1
|
Sani A, Tian Y, Shah S, Khan MI, Abdurrahman HR, Zha G, Zhang Q, Liu W, Abdullahi IL, Wang Y, Cao C. Deep learning ResNet34 model-assisted diagnosis of sickle cell disease via microcolumn isoelectric focusing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6517-6528. [PMID: 39248285 DOI: 10.1039/d4ay01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Traditional methods for sickle cell disease (SCD) screening can be inaccurate and misleading, and the early and accurate diagnosis of SCD is crucial for effective management and treatment. Although microcolumn isoelectric focusing (mIEF) is effective, the hemoglobinopathies must be accurately identified, wherein skilled personnel are required to analyse the bands in mIEF. Further automating and standardizing the diagnostic methods via AI to identify abnormal Hbs would be a useful endeavor. In this study, we propose a novel approach for SCD diagnosis by integrating the high throughput capability of ResNet34 in image analysis, as a deep learning convolutional neural network, for the precise separation of Hb variants using mIEF. Initially, SCD blood samples were subjected to mIEF and the resulting patterns were then captured as digital images. The sensitivity and specificity of the mIEF analysis were 100% and 97.8%, respectively, with a 99.39% accuracy. Comparison with HPLC showed a strong linear correlation (R2 = 0.9934), good agreement with the Bland-Altman plot (average difference ± 1.96 SD, bias = 9.89%) and a 100% match with the DNA analysis. Subsequently, the mIEF images were then input into the ResNet34 model, pre-trained on a large dataset, for feature extraction and classification. The integration of ResNet34 with mIEF demonstrated promising results in terms of precision (90.1%) and accuracy in distinguishing between the various SCD conditions. Overall, the proposed method offers a more effective, automated, and reduced cost approach for SCD diagnosis, which could potentially streamline diagnostic workflows and mitigate the subjectivity and variability inherent in manual assessments.
Collapse
Affiliation(s)
- Ali Sani
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Saud Shah
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ibrahim Lawal Abdullahi
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano, 3011, Nigeria
| | - Yuxin Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Li W, Li J, Sarma KV, Ho KC, Shen S, Knudsen BS, Gertych A, Arnold CW. Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:945-954. [PMID: 30334752 PMCID: PMC6497079 DOI: 10.1109/tmi.2018.2875868] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Prostate cancer is the most common and second most deadly form of cancer in men in the United States. The classification of prostate cancers based on Gleason grading using histological images is important in risk assessment and treatment planning for patients. Here, we demonstrate a new region-based convolutional neural network framework for multi-task prediction using an epithelial network head and a grading network head. Compared with a single-task model, our multi-task model can provide complementary contextual information, which contributes to better performance. Our model is achieved a state-of-the-art performance in epithelial cells detection and Gleason grading tasks simultaneously. Using fivefold cross-validation, our model is achieved an epithelial cells detection accuracy of 99.07% with an average area under the curve of 0.998. As for Gleason grading, our model is obtained a mean intersection over union of 79.56% and an overall pixel accuracy of 89.40%.
