1
|
Nautiyal M, De Graef S, Pang L, Gadakh B, Strelkov SV, Weeks SD, Van Aerschot A. Comparative analysis of pyrimidine substituted aminoacyl-sulfamoyl nucleosides as potential inhibitors targeting class I aminoacyl-tRNA synthetases. Eur J Med Chem 2019; 173:154-166. [PMID: 30995568 DOI: 10.1016/j.ejmech.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyse the ATP-dependent coupling of an amino acid to its cognate tRNA. Being vital for protein translation aaRSs are considered a promising target for the development of novel antimicrobial agents. 5'-O-(N-aminoacyl)-sulfamoyl adenosine (aaSA) is a non-hydrolysable analogue of the aaRS reaction intermediate that has been shown to be a potent inhibitor of this enzyme family but is prone to chemical instability and enzymatic modification. In an attempt to improve the molecular properties of this scaffold we synthesized a series of base substituted aaSA analogues comprising cytosine, uracil and N3-methyluracil targeting leucyl-, tyrosyl- and isoleucyl-tRNA synthetases. In in vitro assays seven out of the nine inhibitors demonstrated Kiapp values in the low nanomolar range. To complement the biochemical studies, X-ray crystallographic structures of Neisseria gonorrhoeae leucyl-tRNA synthetase and Escherichia coli tyrosyl-tRNA synthetase in complex with the newly synthesized compounds were determined. These highlighted a subtle interplay between the base moiety and the target enzyme in defining relative inhibitory activity. Encouraged by this data we investigated if the pyrimidine congeners could escape a natural resistance mechanism, involving acetylation of the amine of the aminoacyl group by the bacterial N-acetyltransferases RimL and YhhY. With RimL the pyrimidine congeners were less susceptible to inactivation compared to the equivalent aaSA, whereas with YhhY the converse was true. Combined the various insights resulting from this study will pave the way for the further rational design of aaRS inhibitors.
Collapse
Affiliation(s)
- Manesh Nautiyal
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium
| | - Steff De Graef
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Luping Pang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium; Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Bharat Gadakh
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Stephen D Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium.
| |
Collapse
|
2
|
Tieu W, Polyak SW, Paparella AS, Yap MY, Soares da Costa TP, Ng B, Wang G, Lumb R, Bell JM, Turnidge JD, Wilce MCJ, Booker GW, Abell AD. Improved Synthesis of Biotinol-5'-AMP: Implications for Antibacterial Discovery. ACS Med Chem Lett 2015; 6:216-20. [PMID: 25699152 DOI: 10.1021/ml500475n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
An improved synthesis of biotinol-5'-AMP, an acyl-AMP mimic of the natural reaction intermediate of biotin protein ligase (BPL), is reported. This compound was shown to be a pan inhibitor of BPLs from a series of clinically important bacteria, particularly Staphylococcus aureus and Mycobacterium tuberculosis, and kinetic analysis revealed it to be competitive against the substrate biotin. Biotinol-5'-AMP also exhibits antibacterial activity against a panel of clinical isolates of S. aureus and M. tuberculosis with MIC values of 1-8 and 0.5-2.5 μg/mL, respectively, while being devoid of cytotoxicity to human HepG2 cells.
