1
|
Li QQ, Guo M, He GH, Xi KH, Zhou MY, Shi RY, Chen GQ. VEGF-induced Nrdp1 deficiency in vascular endothelial cells promotes cancer metastasis by degrading vascular basement membrane. Oncogene 2024; 43:1836-1851. [PMID: 38654108 DOI: 10.1038/s41388-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Meng Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| | - Guang-Huan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kai-Hua Xi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei-Yi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Rong-Yi Shi
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200127, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
2
|
Sun R, Qiu L, Yi Q, Wang M, Yue F, Wang L, Song L. CgNrdp1, a conserved negative regulating factor of MyD88-dependent Toll like receptor signaling in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 74:386-392. [PMID: 29305334 DOI: 10.1016/j.fsi.2017.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Toll like receptor (TLR) signaling cascades are under precise regulations to ensure the proper immune responses during various pathogen invasions. The neuregulin receptor degradation protein-1 (Nrdp1) has been demonstrated to be a novel negative regulator of TLR signaling by targeting MyD88 to induce degradation in mammals. In the present study, an Nrdp1 homologue, CgNrdp1, was identified from the genome of Pacific oyster Crassostrea gigas. It contained an open reading frame encoding a polypeptide of 315 amino acids which shared high identities with other homologues from different species. There was a conserved RING domain in CgNrdp1, indicating the functional E3 ubiquitin ligase activity. The bacterially expressed recombinant CgNrdp1 and CgMyD88 showed much stronger affinity compared to control groups in the ELISA assay, showing the interacting ability between CgNrdp1 and CgMyD88. When CgMyD88 or HsMyD88 was co-transfected with CgNrdp1 into HEK293T cells, the luciferase activities of NF-κB were significantly decreased compared to those in MyD88 single-transfection groups, indicating the conserved negative regulating function of CgNrdp1 on the MyD88 induced TLR signaling. These results indicated that CgNrdp1 was a negative regulator of TLR signaling in oyster and the Nrdp1-MyD88 axis was functional and highly conserved from mollusks to mammals in the negative regulation of TLR signaling.
Collapse
Affiliation(s)
- Rui Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
3
|
RNF187 is Downregulated Following NF-κB Inhibition in Late Erythroblasts. Biochem Genet 2016; 54:714-21. [DOI: 10.1007/s10528-016-9750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
4
|
Mujoo K, Choi BK, Huang Z, Zhang N, An Z. Regulation of ERBB3/HER3 signaling in cancer. Oncotarget 2014; 5:10222-36. [PMID: 25400118 PMCID: PMC4279368 DOI: 10.18632/oncotarget.2655] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/02/2014] [Indexed: 12/18/2022] Open
Abstract
ERBB3/HER3 is emerging as a molecular target for various cancers. HER3 is overexpressed and activated in a number of cancer types under the conditions of acquired resistance to other HER family therapeutic interventions such as tyrosine kinase inhibitors and antibody therapies. Regulation of the HER3 expression and signaling involves numerous HER3 interacting proteins. These proteins include PI3K, Shc, and E3 ubiquitin ligases NEDD4 and Nrdp1. Furthermore, recent identification of a number of HER3 oncogenic mutations in colon and gastric cancers elucidate the role of HER3 in cancer development. Despite the strong evidence regarding the role of HER3 in cancer, the current understanding of the regulation of HER3 expression and activation requires additional research. Moreover, the lack of biomarkers for HER3-driven cancer poses a big challenge for the clinical development of HER3 targeting antibodies. Therefore, a better understanding of HER3 regulation should improve the strategies to therapeutically target HER3 for cancer therapy.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- Current address: Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX
| | - Byung-Kwon Choi
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhao Huang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
5
|
Zhang DL, Han F, Yu DH, Xiao SJ, Li MY, Chen J, Wang ZY. Characterization of E3 ubiquitin ligase neuregulin receptor degradation protein-1 (Nrdp1) in the large yellow croaker (Larimichthys crocea) and its immune responses to Cryptocaryon irritans. Gene 2014; 556:98-105. [PMID: 25447921 DOI: 10.1016/j.gene.2014.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/18/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022]
Abstract
Neuregulin receptor degradation protein-1 (Nrdp1) was recently identified in humans as an important immune factor responding to the challenge of virus, LPS or cytokine. Its role in fish immune defense and whether it is involved in anti-parasite immunity have not been proven yet. In this report, the full-length cDNA sequence and genomic structure of Nrdp1 in the large yellow croaker Larimichthys crocea (LcNrdp1) were identified and characterized. The full-length cDNA of LcNrdp1 was 1248bp, including a 5' untranslated region (UTR) of 32bp, a 3' UTR of 259bp and an open reading frame (ORF) of 937bp, encoding a polypeptide of 318 amino acid residues. The full-length genomic DNA sequence of LcNrdp1 was composed of 2635 nucleotides, including four exons and three introns. The putative LcNrdp1 protein had no signal peptide sequence and contained a characteristic Nrdp1 consensus motif C3HC3D ring finger and a Coiled-coil domain. Phylogenetic analysis showed that Nrdp1 in fish was closer with that in other vertebrates (79%-90% amino acid identity) than in invertebrates and bacteria (27%-65%). In fishes, Nrdp1 in large yellow croaker was closer with that in Takifugu rubripes. The expression profile showed that LcNrdp1 was constitutively expressed in all tested tissues, especially highly expressed in brain, muscle and kidney. Post-infection (PI) with Cryptocaryon irritans, an increased expression of LcNrdp1 was induced in infection sites (skin and gill), whereas in immune organs, the expression of LcNrdp1 was up-regulated in spleen (except the 1st d and 10th d PI) but suppressed in head kidney. These results suggested that LcNrdp1 might play an important immune role in the finfish L. crocea in the defense against the parasite C. irritans.