Collapse
|
3
|
Kwak JT, Hewitt SM. Multiview boosting digital pathology analysis of prostate cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 142:91-99. [PMID: 28325451 PMCID: PMC8171579 DOI: 10.1016/j.cmpb.2017.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/04/2017] [Accepted: 02/15/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Various digital pathology tools have been developed to aid in analyzing tissues and improving cancer pathology. The multi-resolution nature of cancer pathology, however, has not been fully analyzed and utilized. Here, we develop an automated, cooperative, and multi-resolution method for improving prostate cancer diagnosis. METHODS Digitized tissue specimen images are obtained from 5 tissue microarrays (TMAs). The TMAs include 70 benign and 135 cancer samples (TMA1), 74 benign and 89 cancer samples (TMA2), 70 benign and 115 cancer samples (TMA3), 79 benign and 82 cancer samples (TMA4), and 72 benign and 86 cancer samples (TMA5). The tissue specimen images are segmented using intensity- and texture-based features. Using the segmentation results, a number of morphological features from lumens and epithelial nuclei are computed to characterize tissues at different resolutions. Applying a multiview boosting algorithm, tissue characteristics, obtained from differing resolutions, are cooperatively combined to achieve accurate cancer detection. RESULTS In segmenting prostate tissues, the multiview boosting method achieved≥ 0.97 AUC using TMA1. For detecting cancers, the multiview boosting method achieved an AUC of 0.98 (95% CI: 0.97-0.99) as trained on TMA2 and tested on TMA3, TMA4, and TMA5. The proposed method was superior to single-view approaches, utilizing features from a single resolution or merging features from all the resolutions. Moreover, the performance of the proposed method was insensitive to the choice of the training dataset. Trained on TMA3, TMA4, and TMA5, the proposed method obtained an AUC of 0.97 (95% CI: 0.96-0.98), 0.98 (95% CI: 0.96-0.99), and 0.97 (95% CI: 0.96-0.98), respectively. CONCLUSIONS The multiview boosting method is capable of integrating information from multiple resolutions in an effective and efficient fashion and identifying cancers with high accuracy. The multiview boosting method holds a great potential for improving digital pathology tools and research.
Collapse
Affiliation(s)
- Jin Tae Kwak
- Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea.
| | - Stephen M Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD 20852, USA
| |
Collapse
|
4
|
Kwak JT, Hewitt SM, Kajdacsy-Balla AA, Sinha S, Bhargava R. Automated prostate tissue referencing for cancer detection and diagnosis. BMC Bioinformatics 2016; 17:227. [PMID: 27247129 PMCID: PMC4888626 DOI: 10.1186/s12859-016-1086-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/17/2016] [Indexed: 01/21/2023] Open
Abstract
Background The current practice of histopathology review is limited in speed and accuracy. The current diagnostic paradigm does not fully describe the complex and complicated patterns of cancer. To address these needs, we develop an automated and objective system that facilitates a comprehensive and easy information management and decision-making. We also develop a tissue similarity measure scheme to broaden our understanding of tissue characteristics. Results The system includes a database of previously evaluated prostate tissue images, clinical information and a tissue retrieval process. In the system, a tissue is characterized by its morphology. The retrieval process seeks to find the closest matching cases with the tissue of interest. Moreover, we define 9 morphologic criteria by which a pathologist arrives at a histomorphologic diagnosis. Based on the 9 criteria, true tissue similarity is determined and serves as the gold standard of tissue retrieval. Here, we found a minimum of 4 and 3 matching cases, out of 5, for ~80 % and ~60 % of the queries when a match was defined as the tissue similarity score ≥5 and ≥6, respectively. We were also able to examine the relationship between tissues beyond the Gleason grading system due to the tissue similarity scoring system. Conclusions Providing the closest matching cases and their clinical information with pathologists will help to conduct consistent and reliable diagnoses. Thus, we expect the system to facilitate quality maintenance and quality improvement of cancer pathology. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1086-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Tae Kwak
- Department of Computer Science and Engineering, Sejong University, Seoul, 05006, Korea
| | - Stephen M Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | | | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, 2122 Siebel Center, 201 N. Goodwin Avenue, Urbana, IL, 61801, USA.
