1
|
Zeng W, Liu G, Luan Q, Yang C, Li S, Yu X, Su L. B-Cell Deficiency Exacerbates Inflammation and Bone Loss in Ligature-Induced Experimental Periodontitis in Mice. J Inflamm Res 2021; 14:5367-5380. [PMID: 34703274 PMCID: PMC8526950 DOI: 10.2147/jir.s330875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Periodontitis, one of the most prevalent chronic oral infectious diseases in humans, is induced by the breakdown in the balance between the biofilm and host immune system. Previous studies have shown the presence of large numbers of B cells in periodontitis lesions, implicating that B lymphocytes play a predominant role during the pathogenesis of periodontitis. This study aimed to investigate the role of all B cells in the initiation of periodontitis. Methods Experimental periodontitis was induced in B cell-deficient (CD19Cre) mice and wild-type (WT) control mice by 5-0 silk ligation around the maxillary second molar. Four weeks after ligation, alveolar bone loss was determined by micro-computed tomography. The levels of inflammatory cytokines and receptor activator of NF-κB ligand (RANKL)/osteoprotegerin in periodontal lesions were analyzed using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry. Lymphocyte populations in the cervical lymph nodes and spleen and among the peripheral blood mononuclear cells were detected by flow cytometry. Results B-cell deficiency resulted in increased severity of alveolar bone loss in mouse experimental periodontitis, which was associated with increased osteoclast activity and upregulated RANKL expression in the periodontal lesions. In addition, gingiva cytokine expression profiles were shifted to T helper type 1 (Th1) and Th17 in the CD19Cre mice with ligature-induced periodontitis compared with WT mice. In addition, a reduced CD4+/CD8+ T cell ratio was observed in the CD19Cre mice. Conclusion B-cell deficiency exacerbates the inflammation and alveolar bone loss in ligature-induced experimental periodontitis in mice, implicating that B cells may overall play a protective role in the initiation of periodontitis.
Collapse
Affiliation(s)
- Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Chunyu Yang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Shiyi Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Zhang X, Mei D, Wang H, Yu Q, Hong Z, Xu L, Ge J, Han L, Shu J, Liang F, Cai X, Zhu Y, Zhang F, Wang Q, Tai Y, Wang H, Zhang L, Wei W. hIgDFc-Ig inhibits B cell function by regulating the BCR-Syk-Btk-NF-κB signalling pathway in mice with collagen-induced arthritis. Pharmacol Res 2021; 173:105873. [PMID: 34500060 DOI: 10.1016/j.phrs.2021.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease targeting the synovium. Previous studies have found that IgD may be a potential target for the treatment of RA. We designed a new type of fusion protein, hIgDFc-Ig (DG), to block the binding of IgD to IgD receptor (IgDR). In this study, we found that DG has a significant therapeutic effect in mice with collagen-induced arthritis (CIA). DG improved the claw of irritation symptoms in these mice, inhibited the pathological changes in spleen and joint tissues, and had a moderating effect on B cell subsets at different inflammatory stages. Moreover, DG could also decrease the levels of IgA, IgD, IgM and IgG subtypes of immunoglobulin in the serum of mice with CIA. In vitro, B cell antigen receptor (BCR) knockout Ramos cells were established using the CRISPR/Cas9 technology to further study the activation of BCR signalling by IgD and the effect of DG. We found that the therapeutic effect of DG in mice with CIA may be achieved by inhibiting the activation of BCR signalling by IgD, which may be related to the activation of Igβ. In summary, DG may be a potential biological agent for the treatment of RA and it has broad application prospects in the future.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Cell Line
- Gene Knockdown Techniques
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/pharmacology
- Immunoglobulins/therapeutic use
- Mice
- Mice, Inbred DBA
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/antagonists & inhibitors
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Signal Transduction/drug effects
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Syk Kinase/metabolism
- Thymus Gland/drug effects
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Zhongyang Hong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Le Han
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinling Shu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Faqin Liang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Xiaoyu Cai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yue Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| |
Collapse
|
3
|
The prospects for targeting FcR as a novel therapeutic strategy in rheumatoid arthritis. Biochem Pharmacol 2020; 183:114360. [PMID: 33301760 DOI: 10.1016/j.bcp.2020.114360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial membrane hyperplasia, infiltration of inflammatory cells and bone tissue destruction. Although there have been many measures taken for RA therapy in recent years, they are not sufficiently safe or effective. Thus, it is very important to develop new drugs and slow down damage to other healthy organs in the case of RA. Lately, immunoglobulin Fc receptors (FcRs), such as the IgG Fc receptor (FcγR), IgA Fc receptor (FcαR), and IgD Fc receptor (FcδR), have been found to be involved in inducing or suppressing arthritis. FcRs interacting with immune complexes (ICs) are a key factor in the etiopathogenesis of RA. Therefore, an increasing number of methodsfor the targeted treatment of RA with FcRs are emerging, such as recombinant soluble FcγRs, recombinant multimeric Fc fragments and monoclonal antibodies, and have been demonstrated to significantly improve RA symptoms. Simultaneously, certain kinases involved in the downstream signaling of FcRs can also be a target for the treatment of RA, such as Syk and Btk inhibitors. An overview of these FcRs is provided in this review, including a description of FcR-related functions, signaling pathways, and potential FcR-targeting molecules for RA therapy. To date, the initial results of those developed FcR-targeting molecules have been promising. With this, FcRs might offer a better alternative to RA medication. Additionally, further pharmacological characterization and a better understanding of the unique mechanisms of FcR-targeting molecules are necessary.