Collapse
Affiliation(s)
- Dong Ling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Da Hui Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shi Jun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Ming Yun Li
- College of Ocean, Ningbo University, Ningbo 315211, PR China
| | - Jian Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
6
|
Lewandowski KT, Piwnica-Worms H. Phosphorylation of the E3 ubiquitin ligase RNF41 by the kinase Par-1b is required for epithelial cell polarity. J Cell Sci 2013; 127:315-27. [PMID: 24259665 DOI: 10.1242/jcs.129148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The establishment and maintenance of cell polarity is an essential property governing organismal homeostasis, and loss of polarity is a common feature of cancer cells. The ability of epithelial cells to establish apical-basal polarity depends on intracellular signals generated from polarity proteins, such as the Par-1 family of proteins, as well as extracellular signals generated through cell contacts with the extracellular matrix (ECM). The Par-1 family has a well-established role in regulating cell-cell contacts in the form of tight junctions by phosphorylating Par-3. In addition, Par-1 has been shown to impact on cell-ECM interactions by regulating laminin receptor localization and laminin deposition on the basal surface of epithelial cells. Laminins are major structural and signaling components of basement membrane (BM), a sheet of specialized ECM underlying epithelia. In this study, we identify RNF41, an E3 ubiquitin ligase, as a novel Par-1b (also known as MARK2) effector in the cell-ECM pathway. Par-1b binds to and phosphorylates RNF41 on serine 254. Phosphorylation of RNF41 by Par-1b is required for epithelial cells to localize laminin-111 receptors to their basolateral surfaces and to properly anchor to laminin-111. In addition, phosphorylation of RNF41 is required for epithelial cells to establish apical-basal polarity. Our data suggests that phosphorylation of RNF41 by Par-1b regulates basolateral membrane targeting of laminin-111 receptors, thereby facilitating cell anchorage to laminin-111 and ultimately forming the cell-ECM contacts required for epithelial cells to establish apical-basal cell polarity.
Collapse
Affiliation(s)
- Katherine T Lewandowski
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
7
|
Abstract
Human single-strand (ss) DNA binding proteins 1 and 2 (hSSB1 and 2) are components of the hSSB1/2-INTS3-C9orf80 heterotrimeric protein complex shown to participate in DNA damage response and maintenance of genome stability. However, their roles at telomeres remain unknown. Here, we generated murine SSB1 conditional knockout mice and cells and found that mSSB1 plays a critical role in telomere end protection. Both mSSB1 and mSSB2 localize to a subset of telomeres and are required to repair TRF2-deficient telomeres. Deletion of mSSB1 resulted in increased chromatid-type fusions involving both leading- and lagging-strand telomeric DNA, suggesting that it is required for the protection of G-overhangs. mSSB1's interaction with INTS3 is required for its localization to damaged DNA. mSSB1 interacts with Pot1a, but not Pot1b, and its association with telomeric ssDNA requires Pot1a. mSSB1(Δ/Δ) mice die at birth with developmental abnormalities, while mice with the hypomorphic mSSB1(F/F) allele are born alive and display increased sensitivity to ionizing radiation (IR). Our results suggest that mSSB1 is required to maintain genome stability, and document a previously unrecognized role for mSSB1/2 in the protection of newly replicated leading- and lagging-strand telomeres.