Collapse
Affiliation(s)
- William Tieu
- School
of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ashleigh S. Paparella
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Min Y. Yap
- School
of Biomedical Science, Monash University, Victoria 3800, Australia
| | - Tatiana P. Soares da Costa
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Belinda Ng
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Geqing Wang
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Richard Lumb
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | - Jan M. Bell
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | - John D. Turnidge
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | | | - Grant W. Booker
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- School
of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
3
|
Dubois DY, Blais SP, Huot JL, Lapointe J. A C-truncated glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry 2009; 48:6012-21. [PMID: 19496540 DOI: 10.1021/bi801690f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Faithful translation of the genetic code is mainly based on the specificity of tRNA aminoacylation catalyzed by aminoacyl-tRNA synthetases. These enzymes are comprised of a catalytic core and several appended domains. Bacterial glutamyl-tRNA synthetases (GluRS) contain five structural domains, the two distal ones interacting with the anticodon arm of tRNA(Glu). Thermus thermophilus GluRS requires the presence of tRNA(Glu) to bind ATP in the proper site for glutamate activation. In order to test the role of these two distal domains in this mechanism, we characterized the in vitro properties of the C-truncated Escherichia coli GluRSs N(1-313) and N(1-362), containing domains 1-3 and 1-4, respectively, and of their N-truncated complements GluRSs C(314-471) (containing domains 4 and 5) and C(363-471) (free domain 5). These C-truncated GluRSs are soluble, aminoacylate specifically tRNA(Glu), and require the presence of tRNA(Glu) to catalyze the activation of glutamate, as does full-length GluRS(1-471). The k(cat) of tRNA glutamylation catalyzed by N(1-362) is about 2000-fold lower than that catalyzed by the full-length E. coli GluRS(1-471). The addition of free domain 5 (C(363-471)) to N(1-362) strongly stimulates this k(cat) value, indicating that covalent connectivity between N(1-362) and domain 5 is not required for GluRS activity; the hyperbolic relationship between domain 5 concentration and this stimulation indicates that these proteins and tRNA(Glu) form a productive complex with a K(d) of about 100 microM. The K(d) values of tRNA(Glu) interactions with the full-length GluRS and with the truncated GluRSs N(1-362) and free domain 5 are 0.48, 0.11, and about 1.2 microM, respectively; no interaction was detected between these two complementary truncated GluRSs. These results suggest that in the presence of these truncated GluRSs, tRNA(Glu) is positioned for efficient aminoacylation by the two following steps: first, it interacts with GluRS N(1-362) via its acceptor-TPsiC stem loop domain and then with free domain 5 via its anticodon-Dstem-biloop domain, which appeared later during evolution. On the other hand, tRNA glutamylation catalyzed by N(1-313) is not stimulated by its complement C(314-471), revealing the importance of the covalent connectivity between domains 3 and 4 for GluRS aminoacylation activity. The K(m) values of N(1-313) and N(1-362) for each of their substrates are similar to those of full-length GluRS. These C-truncated GluRSs recognize only tRNA(Glu). These results confirm the modular nature of GluRS and support the model of a "recent" fusion of domains 4 and 5 to a proto-GluRS containing the catalytic domain and able to recognize its tRNA substrate(s).
Collapse
Affiliation(s)
- Daniel Y Dubois
- Regroupement quebecois de Recherche sur la Fonction, la Structure et l'Ingenierie des Proteines (PROTEO), Departement de Biochimie et de Microbiologie, Universite Laval, Quebec, Quebec, Canada G1K 7P4
| | | | | | | |
Collapse
|
4
|
Paravisi S, Fumagalli G, Riva M, Morandi P, Morosi R, Konarev PV, Petoukhov MV, Bernier S, Chênevert R, Svergun DI, Curti B, Vanoni MA. Kinetic and mechanistic characterization of Mycobacterium tuberculosis glutamyl-tRNA synthetase and determination of its oligomeric structure in solution. FEBS J 2009; 276:1398-417. [PMID: 19187240 DOI: 10.1111/j.1742-4658.2009.06880.