Collapse
|
4
|
Zhang J, Hu X, Dong X, Chen W, Zhang L, Chang Y, Wu Y, Wei W. Regulation of T Cell Activities in Rheumatoid Arthritis by the Novel Fusion Protein IgD-Fc-Ig. Front Immunol 2020; 11:755. [PMID: 32499775 PMCID: PMC7243948 DOI: 10.3389/fimmu.2020.00755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and T cell hyper-activation. Emerging evidence has shown that the stimulation of immunoglobulin D (IgD) induces T cell activation and may contribute to disease pathogenesis. In this study, the sIgD concentrations were positively associated with disease activity score in 28 joints (DAS28) and anti-cyclic citrullinated peptide (anti-CCP) in RA. We demonstrated that IgD-Fc-Ig (composed of human IgD Fc domain and IgG1 Fc domain, obtained through prokaryotic protein expression and chromatography purification) effectively inhibited the activation and proliferation of T cells in healthy controls and PBMCs in RA patients stimulated by IgD, recovered the Th17/Treg cell subset balance, and downregulated p-Lck and p-ZAP70 expression. Moreover, in vivo, IgD-Fc-Ig decreased the swollen joint counts and arthritis indices in mice with collagen-induced arthritis (CIA), and ameliorated histopathological changes in joint and spleen tissue. It also downregulated thymocyte proliferation and reduced the percentage of helper T cells (Th) and CD154+ T cells, reversed the imbalance of Th1/Th2 and Th17/Treg cell subsets, reduced cytokine and chemokine levels, and inhibited p-Lck and p-ZAP70 expression. Our data suggest that IgD-Fc-Ig fusion protein regulates T cell activity in RA. These findings have potential implications for IgD-targeted strategies to treat IgD-associated RA.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaoxi Hu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaojie Dong
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wensheng Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yujing Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Dai X, Wu YJ, Jia XY, Chang Y, Wu HX, Wang C, Wei W. Immunoglobulin D (IgD) and IgD receptor expression in diffuse large B-cell lymphoma. ACTA ACUST UNITED AC 2019; 24:544-551. [PMID: 31315540 DOI: 10.1080/16078454.2019.1642553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Immunoglobulin D (IgD) levels are often elevated in patients with autoimmune diseases. However, the oncogenic activities of IgD and IgD receptor (IgDR) in diffuse large B-cell lymphoma (DLBCL) have not been reported in detail. Therefore, we aimed to investigate the expression of IgD and IgDR in patients with DLBCL. Methods: Membrane IgD (mIgD) and IgDR expression in tissue samples was analyzed using IHC, mIgD and IgDR expression on peripheral blood mononuclear cells (PBMCs) was analyzed by FCM, and secreted IgD (sIgD) level was analyzed by ELISA. Fisher's exact test and Spearman correlation analysis were used to evaluate the relationship between IgD, IgDR, and clinical parameters. Results: The pathological lymph nodes of 34 patients with DLBCL were studied, and mIgD and IgDR expression was found in 16 and 19 patients. mIgD and IgDR expression was upregulated in patients with DLBCL and mIgD expression was significantly associated with IgDR expression. Further correlation analysis showed that mIgD expression was correlated with serum β2-MG level and Hans algorithm as germinal center B (GCB), whereas IgDR expression correlated with serum LDH level, IPI score and GCB. ELISA showed that sIgD level was significantly increased in DLBCL patients and it correlated with serum β2-MG and LDH levels. FCM showed that mIgD and IgDR expression in PBMCs of patients with DLBCL was significantly higher than that in healthy controls. Conclusion: Our findings suggest that overexpression of IgD and IgDR is an abnormal activation state in DLBCL.