Collapse
|
8
|
Tan Y, Yu F, Pereira A, Morin P, Zhou J. Suppression of Nrdp1 toxicity by Parkin in Drosophila models. Biochem Biophys Res Commun 2011; 416:18-23. [DOI: 10.1016/j.bbrc.2011.10.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/22/2011] [Indexed: 11/17/2022]
|
9
|
Li S, Wang L, Berman M, Kong YY, Dorf ME. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity 2011; 35:426-40. [PMID: 21903422 DOI: 10.1016/j.immuni.2011.06.014] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/25/2011] [Accepted: 06/29/2011] [Indexed: 02/02/2023]
Abstract
To systematically investigate innate immune signaling networks regulating production of type I interferon, we analyzed protein complexes formed after microbial recognition. Fifty-eight baits were associated with 260 interacting proteins forming a human innate immunity interactome for type I interferon (HI5) of 401 unique interactions; 21% of interactions were modulated by RNA, DNA, or LPS. Overexpression and depletion analyses identified 22 unique genes that regulated NF-κB and ISRE reporter activity, viral replication, or virus-induced interferon production. Detailed mechanistic analysis defined a role for mind bomb (MIB) E3 ligases in K63-linked ubiquitination of TBK1, a kinase that phosphorylates IRF transcription factors controlling interferon production. Mib genes selectively controlled responses to cytosolic RNA. MIB deficiency reduced antiviral activity, establishing the role of MIB proteins as positive regulators of antiviral responses. The HI5 provides a dynamic physical and regulatory network that serves as a resource for mechanistic analysis of innate immune signaling.
Collapse
Affiliation(s)
- Shitao Li
- Division of Immunology, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
10
|
Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL). PLoS One 2009; 4:e7169. [PMID: 19779621 PMCID: PMC2745703 DOI: 10.1371/journal.pone.0007169] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short, noncoding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. The miRNAs, MIR-15a/16-1, at chromosome band 13q14 are down-regulated in the majority of patients with chronic lymphocytic leukaemia (CLL). Methodology/Principal Findings We have measured the expression of MIR-15a/16-1, and 92 computationally-predicted MIR-15a/16-1 target genes in CLL patients and in normal controls. We identified 35 genes that are deregulated in CLL patients, 5 of which appear to be specific targets of the MIR-15a/16-1 cluster. These targets included 2 genes (BAZ2A and RNF41) that were significantly up-regulated (p<0.05) and 3 genes (RASSF5, MKK3 and LRIG1) that were significantly down-regulated (p<0.05) in CLL patients with down-regulated MIR-15a/16-1 expression. Significance The genes identified here as being subject to MIR-15a/16-1 regulation could represent direct or indirect targets of these miRNAs. Many of these are good biological candidates for involvement in tumorigenesis and as such, may be important in the aetiology of CLL.
Collapse
|
11
|
Wang C, Chen T, Zhang J, Yang M, Li N, Xu X, Cao X. The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol 2009; 10:744-52. [DOI: 10.1038/ni.1742] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/20/2009] [Indexed: 11/09/2022]
|
12
|
Jing X, Infante J, Nachtman RG, Jurecic R. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors. Exp Hematol 2008; 36:1110-20. [PMID: 18495327 DOI: 10.1016/j.exphem.2008.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/27/2022]
Abstract
OBJECTIVE FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3 and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. MATERIALS AND METHODS FLRF was overexpressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF overexpression on EML cell differentiation into myeloerythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells overexpressing FLRF were examined with Western and immunoprecipitation. RESULTS Remarkably, overexpression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines erythropoietin (EPO) and interleukin-3 (IL-3), and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, EPO, and RA receptor-alpha (RARalpha) in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, EPO, and RARalpha receptors in EML and BaF3 cells, and that FLRF-mediated downregulation of these receptors is ligand binding-independent. CONCLUSIONS The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myeloerythroid lineages.
Collapse
Affiliation(s)
- Xin Jing
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
13
|
Bouyain S, Leahy DJ. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3. Protein Sci 2007; 16:654-61. [PMID: 17384230 PMCID: PMC2203331 DOI: 10.1110/ps.062700307] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.