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Department of Mechanical Science and Engineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering and University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, 4265 Beckman Institute 405 N. Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Niazi MKK, Zynger DL, Clinton SK, Chen J, Koyuturk M, LaFramboise T, Gurcan M. Visually Meaningful Histopathological Features for Automatic Grading of Prostate Cancer. IEEE J Biomed Health Inform 2016; 21:1027-1038. [PMID: 28113734 DOI: 10.1109/jbhi.2016.2565515] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histopathologic features, particularly Gleason grading system, have contributed significantly to the diagnosis, treatment, and prognosis of prostate cancer for decades. However, prostate cancer demonstrates enormous heterogeneity in biological behavior, thus establishing improved prognostic and predictive markers is particularly important to personalize therapy of men with clinically localized and newly diagnosed malignancy. Many automated grading systems have been developed for Gleason grading but acceptance in the medical community has been lacking due to poor interpretability. To overcome this problem, we developed a set of visually meaningful features to differentiate between low- and high-grade prostate cancer. The visually meaningful feature set consists of luminal and architectural features. For luminal features, we compute: 1) the shortest path from the nuclei to their closest luminal spaces; 2) ratio of the epithelial nuclei to the total number of nuclei. A nucleus is considered an epithelial nucleus if the shortest path between it and the luminal space does not contain any other nucleus; 3) average shortest distance of all nuclei to their closest luminal spaces. For architectural features, we compute directional changes in stroma and nuclei using directional filter banks. These features are utilized to create two subspaces; one for prostate images histopathologically assessed as low grade and the other for high grade. The grade associated with a subspace, which results in the minimum reconstruction error is considered as the prediction for the test image. For training, we utilized 43 regions of interest (ROI) images, which were extracted from 25 prostate whole slide images of The Cancer Genome Atlas (TCGA) database. For testing, we utilized an independent dataset of 88 ROIs extracted from 30 prostate whole slide images. The method resulted in 93.0% and 97.6% training and testing accuracies, respectively, for the spectrum of cases considered. The application of visually meaningful features provided promising levels of accuracy and consistency for grading prostate cancer.
Collapse
|
6
|
Yap CK, Kalaw EM, Singh M, Chong KT, Giron DM, Huang CH, Cheng L, Law YN, Lee HK. Automated image based prominent nucleoli detection. J Pathol Inform 2015; 6:39. [PMID: 26167383 PMCID: PMC4485194 DOI: 10.4103/2153-3539.159232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/07/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction: Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Materials and Methods: Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. Results: The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Conclusions: Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings.
Collapse
Affiliation(s)
- Choon K Yap
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Novena, Singapore
| | - Emarene M Kalaw
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Novena, Singapore ; Department of Pathology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Novena, Singapore
| | - Malay Singh
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Novena, Singapore ; Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, 117417, Novena, Singapore
| | - Kian T Chong
- Department of Urology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Novena, Singapore
| | - Danilo M Giron
- Department of Pathology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Novena, Singapore
| | - Chao-Hui Huang
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Novena, Singapore
| | - Li Cheng
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Novena, Singapore
| | - Yan N Law
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Novena, Singapore
| | - Hwee Kuan Lee
- Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix 138671, Novena, Singapore
| |
Collapse
|
7
|
Peng Y, Jiang Y, Eisengart L, Healy MA, Straus FH, Yang XJ. Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures. J Pathol Inform 2011; 2:33. [PMID: 21845231 PMCID: PMC3153693 DOI: 10.4103/2153-3539.83193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/24/2011] [Indexed: 11/24/2022] Open
Abstract
Background: Identification of individual prostatic glandular structures is an important prerequisite to quantitative histological analysis of prostate cancer with the aid of a computer. We have developed a computer method to segment individual glandular units and to extract quantitative image features, for computer identification of prostatic adenocarcinoma. Methods: Two sets of digital histology images were used: database I (n = 57) for developing and testing the computer technique, and database II (n = 116) for independent validation. The segmentation technique was based on a k-means clustering and a region-growing method. Computer segmentation results were evaluated subjectively and also compared quantitatively against manual gland outlines, using the Jaccard similarity measure. Quantitative features that were extracted from the computer segmentation results include average gland size, spatial gland density, and average gland circularity. Linear discriminant analysis (LDA) was used to combine quantitative image features. Classification performance was evaluated with receiver operating characteristic (ROC) analysis and the area under the ROC curve (AUC). Results: Jaccard similarity coefficients between computer segmentation and manual outlines of individual glands were between 0.63 and 0.72 for non-cancer and between 0.48 and 0.54 for malignant glands, respectively, similar to an interobserver agreement of 0.79 for non-cancer and 0.75 for malignant glands, respectively. The AUC value for the features of average gland size and gland density combined via LDA was 0.91 for database I and 0.96 for database II. Conclusions: Using a computer, we are able to delineate individual prostatic glands automatically and identify prostatic adenocarcinoma accurately, based on the quantitative image features extracted from computer-segmented glandular structures.