Collapse
Affiliation(s)
- Xing Dai
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Yu-Jing Wu
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Xiao-Yi Jia
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Yan Chang
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Hua-Xun Wu
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Chun Wang
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| | - Wei Wei
- a Institute of Clinical Pharmacology , Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Hefei , People's Republic of China
| |
Collapse
|
6
|
Wu YJ, Chen HS, Chen WS, Dong J, Dong XJ, Dai X, Huang Q, Wei W. CP-25 Attenuates the Activation of CD4 + T Cells Stimulated with Immunoglobulin D in Human. Front Pharmacol 2018; 9:4. [PMID: 29410624 PMCID: PMC5787084 DOI: 10.3389/fphar.2018.00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6′-O-benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4+ T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4+ T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4+ T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr394). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4+ T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr394) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4+ T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- Yu-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Heng-Shi Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wen-Sheng Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Jin Dong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xiao-Jie Dong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qiong Huang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
7
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother 2018; 14:815-831. [PMID: 29257936 DOI: 10.1080/21645515.2017.1417711] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Basophils are circulating cells that are associated quite exclusively with allergy response and hypersensitivity reactions but their role in the immune network might be much more intriguing and complex than previously expected. The feasibility of testing their biology in vitro for allergy research and diagnosis, due fundamentally to their quite easy availability in the peripheral blood, made them the major source for assessing allergy in the laboratory assay, when yet many further cells such as mast cells and eosinophils are much more involved as effector cells in allergy than circulating basophils. Interestingly, basophil numbers change rarely in peripheral blood during an atopic response, while we might yet observe an increase in eosinophils and modification in the biology of mast cells in the tissue during an hypersensitivity response. Furthermore, the fact that basophils are very scanty in numbers suggests that they should mainly serve as regulatory cells in immunity, rather than effector leukocytes, as still believed by the majority of physicians. In this review we will try to describe and elucidate the possible role of these cells, known as "innate IL4-producing cells" in the immune regulation of allergy and their function in allergen immunotherapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- a Department of Neurological and Movement Sciences , University of Verona , Verona , Italy
| | - Geir Bjørklund
- b Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| | - Andrea Sboarina
- c Department of Surgery , Dentistry, Paediatrics and Gynaecology-University of Verona , Verona , Italy
| | - Antonio Vella
- d Unit of Immunology-Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona , Italy
| |
Collapse
|
8
|
The immunoglobulin D Fc receptor expressed on fibroblast-like synoviocytes from patients with rheumatoid arthritis contributes to the cell activation. Acta Pharmacol Sin 2017; 38:1466-1474. [PMID: 28770826 DOI: 10.1038/aps.2017.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Immunoglobulin IgD might play an important role in autoimmune diseases, but the function of IgD has remained elusive, despite multiple attempts to define its biological function. Fibroblast-like synoviocytes (FLSs) are specialized cells of the synovium that play a key role in the pathogenesis of rheumatoid arthritis (RA). In this study we explored the possible roles of excessive IgD expression on the function of FLSs from RA patients (RA-FLSs). We showed that IgD Fc receptor (IgDR) was constitutively expressed on FLSs, and was significantly elevated in RA-FLSs compared with FLSs prepared from synovial tissues of healthy controls (HC-FLSs). Furthermore, IgDR was mainly detected on the cell surface and in the cytoplasm. We further detected the intrinsic binding affinity of IgD to IgDR on HC-FLSs with an equilibrium dissociation constant (KD) of 0.067 nmol/L. Incubation of RA-FLSs with IgD (1-10 μg/mL) for 48 h dose-dependently promoted the expression of IgDR, and stimulated the production of inflammatory cytokines and chemokines, such as IL-1β, IL-6, monocyte chemotactic protein (MCP)-1, TNF-α and receptor activator of nuclear factor-κB ligand (RANKL), thus potentially contributing to IgD-IgDR crosslinking. Moreover, incubation with IgD (0.1-10 μg/mL) for 48 h dose-dependently enhanced viability for both HC-FLSs and RA-FLSs. Our results demonstrate that IgDR is expressed on RA-FLSs and contributes to the activation of FLSs, and suggest that IgD-IgDR is a potential novel immunotherapeutic target for the management of RA.