Collapse
Affiliation(s)
- Samuel Bouyain
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
14
|
Zhong L, Tan Y, Zhou A, Yu Q, Zhou J. RING Finger Ubiquitin-Protein Isopeptide Ligase Nrdp1/FLRF Regulates Parkin Stability and Activity. J Biol Chem 2005; 280:9425-30. [PMID: 15632191 DOI: 10.1074/jbc.m408955200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parkin is a ubiquitin-protein isopeptide ligase. It has been suggested that loss of function in parkin causes accumulation and aggregation of its substrates, leading to death of dopaminergic neurons in Parkinson disease. Using the yeast two-hybrid screen, we isolated a RING finger protein that interacted with the N terminus of parkin in a Drosophila cDNA library. Interaction between human parkin and the mammalian RING finger protein homologue Nrdp1/FLRF, a ubiquitin-protein isopeptide ligase that ubiquitinates ErbB3 and ErbB4, was validated by in vitro binding assay, co-immunoprecipitation, and immunofluorescence co-localization. Significantly, pulse-chase experiments showed that cotransfection of Nrdp1 and parkin reduced the half-life of parkin from 5 to 2.5 h. Consistent with these findings, we further observed that degradation of CDCrel-1, a parkin substrate, was facilitated by overexpression of parkin protein. However, co-transfection of Nrdp1 with parkin reversed the effects of parkin on CDCrel-1 degradation. We conclude that Nrdp1 is a parkin modifier that accelerates degradation of parkin, resulting in a reduction of parkin activity.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Medicine, Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
15
|
Wu X, Yen L, Irwin L, Sweeney C, Carraway KL. Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol Cell Biol 2004; 24:7748-57. [PMID: 15314180 PMCID: PMC506982 DOI: 10.1128/mcb.24.17.7748-7757.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.
Collapse
Affiliation(s)
- Xiuli Wu
- UC Davis Cancer Center, Research Building III, Room 1400, 4645 2nd Ave., Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
16
|
Shojaei F, Gallacher L, Bhatia M. Differential gene expression of human stem progenitor cells derived from early stages of in utero human hematopoiesis. Blood 2004; 103:2530-40. [PMID: 14656878 DOI: 10.1182/blood-2003-09-3209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHematopoietic stem progenitor cells (HSPCs) are highly enriched in a rare subset of Lin-CD34+CD38- cells. Independent of stage of human development, HSPC function segregates to the subset of Lin-CD34+CD38- cells. However, fetal-derived HSPCs demonstrate distinct self-renewal and differentiation capacities compared with their adult counterparts. Here, to characterize the molecular nature of fetal HSPCs, suppressive subtractive hybridization was used to compare gene expression of HSPCs isolated from fetal blood (FB-HSPCs) versus adult mobilized peripheral blood (MPB-HSPCs). We identified 97 differentially expressed genes that could be annotated into distinct groups that include transcription factors, cell cycle regulators, and genes involved in signal transduction. Candidate regulators, such as Lim only domain-2 (LMO2), nuclear factor–kappa B (NF-κB), tripartite motif 28 (Trim28), and N-myc protooncogene (MYCN), and a novel homeobox gene product were among transcripts that were found to be differentially expressed and could be associated with specific proliferation and differentiation properties unique to FB-HSPCs. Interestingly, the majority of genes associated with signal transduction belong to Ras pathway, highlighting the significance of Ras signaling in FB-HSPCs. Genes differentially expressed in FB-HSPCs versus adult MPB-HSPCs were verified using quantitative real-time polymerase chain reaction (Q-PCR). This approach also resulted in the identification of a transcript that is highly expressed in FB-HSPCs but not detectable in more differentiated Lin-CD34+CD38+ FB progenitors. Our investigation represents the first study to compare phenotypically similar, but functionally distinct, HSPC populations and to provide a gene profile of unique human HSPCs with higher proliferative capacity derived from early in utero human blood development.
Collapse
Affiliation(s)
- Farbod Shojaei
- Robarts Research Institute, Stem Cell Biology and Regenerative Medicine, London, ON, Canada
| | | | | |
Collapse
|
17
|
Qiu XB, Markant SL, Yuan J, Goldberg AL. Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J 2004; 23:800-10. [PMID: 14765125 PMCID: PMC380992 DOI: 10.1038/sj.emboj.7600075] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 12/19/2003] [Indexed: 11/09/2022] Open
Abstract
Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE.