Collapse
Affiliation(s)
- Yahui Peng
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
8
|
Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2011; 2011:831278. [PMID: 21461364 PMCID: PMC3065059 DOI: 10.1155/2011/831278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022]
Abstract
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.
Collapse
|
9
|
Kwak JT, Hewitt SM, Sinha S, Bhargava R. Multimodal microscopy for automated histologic analysis of prostate cancer. BMC Cancer 2011; 11:62. [PMID: 21303560 PMCID: PMC3045985 DOI: 10.1186/1471-2407-11-62] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background Prostate cancer is the single most prevalent cancer in US men whose gold standard of diagnosis is histologic assessment of biopsies. Manual assessment of stained tissue of all biopsies limits speed and accuracy in clinical practice and research of prostate cancer diagnosis. We sought to develop a fully-automated multimodal microscopy method to distinguish cancerous from non-cancerous tissue samples. Methods We recorded chemical data from an unstained tissue microarray (TMA) using Fourier transform infrared (FT-IR) spectroscopic imaging. Using pattern recognition, we identified epithelial cells without user input. We fused the cell type information with the corresponding stained images commonly used in clinical practice. Extracted morphological features, optimized by two-stage feature selection method using a minimum-redundancy-maximal-relevance (mRMR) criterion and sequential floating forward selection (SFFS), were applied to classify tissue samples as cancer or non-cancer. Results We achieved high accuracy (area under ROC curve (AUC) >0.97) in cross-validations on each of two data sets that were stained under different conditions. When the classifier was trained on one data set and tested on the other data set, an AUC value of ~0.95 was observed. In the absence of IR data, the performance of the same classification system dropped for both data sets and between data sets. Conclusions We were able to achieve very effective fusion of the information from two different images that provide very different types of data with different characteristics. The method is entirely transparent to a user and does not involve any adjustment or decision-making based on spectral data. By combining the IR and optical data, we achieved high accurate classification.
Collapse
Affiliation(s)
- Jin Tae Kwak
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
10
|
Monaco JP, Tomaszewski JE, Feldman MD, Hagemann I, Moradi M, Mousavi P, Boag A, Davidson C, Abolmaesumi P, Madabhushi A. High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models. Med Image Anal 2010; 14:617-29. [PMID: 20493759 DOI: 10.1016/j.media.2010.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/11/2010] [Accepted: 04/23/2010] [Indexed: 11/25/2022]
Abstract
In this paper we present a high-throughput system for detecting regions of carcinoma of the prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov models (PPMMs), a novel type of Markov random field (MRF). At diagnostic resolution a digitized HS can contain 80Kx70K pixels - far too many for current automated Gleason grading algorithms to process. However, grading can be separated into two distinct steps: (1) detecting cancerous regions and (2) then grading these regions. The detection step does not require diagnostic resolution and can be performed much more quickly. Thus, we introduce a CaP detection system capable of analyzing an entire digitized whole-mount HS (2x1.75cm(2)) in under three minutes (on a desktop computer) while achieving a CaP detection sensitivity and specificity of 0.87 and 0.90, respectively. We obtain this high-throughput by tailoring the system to analyze the HSs at low resolution (8microm per pixel). This motivates the following algorithm: (Step 1) glands are segmented, (Step 2) the segmented glands are classified as malignant or benign, and (Step 3) the malignant glands are consolidated into continuous regions. The classification of individual glands leverages two features: gland size and the tendency for proximate glands to share the same class. The latter feature describes a spatial dependency which we model using a Markov prior. Typically, Markov priors are expressed as the product of potential functions. Unfortunately, potential functions are mathematical abstractions, and constructing priors through their selection becomes an ad hoc procedure, resulting in simplistic models such as the Potts. Addressing this problem, we introduce PPMMs which formulate priors in terms of probability density functions, allowing the creation of more sophisticated models. To demonstrate the efficacy of our CaP detection system and assess the advantages of using a PPMM prior instead of the Potts, we alternately incorporate both priors into our algorithm and rigorously evaluate system performance, extracting statistics from over 6000 simulations run across 40 RP specimens. Perhaps the most indicative result is as follows: at a CaP sensitivity of 0.87 the accompanying false positive rates of the system when alternately employing the PPMM and Potts priors are 0.10 and 0.20, respectively.