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mycobacterium tuberculosis glutamyl-tRNA synthetase (Mt-GluRS), encoded by Rv2992c, was overproduced in Escherichia coli cells, and purified to homogeneity. It was found to be similar to the other well-characterized GluRS, especially the E. coli enzyme, with respect to the requirement for bound tRNA(Glu) to produce the glutamyl-AMP intermediate, and the steady-state kinetic parameters k(cat) (130 min(-1)) and K(M) for tRNA (0.7 microm) and ATP (78 microm), but to differ by a one order of magnitude higher K(M) value for L-Glu (2.7 mm). At variance with the E. coli enzyme, among the several compounds tested as inhibitors, only pyrophosphate and the glutamyl-AMP analog glutamol-AMP were effective, with K(i) values in the mum range. The observed inhibition patterns are consistent with a random binding of ATP and L-Glu to the enzyme-tRNA complex. Mt-GluRS, which is predicted by genome analysis to be of the non-discriminating type, was not toxic when overproduced in E. coli cells indicating that it does not catalyse the mischarging of E. coli tRNA(Gln) with L-Glu and that GluRS/tRNA(Gln) recognition is species specific. Mt-GluRS was significantly more sensitive than the E. coli form to tryptic and chymotryptic limited proteolysis. For both enzymes chymotrypsin-sensitive sites were found in the predicted tRNA stem contact domain next to the ATP binding site. Mt-GluRS, but not Ec-GluRS, was fully protected from proteolysis by ATP and glutamol-AMP. Small-angle X-ray scattering showed that, at variance with the E. coli enzyme that is strictly monomeric, the Mt-GluRS monomer is present in solution in equilibrium with the homodimer. The monomer prevails at low protein concentrations and is stabilized by ATP but not by glutamol-AMP. Inspection of small-angle X-ray scattering-based models of Mt-GluRS reveals that both the monomer and the dimer are catalytically active. By using affinity chromatography and His(6)-tagged forms of either GluRS or glutamyl-tRNA reductase as the bait it was shown that the M. tuberculosis proteins can form a complex, which may control the flux of Glu-tRNA(Glu) toward protein or tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Stefano Paravisi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lainé C, Mocquet C, Lemiègre L, Benvegnu T. Regioselective synthesis of folic acid conjugates from diether-type archaeal lipid analogues. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. J Mol Biol 2008; 381:1224-37. [PMID: 18602926 DOI: 10.1016/j.jmb.2008.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/13/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Glutamyl-queuosine tRNA(Asp) synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNA(Asp). Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNA(Glu), Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3' accepting end of the cognate tRNA(Glu), Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNA(Asp). In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS.Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNA(Asp) among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNA(Asp) that determine recognition by Glu-Q-RS. The analyses made on tRNA(Asp) and tRNA(Asn) show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.
Collapse
|
7
|
Sekine SI, Shichiri M, Bernier S, Chênevert R, Lapointe J, Yokoyama S. Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure 2007; 14:1791-9. [PMID: 17161369 DOI: 10.1016/j.str.2006.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
Glutamyl-tRNA synthetase (GluRS) is one of the aminoacyl-tRNA synthetases that require the cognate tRNA for specific amino acid recognition and activation. We analyzed the role of tRNA in amino acid recognition by crystallography. In the GluRS*tRNA(Glu)*Glu structure, GluRS and tRNA(Glu) collaborate to form a highly complementary L-glutamate-binding site. This collaborative site is functional, as it is formed in the same manner in pretransition-state mimic, GluRS*tRNA(Glu)*ATP*Eol (a glutamate analog), and posttransition-state mimic, GluRS*tRNA(Glu)*ESA (a glutamyl-adenylate analog) structures. In contrast, in the GluRS*Glu structure, only GluRS forms the amino acid-binding site, which is defective and accounts for the binding of incorrect amino acids, such as D-glutamate and L-glutamine. Therefore, tRNA(Glu) is essential for formation of the completely functional binding site for L-glutamate. These structures, together with our previously described structures, reveal that tRNA plays a crucial role in accurate positioning of both L-glutamate and ATP, thus driving the amino acid activation.
Collapse
Affiliation(s)
- Shun-ichi Sekine
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Bernier S, Akochy PM, Lapointe J, Chênevert R. Synthesis and aminoacyl-tRNA synthetase inhibitory activity of aspartyl adenylate analogs. Bioorg Med Chem 2005; 13:69-75. [PMID: 15582453 DOI: 10.1016/j.bmc.2004.09.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
Three nonhydrolyzable aspartyl adenylate analogs have been prepared and tested as inhibitors of E. coli aspartyl-tRNA synthetase. 5'-O-[N-(L-Aspartyl)sulfamoyl]adenosine is a potent competitive inhibitor (K(i) = 15 nM) whereas L-aspartol adenylate is a weaker inhibitor (K(i) = 45 microM) with respect to aspartic acid. The corresponding ketomethylphosphonate (a novel isosteric replacement) is also a strong inhibitor (K(i) = 123 nM).