Collapse
Affiliation(s)
- Xiao-Bo Qiu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Division of Signal Transduction, Beth Israel-Deaconess Medical Center, Boston, MA, USA
| | | | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
18
|
Qiu XB, Goldberg AL. Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc Natl Acad Sci U S A 2002; 99:14843-8. [PMID: 12411582 PMCID: PMC137506 DOI: 10.1073/pnas.232580999] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The epidermal growth factor receptor (EGFR/ErbB) family of receptor tyrosine kinases plays fundamental roles in the regulation of cell survival, proliferation, and differentiation. Here, we present evidence that ErbB3 is degraded by proteasomes, and that Nrdp1 (referred to as FLRF in mice) associates with ErbB3 and stimulates its ubiquitination and degradation by proteasomes. Nrdp1 mRNAs are expressed in a variety of human tissues. The N-terminal half of Nrdp1 possesses an atypical RING finger domain, which is required for enhancing ErbB3 degradation. Its C-terminal half by itself associates with ErbB3 and raises ErbB3 levels in cells, probably by acting as a dominant-negative form of Nrdp1. In cell-free systems, Nrdp1 has ubiquitin ligase (E3) activity and ubiquitinates ErbB3, as well as itself, in the presence of the ubiquitin-carrier protein (E2), UbcH5. These data indicate that Nrdp1 is a RING finger-type of ubiquitin ligase, which promotes degradation of ErbB3 by proteasomes and, thus, may be an important factor influencing cell growth.
Collapse
Affiliation(s)
- Xiao-Bo Qiu
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Diamonti AJ, Guy PM, Ivanof C, Wong K, Sweeney C, Carraway KL. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc Natl Acad Sci U S A 2002; 99:2866-71. [PMID: 11867753 PMCID: PMC122439 DOI: 10.1073/pnas.052709799] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite numerous recent advances in our understanding of the molecular mechanisms underlying receptor tyrosine kinase down-regulation and degradation in response to growth factor binding, relatively little is known about ligand-independent receptor tyrosine kinase degradation mechanisms. In a screen for proteins that might regulate the trafficking or localization of the ErbB3 receptor, we have identified a tripartite or RBCC (RING, B-box, coiled-coil) protein that interacts with the cytoplasmic tail of the receptor in an activation-independent manner. We have named this protein Nrdp1 for neuregulin receptor degradation protein-1. Northern blotting reveals ubiquitous distribution of Nrdp1 in human adult tissues, but message is particularly prominent in heart, brain, and skeletal muscle. Nrdp1 interacts specifically with the neuregulin receptors ErbB3 and ErbB4 and not with epidermal growth factor receptor or ErbB2. When coexpressed in COS7 cells, Nrdp1 mediates the redistribution of ErbB3 from the cell surface to intracellular compartments and induces the suppression of ErbB3 and ErbB4 receptor levels but not epidermal growth factor receptor or ErbB2 levels. A putative dominant-negative form of Nrdp1 potentiates neuregulin-stimulated Erk1/2 activity in transfected MCF7 breast tumor cells. Our observations suggest that Nrdp1 may act to regulate steady-state cell surface neuregulin receptor levels, thereby influencing the efficiency of neuregulin signaling.
Collapse
Affiliation(s)
- A John Diamonti
- Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abdullah JM, Jing X, Spassov DS, Nachtman RG, Jurecic R. Cloning and characterization of Hepp, a novel gene expressed preferentially in hematopoietic progenitors and mature blood cells. Blood Cells Mol Dis 2001; 27:667-76. [PMID: 11482882 DOI: 10.1006/bcmd.2001.0434] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Through differential screening of mouse hematopoietic stem cell (HSC) and progenitor-subtracted cDNA libraries we have identified a progenitor cell-specific transcript that represents a novel gene, named Hepp (hematopoietic progenitor protein). The mouse Hepp gene encodes a protein of 237 amino acids with no detectable known functional domains or motifs. Lack of invertebrate orthologs and a high degree of evolutionary conservation of the peptide sequence in vertebrate species (zebrafish, mouse, human) suggest that the Hepp gene could have conserved although as yet unknown function in vertebrates. Mouse Hepp shows a restricted expression pattern in adult tissues and is transcribed at a very low level in heart, lung, spleen, and thymus and at a higher level in muscle. During embryonic hematopoiesis Hepp is not expressed in mouse fetal liver HSC (Sca-1(+)c-kit(+)AA4.1(+)Lin(-) cells), but is abundantly transcribed in the population of hematopoietic progenitors (AA4.1(-) cells). Similarly, during adult hematopoiesis Hepp is not transcribed in the highly enriched population of bone marrow HSC (Rh-123(low)Sca-1(+)c-kit(+)Lin(-) cells), but its expression is upregulated as a greater heterogeneous population of bone marrow HSC (Lin(-)Sca-1(+) cells) differentiates into progenitors (Lin(-)Sca-1(-) cells) and more mature lymphoid and myeloid cell types. A restricted pattern of expression in adult tissues and preferential expression in both fetal and adult hematopoietic progenitors and mature blood cells suggest that Hepp could be involved in molecular regulation of HSC and progenitor cell lineage commitment and differentiation.
Collapse
Affiliation(s)
- J M Abdullah
- Department of Microbiology and Immunology, University of Miami School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|