1
|
Lönnberg H. Structural modifications as tools in mechanistic studies of the cleavage of RNA phosphodiester linkages. CHEM REC 2022; 22:e202200141. [PMID: 35832010 DOI: 10.1002/tcr.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Indexed: 11/06/2022]
Abstract
The cleavage of RNA phosphodiester bonds by RNase A and hammerhead ribozyme at neutral pH fundamentally differs from the spontaneous reactions of these bonds under the same conditions. While the predominant spontaneous reaction is isomerization of the 3',5'-phosphodiester linkages to their 2',5'-counterparts, this reaction has never been reported to compete with the enzymatic cleavage reaction, not even as a minor side reaction. Comparative kinetic measurements with structurally modified di-nucleoside monophosphates and oligomeric phosphodiesters have played an important role in clarification of mechanistic details of the buffer-independent and buffer-catalyzed reactions. More recently, heavy atom isotope effects and theoretical calculations have refined the picture. The primary aim of all these studies has been to form a solid basis for mechanistic analyses of the action of more complicated catalytic machineries. In other words, to contribute to conception of a plausible unified picture of RNA cleavage by biocatalysts, such as RNAse A, hammerhead ribozyme and DNAzymes. In addition, structurally modified trinucleoside monophosphates as transition state models for Group I and II introns have clarified some features of the action of large ribozymes.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FI-20014 University of, Turku
| |
Collapse
|
2
|
Mikkola S, Lönnberg T, Lönnberg H. Phosphodiester models for cleavage of nucleic acids. Beilstein J Org Chem 2018; 14:803-837. [PMID: 29719577 PMCID: PMC5905247 DOI: 10.3762/bjoc.14.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
3
|
Harris ME, Piccirilli JA, York DM. Integration of kinetic isotope effect analyses to elucidate ribonuclease mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1801-8. [PMID: 25936517 DOI: 10.1016/j.bbapap.2015.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 01/21/2023]
Abstract
The well-studied mechanism of ribonuclease A is believed to involve concerted general acid-base catalysis by two histidine residues, His12 and His119. The basic features of this mechanism are often cited to explain rate enhancement by both protein and RNA enzymes that catalyze RNA 2'-O-transphosphorylation. Recent kinetic isotope effect analyses and computational studies are providing a more chemically detailed description of the mechanism of RNase A and the rate limiting transition state. Overall, the results support an asynchronous mechanism for both solution and ribonuclease catalyzed reactions in which breakdown of a transient dianoinic phosphorane intermediate by 5'OP bond cleavage is rate limiting. Relative to non-enzymatic reactions catalyzed by specific base, a smaller KIE on the 5'O leaving group and a less negative βLG are observed for RNase A catalysis. Quantum mechanical calculations consistent with these data support a model in which electrostatic and H-bonding interactions with the non-bridging oxygens and proton transfer from His119 render departure of the 5'O less advanced and stabilize charge buildup in the transition state. Both experiment and computation indicate advanced 2'OP bond formation in the rate limiting transition state. However, this feature makes it difficult to resolve the chemical steps involved in 2'O activation. Thus, modeling the transition state for RNase A catalysis underscores those elements of its chemical mechanism that are well resolved, as well as highlighting those where ambiguity remains. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.
Collapse
Affiliation(s)
- Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44118, United States.
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States; Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Darrin M York
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, United States; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
4
|
Kellerman DL, York DM, Piccirilli JA, Harris ME. Altered (transition) states: mechanisms of solution and enzyme catalyzed RNA 2'-O-transphosphorylation. Curr Opin Chem Biol 2014; 21:96-102. [PMID: 25023967 DOI: 10.1016/j.cbpa.2014.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
Although there have been great strides in defining the mechanisms of RNA strand cleavage by 2'-O-transphosphorylation, long-standing questions remain. How do different catalytic modes such as acid/base and metal ion catalysis influence transition state charge distribution? Does the large rate enhancement characteristic of biological catalysis result in different transition states relative to solution reactions? Answering these questions is important for understanding biological catalysis in general, and revealing principles for designing small molecule inhibitors. Recent application of linear free energy relationships and kinetic isotope effects together with multi-scale computational simulations are providing tentative answers to these questions for this fundamentally important class of phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Daniel L Kellerman
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Darrin M York
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, NJ, United States
| | - Joseph A Piccirilli
- Department of Biochemistry & Molecular Biology, and Chemistry, University of Chicago, Chicago, IL, United States
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
5
|
Radak BK, Harris ME, York DM. Molecular simulations of RNA 2'-O-transesterification reaction models in solution. J Phys Chem B 2013; 117:94-103. [PMID: 23214417 PMCID: PMC3574632 DOI: 10.1021/jp3084277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We employ quantum mechanical/molecular mechanical umbrella sampling simulations to probe the free energy surfaces of a series of increasingly complex reaction models of RNA 2'-O-transesterification in aqueous solution under alkaline conditions. Such models are valuable for understanding the uncatalyzed processes underlying catalytic cleavage of the phosphodiester backbone of RNA, a reaction of fundamental importance in biology. The chemically reactive atoms are modeled by the AM1/d-PhoT quantum model for phosphoryl transfer, whereas the aqueous solvation environment is modeled with a molecular mechanics force field. Several simulation protocols were compared that used different ionic conditions and force field models. The results provide insight into how variation of the structural environment of the nucleophile and leaving group affects the free energy profile for the transesterification reaction. Results for a simple RNA backbone model are compared with recent experiments by Harris et al. on the specific base-catalyzed cleavage of a UpG dinucleotide. The calculated and measured free energies of activation match extremely well (ΔF(‡) = 19.9-20.8 vs 19.9 kcal/mol). Solvation is seen to play a crucial role and is characterized by a network of hydrogen bonds that envelopes the pentacoordinate dianionic phosphorane transition state and provides preferential stabilization relative to the reactant state.
