetrans-acting factors in vitro. To investigate the role of these elements during erythropoiesis, we introduced expression of the green fluorescent protein (EGFP) transgenes driven by various ferrochelatase promoter fragments into a single locus in mouse embryonic stem cells. EGFP expression was monitored during hematopoietic differentiation in vitro using flow cytometry. We show that a promoter fragment containing the Sp1 sites, the NF–E2 and GATA elements, was sufficient to confer developmental-specific expression of the EGFP transgene, with an expression profile identical to that of the endogenous gene. In this system the −0.275 kb NF–E2 cis-element is required for erythroid-enhanced expression, the GATA cis-element functions as a stage-specific repressor and enhancer, and elements located between −0.375kb and −1.1kb are necessary for optimal levels of expression. Ferrochelatase mRNA increased before the primitive erythroid-cell stage without a concomitant increase in ferrochelatase protein, suggesting the presence of a translational control mechanism. Because of the sensitivity of this system, we were able to assess the effect of an A-to-G polymorphism identified in the promoters of patients with protoporphyria. There was no effect of the G haplotype on transcriptional activity of the −1.1 kb transgene.
Collapse
|
9
|
Sadlon TJ, Dell'Oso T, Surinya KH, May BK. Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis. Int J Biochem Cell Biol 1999; 31:1153-67. [PMID: 10582344 DOI: 10.1016/s1357-2725(99)00073-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erythroid tissue is the major site of heme production in the body. The synthesis of heme and globin chains is coordinated at both the transcriptional and post-transcriptional levels to ensure that virtually no free heme or globin protein accumulates. The key rate-controlling enzyme of the heme biosynthetic pathway is 5-aminolevulinate synthase (ALAS) and an erythroid-specific isoform (ALAS2) is up-regulated during erythropoiesis. Differentiation of embryonic stem cells with a disrupted ALAS2 gene has established that expression of this gene is critical for erythropoiesis and cannot be compensated by expression of the ubiquitous isoform of the enzyme (ALAS1). Interestingly, heme appears to be important for expression of globin and other late erythroid genes and for erythroid cell differentiation although the mechanism of this effect is not clear. Transcriptional control elements that regulate the human gene for ALAS2 have been identified both in the promoter and in intronic enhancer regions. Subsequent translation of the ALAS2 mRNA is dependent on an adequate iron supply. The mechanism by which transcription of the gene for ALAS2 is increased by erythropoietin late in erythropoiesis remains an interesting issue. Erythropoietin action may result in altered levels of critical erythroid transcription factors or modulate the phosphorylation/acetylation status of these factors. Defects in the coding region of the gene for ALAS2 underlie the disease state X-linked sideroblastic anemia. In this review, we focus on the regulation and function of erythroid-specific 5-aminolevulinate synthase during erythropoiesis and its role in the X-linked sideroblastic anemia.
Collapse
Affiliation(s)
- T J Sadlon
- Department of Biochemistry, University of Adelaide, SA, Australia
| | | | | | | |
Collapse
|
10
|
Abstract
Heme is a complex of iron with protoporphyrin IX that is essential for the function of all aerobic cells. Heme serves as the prosthetic group of numerous hemoproteins (eg, hemoglobin, myoglobin, cytochromes, guanylate cyclase, and nitric oxide synthase) and plays an important role in controlling protein synthesis and cell differentiation. Cellular heme levels are tightly controlled; this is achieved by a fine balance between heme biosynthesis and catabolism by the enzyme heme oxygenase. On a per-cell basis, the rate of heme synthesis in the developing erythroid cells is at least 1 order of magnitude higher than in the liver, which is in turn the second most active heme producer in the organism. Differences in iron metabolism and in genes for 5-aminolevulinic acid synthase (ALA-S, the first enzyme in heme biosynthesis) are responsible for the differences in regulation and rates of heme synthesis in erythroid and nonerythroid cells. There are 2 different genes for ALA-S, one of which is expressed ubiquitously (ALA-S1), whereas the expression of the other (ALA-S2) is specific to erythroid cells. Because the 5'-untranslated region of the erythroid-specific ALA-S2 mRNA contains the iron-responsive element, a cis-acting sequence responsible for translational induction of erythroid ALA-S2 by iron, the availability of iron controls protoporphyrin IX levels in hemoglobin-synthesizing cells. In nonerythroid cells, the rate-limiting step of heme production is catalyzed by ALA-S1, whose synthesis is feedback-inhibited by heme. On the other hand, in erythroid cells, heme does not inhibit either the activity or the synthesis of ALA-S but does inhibit cellular iron acquisition from transferrin without affecting its utilization for heme synthesis. This negative feedback is likely to explain the mechanism by which the availability of transferrin iron limits heme synthesis rate. Moreover, in erythroid cells heme seems to enhance globin gene transcription, is essential for globin translation, and supplies the prosthetic group for hemoglobin assembly. Heme may also be involved in the expression of other erythroid-specific proteins. Furthermore, heme seems to play a role in regulating either transcription, translation, processing, assembly, or stability of hemoproteins in nonerythroid cells. Heme oxygenase, which catalyzes heme degradation, seems to be an important enzymatic antioxidant system, probably by providing biliverdin, which is an antioxidant agent.
Collapse
Affiliation(s)
- P Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
|
12
|
Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC, Brugnara C, Witkowska HE, Sassa S, Zon LI. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 1998; 20:244-50. [PMID: 9806542 DOI: 10.1038/3049] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many human anaemias are caused by defects in haemoglobin synthesis. The zebrafish mutant sauternes (sau) has a microcytic, hypochromic anaemia, suggesting that haemoglobin production is perturbed. During embryogenesis, sau mutants have delayed erythroid maturation and abnormal globin gene expression. Using positional cloning techniques, we show that sau encodes the erythroid-specific isoform of delta-aminolevulinate synthase (ALAS2; also known as ALAS-E), the enzyme required for the first step in haem biosynthesis. As mutations in ALAS2 cause congenital sideroblastic anaemia (CSA) in humans, sau represents the first animal model of this disease.
Collapse
Affiliation(s)
- A Brownlie
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|