Collapse
Affiliation(s)
- Stéphane Bernier
- Département de chimie, Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Faculté des sciences et de génie, Université Laval, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
9
|
Beaulieu D, Ohemeng KA. Patents on bacterial tRNA synthetase inhibitors: January 1996 to March 1999. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.9.8.1021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C, Pagot F, Salomoni A, Grisel S, Vincentelli R, Bignon C, Lapointe J, Giegé R, Cambillau C. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. J Mol Biol 2004; 337:273-83. [PMID: 15003446 DOI: 10.1016/j.jmb.2004.01.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/08/2004] [Accepted: 01/08/2004] [Indexed: 11/23/2022]
Abstract
In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame products of unknown function, we have determined the structure of YadB at 1.5A using molecular replacement. The YadB protein is 298 amino acid residues long and displays 34% sequence identity with E.coli glutamyl-tRNA synthetase (GluRS). It is much shorter than GluRS, which contains 468 residues, and lacks the complete domain interacting with the tRNA anticodon loop. As E.coli GluRS, YadB possesses a Zn2+ located in the putative tRNA acceptor stem-binding domain. The YadB cluster uses cysteine residues as the first three zinc ligands, but has a weaker tyrosine ligand at the fourth position. It shares with canonical amino acid RNA synthetases a major functional feature, namely activation of the amino acid (here glutamate). It differs, however, from GluRSs by the fact that the activation step is tRNA-independent and that it does not catalyze attachment of the activated glutamate to E.coli tRNAGlu, but to another, as yet unknown tRNA. These results suggest thus a novel function, distinct from that of GluRSs, for the yadB gene family.
Collapse
Affiliation(s)
- Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS and Universités d'Aix-Marseille I and II, 31 chemin J. Aiguier, F-13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dubois DY, Blaise M, Becker HD, Campanacci V, Keith G, Giegé R, Cambillau C, Lapointe J, Kern D. An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Proc Natl Acad Sci U S A 2004; 101:7530-5. [PMID: 15096594 PMCID: PMC419640 DOI: 10.1073/pnas.0401634101] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The product of the Escherichia coli yadB gene is homologous to the N-terminal part of bacterial glutamyl-tRNA synthetases (GluRSs), including the Rossmann fold with the acceptor-binding domain and the stem-contact fold. This GluRS-like protein, which lacks the anticodon-binding domain, does not use tRNA(Glu) as substrate in vitro nor in vivo, but aminoacylates tRNA(Asp) with glutamate. The yadB gene is expressed in wild-type E. coli as an operon with the dksA gene, which encodes a protein involved in the general stress response by means of its action at the translational level. The fate of the glutamylated tRNA(Asp) is not known, but its incapacity to bind elongation factor Tu suggests that it is not involved in ribosomal protein synthesis. Genes homologous to yadB are present only in bacteria, mostly in Proteobacteria. Sequence alignments and phylogenetic analyses show that the YadB proteins form a distinct monophyletic group related to the bacterial and organellar GluRSs (alpha-type GlxRSs superfamily) with ubiquitous function as suggested by the similar functional properties of the YadB homologue from Neisseria meningitidis.