Collapse
|
9
|
Wu Y, Chen W, Chen H, Zhang L, Chang Y, Yan S, Dai X, Ma Y, Huang Q, Wei W. The Elevated Secreted Immunoglobulin D Enhanced the Activation of Peripheral Blood Mononuclear Cells in Rheumatoid Arthritis. PLoS One 2016; 11:e0147788. [PMID: 26814717 PMCID: PMC4729477 DOI: 10.1371/journal.pone.0147788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin D (IgD) is a surface immunoglobulin that is expressed as either membrane IgD (mIgD) or secreted IgD (sIgD). Researchers have shown that sIgD is often elevated in patients with autoimmune diseases. The possible roles of sIgD on the function of peripheral blood mononuclear cells (PBMCs) in rheumatoid arthritis (RA) are still unclear. In this study, we compared the expression of sIgD, mIgD and IgD receptor (IgDR) in RA patients and healthy controls, and investigated the effect of sIgD on the function of PBMCs. We found that the levels of sIgD, mIgD and IgDR were significantly higher in RA patients compared with healthy controls. The concentrations of sIgD were positively correlated with soluble receptor activator of nuclear factor-κB ligand (sRANKL), rheumatoid factor (RF) and C-reactive protein (CRP) in RA patients. Strikingly, IgD could enhance the proliferation of PBMCs and induce IL-1α, IL-1β, TNF-α, IL-6 and IL-10 production from PBMCs. Moreover, the percentage of activated T cell subsets (CD4+CD69+, CD4+CD154+) and activated B cell subsets (CD19+CD23+, CD19+CD21+, CD19+IgD+ and CD19-CD138+) were increased by IgD. The percentage of unactivated T cell subset (CD4+CD62L+) and immature B cell subset (CD19+IgM+IgD-) were decreased by IgD in PBMCs. Furthermore, the expressions of IgDR on T and B cells were significantly increased by treatment with IgD. Our results demonstrate that IgD enhanced the activation of PBMCs, which may contribute to RA pathogenesis. Therefore, IgD could be a potential novel immunotherapeutic target for the management of RA.
Collapse
Affiliation(s)
- Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wensheng Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hengshi Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Qiong Huang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
- * E-mail: (WW); (QH)
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
- * E-mail: (WW); (QH)
| |
Collapse
|
10
|
Dai X, Wu Y, Jia X, Chang Y, Wu H, Wang C, Chen H, Chen W, Huang Q, Wei W. hIgD promotes human Burkitt lymphoma Daudi cell proliferation by accelerated G1/S transition via IgD receptor activity. Immunol Res 2016; 64:978-87. [DOI: 10.1007/s12026-015-8777-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Chen NY, Hung AFH, Lin CJ, Chen JB, Chu HM, Yu HM, Chang HY, Chang TW. Manipulating mIgD-expressing B cells with anti-migis-δ monoclonal antibodies. Mol Immunol 2012; 53:187-97. [PMID: 22944457 DOI: 10.1016/j.molimm.2012.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 11/18/2022]
Abstract
Surface IgD and IgM doubly positive cells comprise the major population of B cells in the human immune system. The heavy chain of membrane-bound IgD (mδ) differs from that of IgD (δ) in that mδ contains a C-terminal membrane-anchor peptide. Our group previously proposed that the N-terminal extracellular segment of 27 aa residues of the membrane-anchor peptide of mδ, referred to as the mIg isotype-specific-δ (migis-δ) segment, may provide a unique antigenic site for isotype-specific targeting of mIgD(+) B cells. Here we report the preparation of mouse mAbs specific for human migis-δ. The mAbs bound to human migis-δ-containing recombinant proteins in an ELISA and to mIgD-expressing transfectants of a CHO cell line as analyzed by flow cytometry. MAb 20E6, which binds to an epitope toward the N-terminal of human migis-δ, could stain human B cell line MC116, which expressed mIgD and mIgM. MC116 cells could be induced to undergo apoptosis by treatment with 20E6 in the presence of a second crosslinking antibody. Chimeric 20E6 caused antibody-dependent cellular cytotoxicity of MC116 cells in the presence of human PBMCs as the source of effector cells. In cultures of PBMCs, 20E6 down-regulated the population of mIgD(+) B cells. The production of human IgM by transplanted MC116 cells in NOD-SCID (NOD.CB17-Prkdc(scid)/IcrCrlBltw) mice could be suppressed by 20E6. These results encourage further investigation of the potential of anti-migis-δ mAbs to control mIgD(+) B cells, when such a manipulation may alleviate a disease state.