Collapse
Affiliation(s)
- James P Monaco
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang PW, Lee CH. Automatic classification for pathological prostate images based on fractal analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:1037-1050. [PMID: 19164082 DOI: 10.1109/tmi.2009.2012704] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Accurate grading for prostatic carcinoma in pathological images is important to prognosis and treatment planning. Since human grading is always time-consuming and subjective, this paper presents a computer-aided system to automatically grade pathological images according to Gleason grading system which is the most widespread method for histological grading of prostate tissues. We proposed two feature extraction methods based on fractal dimension to analyze variations of intensity and texture complexity in regions of interest. Each image can be classified into an appropriate grade by using Bayesian, k-NN, and support vector machine (SVM) classifiers, respectively. Leave-one-out and k-fold cross-validation procedures were used to estimate the correct classification rates (CCR). Experimental results show that 91.2%, 93.7%, and 93.7% CCR can be achieved by Bayesian, k-NN, and SVM classifiers, respectively, for a set of 205 pathological prostate images. If our fractal-based feature set is optimized by the sequential floating forward selection method, the CCR can be promoted up to 94.6%, 94.2%, and 94.6%, respectively, using each of the above three classifiers. Experimental results also show that our feature set is better than the feature sets extracted from multiwavelets, Gabor filters, and gray-level co-occurrence matrix methods because it has a much smaller size and still keeps the most powerful discriminating capability in grading prostate images.
Collapse
Affiliation(s)
- Po-Whei Huang
- Department of Computer Science and Engineering,National Chung Hsing University, Taichung 40227, Taiwan.
| | | |
Collapse
|
12
|
Tabesh A, Teverovskiy M, Pang HY, Kumar VP, Verbel D, Kotsianti A, Saidi O. Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:1366-1378. [PMID: 17948727 DOI: 10.1109/tmi.2007.898536] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a study of image features for cancer diagnosis and Gleason grading of the histological images of prostate. In diagnosis, the tissue image is classified into the tumor and nontumor classes. In Gleason grading, which characterizes tumor aggressiveness, the image is classified as containing a low- or high-grade tumor. The image sets used in this paper consisted of 367 and 268 color images for the diagnosis and Gleason grading problems, respectively, and were captured from representative areas of hematoxylin and eosin-stained tissue retrieved from tissue microarray cores or whole sections. The primary contribution of this paper is to aggregate color, texture, and morphometric cues at the global and histological object levels for classification. Features representing different visual cues were combined in a supervised learning framework. We compared the performance of Gaussian, k-nearest neighbor, and support vector machine classifiers together with the sequential forward feature selection algorithm. On diagnosis, using a five-fold cross-validation estimate, an accuracy of 96.7% was obtained. On Gleason grading, the achieved accuracy of classification into low- and high-grade classes was 81.0%.