Collapse
Affiliation(s)
- Daniel Y Dubois
- Département de Biochimie et Microbiologie, Faculté de Sciences et de Génie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Quebec, QC, Canada G1K 7P4
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim S, Lee SW, Choi EC, Choi SY. Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol 2003; 61:278-88. [PMID: 12743756 DOI: 10.1007/s00253-003-1243-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 01/02/2003] [Accepted: 01/03/2003] [Indexed: 10/25/2022]
Abstract
The emergence of multidrug-resistant strains of pathogenic microorganisms and the slow progress in new antibiotic development has led in recent years to a resurgence of infectious diseases that threaten the well-being of humans. The result of many microorganisms becoming immune to major antibiotics means that fighting off infection by these pathogens is more difficult. The best strategy to get around drug resistance is to discover new drug targets, taking advantage of the abundant information that was recently obtained from genomic and proteomic research, and explore them for drug development. In this regard, aminoacyl-tRNA synthetases (ARSs) provide a promising platform to develop novel antibiotics that show no cross-resistance to other classical antibiotics. During the last few years there has been a comprehensive attempt to find the compounds that can specifically target ARSs and inhibit bacterial growth. In this review, the current status in the development of ARS inhibitors will be briefly summarized, based on their chemical structures and working mechanisms.
Collapse
Affiliation(s)
- S Kim
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, San 56-1, 151-742 Shillim-dong, Kwanak-gu, Seoul, Korea.
| | | | | | | |
Collapse
|
13
|
Bernier S, Dubois DY, Therrien M, Lapointe J, Chênevert R. Synthesis of glutaminyl adenylate analogues that are inhibitors of glutaminyl-tRNA synthetase. Bioorg Med Chem Lett 2000; 10:2441-4. [PMID: 11078196 DOI: 10.1016/s0960-894x(00)00478-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutaminol adenylate 5 is a competitive inhibitor of glutaminyl-tRNA synthetase with respect to glutamine (Ki = 280 nM) and to ATP (Ki = 860 nM). The corresponding methyl phosphate ester 4 is a weaker inhibitor (Ki approximately 10 microM) with respect to glutamine.
Collapse
Affiliation(s)
- S Bernier
- Département de Chimie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines (CREFSIP), Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
14
|
Forrest AK, Jarvest RL, Mensah LM, O'Hanlon PJ, Pope AJ, Sheppard RJ. Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases. Bioorg Med Chem Lett 2000; 10:1871-4. [PMID: 10969988 DOI: 10.1016/s0960-894x(00)00360-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aminoalkyl adenylates and aminoacyl sulfamates derived from arginine, histidine and threonine, have been prepared and tested as inhibitors of their cognate Staphylococcus aureus aminoacyl tRNA synthetases. The arginyl derivatives were both potent nanomolar inhibitors of the Class I arginyl tRNA synthetase whereas for the Class II histidyl and threonyl tRNA synthetases, the acyl sulfamates were potent inhibitors but the adenylates had very little affinity.
Collapse
Affiliation(s)
- A K Forrest
- SmithKline Beecham Pharmaceuticals, Discovery Research, Harlow, Essex, UK
| | | | | | | | | | | |
Collapse
|
15
|
Brown P, Richardson CM, Mensah LM, O'Hanlon PJ, Osborne NF, Pope AJ, Walker G. Molecular recognition of tyrosinyl adenylate analogues by prokaryotic tyrosyl tRNA synthetases. Bioorg Med Chem 1999; 7:2473-85. [PMID: 10632057 DOI: 10.1016/s0968-0896(99)00192-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modelling and synthetic studies have been carried out on tyrosinyl adenylate and analogues to probe the interactions seen in the active site of the X-ray crystal structure of tyrosyl tRNA synthetase from Bacillus stearothermophilus, and to search for new inhibitors of this enzyme. Micromolar and sub-micromolar inhibitors of tyrosyl tRNA synthetases from both B. stearothermophilus and Staphylococcus aureus have been synthesised. The importance of the adenine ring to the binding of tyrosinyl adenylate to the enzyme, and the importance of water-mediated hydrogen bonding interactions, have been highlighted. The inhibition data has been further supported by homology modelling with the S. aureus enzyme, and by ligand docking studies.
Collapse
Affiliation(s)
- P Brown
- SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Harlow, Essex, UK
| | | | | | | | | | | | | |
Collapse
|