Collapse
Affiliation(s)
- Brian K. Radak
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087 USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431 USA
| | - Michael E. Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Darrin M. York
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087 USA
| |
Collapse
|
6
|
Cuchillo CM, Nogués MV, Raines RT. Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry 2011; 50:7835-41. [PMID: 21838247 DOI: 10.1021/bi201075b] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fifty years ago, the group of Tony Mathias and Bob Rabin at University College London deduced the first mechanism for catalysis by an enzyme, ribonuclease [Findlay, D., Herries, D. G., Mathias, A. P., Rabin, B. R., and Ross, C. A. (1961) Nature 190, 781-784]. Here, we celebrate this historic accomplishment by surveying knowledge of enzymology and protein science at that time, facts that led to the formulation of the mechanism, criticisms and alternative mechanisms, data that supported the proposed mechanism, and some of the refinements that have since provided a more precise picture of catalysis of RNA cleavage by ribonucleases. The Mathias and Rabin mechanism has appeared in numerous textbooks, monographs, and reviews and continues to have a profound impact on biochemistry.
Collapse
Affiliation(s)
- Claudi M Cuchillo
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
7
|
Harris ME, Dai Q, Gu H, Kellerman DL, Piccirilli JA, Anderson VE. Kinetic isotope effects for RNA cleavage by 2'-O- transphosphorylation: nucleophilic activation by specific base. J Am Chem Soc 2010; 132:11613-21. [PMID: 20669950 DOI: 10.1021/ja103550e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better understand the interactions between catalysts and transition states during RNA strand cleavage, primary (18)O kinetic isotope effects (KIEs) and solvent D(2)O isotope effects were measured to probe the mechanism of base-catalyzed 2'-O-transphosphorylation of the RNA dinucleotide 5'-UpG-3'. The observed (18)O KIEs for the nucleophilic 2'-O and in the 5'-O leaving group at pH 14 are both large relative to reactions of phosphodiesters with good leaving groups, indicating that the reaction catalyzed by hydroxide has a transition state (TS) with advanced phosphorus-oxygen bond fission to the leaving group ((18)k(LG) = 1.034 +/- 0.004) and phosphorus-nucleophile bond formation ((18)k(NUC) = 0.984 +/- 0.004). A breakpoint in the pH dependence of the 2'-O-transphosphorylation rate to a pH independent phase above pH 13 has been attributed to the pK(a) of the 2'-OH nucleophile. A smaller nucleophile KIE is observed at pH 12 ((18)k(NUC) = 0.995 +/- 0.004) that is interpreted as the combined effect of the equilibrium isotope effect (ca. 1.02) on deprotonation of the 2'-hydroxyl nucleophile and the intrinsic KIE on the nucleophilic addition step (ca. 0.981). An alternative mechanism in which the hydroxide ion acts as a general base is considered unlikely given the lack of a solvent deuterium isotope effect above the breakpoint in the pH versus rate profile. These results represent the first direct analysis of the transition state for RNA strand cleavage. The primary (18)O KIE results and the lack of a kinetic solvent deuterium isotope effect together provide strong evidence for a late transition state and 2'-O nucleophile activation by specific base catalysis.
Collapse
Affiliation(s)
- Michael E Harris
- RNA Center and Departmet of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44118, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
9
|
Humphry T, Iyer S, Iranzo O, Morrow JR, Richard JP, Paneth P, Hengge AC. Altered transition state for the reaction of an RNA model catalyzed by a dinuclear zinc(II) catalyst. J Am Chem Soc 2009; 130:17858-66. [PMID: 19053445 DOI: 10.1021/ja8059864] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclization of 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP) catalyzed by the dinuclear zinc complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (1) proceeds by a transition state that is different from that of the uncatalyzed reaction. Kinetic isotope effects (KIEs) measured in the nucleophilic atom and in the leaving group show that the uncatalyzed cyclization has a transition state (TS) with little phosphorus-oxygen bond fission to the leaving group ((18)k(lg) = 1.0064 +/- 0.0009 and (15)k = 1.0002 +/- 0.0002) and that nucleophilic bond formation occurs in the rate-determining step ((18)k(nuc) = 1.0326 +/- 0.0008). In the catalyzed reaction, larger leaving group isotope effects ((18)k(lg) = 1.0113 +/- 0.0005 and (15)k = 1.0015 +/- 0.0005) and a smaller nucleophile isotope effect ((18)k(nuc) = 1.0116 +/- 0.0010) indicate a later TS with greater leaving group bond fission and greater nucleophilic bond formation. These observed nucleophile KIEs are the combined effect of the equilibrium effect on deprotonation of the 2'-hydroxyl nucleophile and the KIE on the nucleophilic step. An EIE of 1.0245 for deprotonation of the hydroxyl group of HPpNP was obtained computationally. The different KIEs for the two reactions indicate that the effective catalysis by 1 is accompanied by selection for an altered transition state, presumably arising from the preferential stabilization by the catalyst of charge away from the nucleophile and toward the leaving group. These results demonstrate the potential for a catalyst using biologically relevant metal ions to select for an altered transition state for phosphoryl transfer.