Collapse
Affiliation(s)
- Ali Tabesh
- Aureon Laboratories, Inc., Yonkers, NY 10701, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moradi M, Mousavi P, Abolmaesumi P. Computer-aided diagnosis of prostate cancer with emphasis on ultrasound-based approaches: a review. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1010-28. [PMID: 17482752 DOI: 10.1016/j.ultrasmedbio.2007.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/28/2006] [Accepted: 01/14/2007] [Indexed: 05/15/2023]
Abstract
This paper reviews the state of the art in computer-aided diagnosis of prostate cancer and focuses, in particular, on ultrasound-based techniques for detection of cancer in prostate tissue. The current standard procedure for diagnosis of prostate cancer, i.e., ultrasound-guided biopsy followed by histopathological analysis of tissue samples, is invasive and produces a high rate of false negatives resulting in the need for repeated trials. It is against these backdrops that the search for new methods to diagnose prostate cancer continues. Image-based approaches (such as MRI, ultrasound and elastography) represent a major research trend for diagnosis of prostate cancer. Due to the integration of ultrasound imaging in the current clinical procedure for detection of prostate cancer, we specifically provide a more detailed review of methodologies that use ultrasound RF-spectrum parameters, B-scan texture features and Doppler measures for prostate tissue characterization. We present current and future directions of research aimed at computer-aided detection of prostate cancer and conclude that ultrasound is likely to play an important role in the field.
Collapse
Affiliation(s)
- Mehdi Moradi
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
14
|
Saidi O, Cordon-Cardo C, Costa J. Technology insight: will systems pathology replace the pathologist? ACTA ACUST UNITED AC 2007; 4:39-45. [PMID: 17211424 DOI: 10.1038/ncpuro0669] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/19/2006] [Indexed: 11/09/2022]
Abstract
By using systems pathology, it might be possible to provide a predictive, personalized therapeutic recommendation for patients with prostate cancer. Systems pathology integrates quantitative data and information from many sources to generate a reliable prediction of the expected natural course of the disease and response to different therapeutic options. In other words, through the integration of relatively large data sets and the use of knowledge engineering, systems pathology aims at predicting the future behavior of tumors and their interaction with the host. In this Review, we introduce the methods used in systems pathology and summarize a recent study providing the first evidence of a concept for this strategy. The results show that systems pathology can provide a personalized prediction of the risk of recurrence after prostatectomy for cancer.
Collapse
|
15
|
Jafari-Khouzani K, Soltanian-Zadeh H. Multiwavelet grading of pathological images of prostate. IEEE Trans Biomed Eng 2003; 50:697-704. [PMID: 12814236 DOI: 10.1109/tbme.2003.812194] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Histological grading of pathological images is used to determine level of malignancy of cancerous tissues. This is a very important task in prostate cancer prognosis, since it is used for treatment planning. If infection of cancer is not rejected by non-invasive diagnostic techniques like magnetic resonance imaging, computed tomography scan, and ultrasound, then biopsy specimens of tissue are tested. For prostate, biopsied tissue is stained by hematoxyline and eosine method and viewed by pathologists under a microscope to determine its histological grade. Human grading is very subjective due to interobserver and intraobserver variations and in some cases difficult and time-consuming. Thus, an automatic and repeatable technique is needed for grading. Gleason grading system is the most common method for histological grading of prostate tissue samples. According to this system, each cancerous specimen is assigned one of five grades. Although some automatic systems have been developed for analysis of pathological images, Gleason grading has not yet been automated; the goal of this research is to automate it. To this end, we calculate energy and entropy features of multiwavelet coefficients of the image. Then, we select most discriminative features by simulated annealing and use a k-nearest neighbor classifier to classify each image to appropriate grade (class). The leaving-one-out technique is used for error rate estimation. We also obtain the results using features extracted by wavelet packets and co-occurrence matrices and compare them with the multiwavelet method. Experimental results show the superiority of the multiwavelet transforms compared with other techniques. For multiwavelets, critically sampled preprocessing outperforms repeated-row preprocessing and has less sensitivity to noise for second level of decomposition. The first level of decomposition is very sensitive to noise and, thus, should not be used for feature extraction. The best multiwavelet method grades prostate pathological images correctly 97% of the time.
Collapse
|