Collapse
Affiliation(s)
- Tim Humphry
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Iyer S, Hengge AC. The effects of sulfur substitution for the nucleophile and bridging oxygen atoms in reactions of hydroxyalkyl phosphate esters. J Org Chem 2008; 73:4819-29. [PMID: 18533704 PMCID: PMC2575009 DOI: 10.1021/jo8002198] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of sulfur substitution on the reactions of hydroxyalkyl phosphate esters are examined. These compounds are models for the intramolecular phosphoryl transfer reaction involved in the cleavage of the internucleotide bond in RNA. The models studied here lack the ribose ring and their conformational flexibility results in greater stability and the availability of different reaction pathways. Sulfur in the nucleophilic position shows no nucleophilic reaction at phosphorus, instead rapidly attacking at the beta carbon atom, forming thiirane with departure of a phosphomonoester. Sulfur substitution at either of the two bridging positions leads to cleavage of the diester via formation of a cyclic intermediate, but with significant rate acceleration when compared to the oxygen analogues. The bridge-substituted models react substantially slower than the analogous ribose compounds with sulfur substitution at comparable positions. Kinetic isotope effects reveal significant differences in the transition state depending on which bridging position sulfur occupies. When sulfur is in the scissile bridging position, a highly associative transition state is indicated, with a largely formed bond to the nucleophile and the scissile P-S bond is little changed. When sulfur occupies the other bridging position, the isotope effects imply a very early transition state in a concerted reaction.
Collapse
Affiliation(s)
- Subashree Iyer
- Utah State University, Department of Chemistry and Biochemistry, Logan, Utah 84322-0300, USA
| | | |
Collapse
|
11
|
Lonnberg H, Stromberg R, Williams A. Compelling evidence for a stepwise mechanism of the alkaline cyclisation of uridine 3'-phosphate esters. Org Biomol Chem 2004; 2:2165-7. [PMID: 15280948 DOI: 10.1039/b406926a] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Bronsted graph with a convex break at pK(a)(Lg)= 12.58 provides compelling evidence for an intermediate in the alkaline cyclisation of uridine 3'-phosphate esters. The transient pentacoordinated oxyphosphorane dianion intermediate collapses to reactant and cyclic uridine 2',3'-monophosphate faster than it can pseudo-rotate and isomerise to the 2'-isomer.
Collapse
Affiliation(s)
- Harri Lonnberg
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland.
| | | | | |
Collapse
|
12
|
Cassano AG, Anderson VE, Harris ME. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects. Biopolymers 2004; 73:110-29. [PMID: 14691944 DOI: 10.1002/bip.10517] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nucleotides of DNA and RNA are joined by phosphodiester linkages whose synthesis and hydrolysis are catalyzed by numerous essential enzymes. Two prominent mechanisms have been proposed for RNA and protein enzyme catalyzed cleavage of phosphodiester bonds in RNA: (a) intramolecular nucleophilic attack by the 2'-hydroxyl group adjacent to the reactive phosphate; and (b) intermolecular nucleophilic attack by hydroxide, or other oxyanion. The general features of these two mechanisms have been established by physical organic chemical analyses; however, a more detailed understanding of the transition states of these reactions is emerging from recent kinetic isotope effect (KIE) studies. The recent data show interesting differences between the chemical mechanisms and transition state structures of the inter- and intramolecular reactions, as well as provide information on the impact of metal ion, acid, and base catalysis on these mechanisms. Importantly, recent nonenzymatic model studies show that interactions with divalent metal ions, an important feature of many phosphodiesterase active sites, can influence both the mechanism and transition state structure of nonenzymatic phosphodiester cleavage. Such detailed investigations are important because they mimic catalytic strategies employed by both RNA and protein phosphodiesterases, and so set the stage for explorations of enzyme-catalyzed transition states. Application of KIE analyses for this class of enzymes is just beginning, and several important technical challenges remain to be overcome. Nonetheless, such studies hold great promise since they will provide novel insights into the role of metal ions and other active site interactions.
Collapse
Affiliation(s)
- Adam G Cassano
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | | | | |
Collapse
|