Collapse
Affiliation(s)
- Nien-Yi Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo L, Tian J, Guo Z, Zheng B, Han S. The absence of immunoglobulin D B cell receptor-mediated signals promotes the production of autoantibodies and exacerbates glomerulonephritis in murine lupus. Clin Exp Immunol 2011; 164:227-35. [PMID: 21352206 DOI: 10.1111/j.1365-2249.2011.04332.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig)D is the major antigen receptor isotype co-expressed with IgM on the surface of most peripheral B cells in mice and humans. However, the biological role of IgD as B cell receptor (BCR) has remained unclear. Previous studies have indicated that IgD may play a role in B cell tolerance. To understand the role of IgD in B cell tolerance and autoimmunity, we have examined the development of autoimmune syndrome in lpr mice deficient for IgD. The present study showed that IgD deficiency did not alter lymphoproliferation and lymphocyte activation in lpr mice. The survival and proliferation of B cells were not affected by the absence of IgD, indicating that IgD BCR-mediated signals do not have an important role in negative selection of autoreactive B cell clones. Interestingly, compared to IgD-competent littermates, lpr mice with IgD deficiency had elevated autoantibody production, increased deposition of immune complex in the kidney and more severe nephritis. Accumulation of abnormal CD4(-) CD8(-) αβ(+) T cells was accelerated in IgD(-/-) lpr mice compared to lpr mice. These results suggest that IgD BCR-mediated signals may be involved in the differentiation of autoreactive B cells into plasma cells and abnormal T cell expansion.
Collapse
Affiliation(s)
- L Guo
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Immunoglobulin D (IgD) has remained a mysterious antibody class for almost half a century. IgD was initially thought to be a recently evolved Ig isotype expressed only by some mammalian species, but recent discoveries in fishes and amphibians demonstrate that IgD was present in the ancestor of all jawed vertebrates and has important immunological functions. The structure of IgD has been very dynamic throughout evolution. Mammals can express IgD through alternative splicing and class switch recombination. Active cell-dependent and T-cell-independent IgM-to-IgD class switching takes place in a unique subset of human B cells from the upper aerodigestive mucosa, which provides a layer of mucosal protection by interacting with many pathogens and their virulence factors. Circulating IgD can bind to myeloid cells such as basophils and induce antimicrobial, inflammatory, and B-cell-stimulating factors upon cross-linking, which contributes to not only immune surveillance but also inflammation and tissue damage when this pathway is overactivated under pathological conditions. Recent research shows that IgD is an important immunomodulator that orchestrates an ancestral surveillance system at the interface between immunity and inflammation.
Collapse
Affiliation(s)
- Kang Chen
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
14
|
B Cell IgD Deletion Prevents Alveolar Bone Loss Following Murine Oral Infection. Interdiscip Perspect Infect Dis 2009; 2009:864359. [PMID: 19859584 PMCID: PMC2766505 DOI: 10.1155/2009/864359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 07/25/2009] [Accepted: 08/10/2009] [Indexed: 11/17/2022] Open
Abstract
Periodontal disease is one of the most common infectious diseases of humans. Immune
responses to infection trigger loss of alveolar bone from the jaw and eventual tooth loss.
We investigated the contribution of B cell IgD to alveolar bone loss by comparing the
response of B cell normal BALB/cJ mice and IgD deficient BALB/c-Igh-5−/−J mice to oral infection with Porphyromonas gingivalis, a gram-negative periodontopathic bacterium
from humans. P. gingivalis-infected normal mice lost bone. Specific antibody to P.
gingivalis was lower and oral colonization was higher in IgD deficient mice; yet bone
loss was completely absent. Infection increased the proportion of CD69+ activated B cells
and CD4+ T cells in immune normal mice compared to IgD deficient mice. These data
suggest that IgD is an important mediator of alveolar bone resorption, possibly through
antigen-specific coactivation of B cells and CD4+ T cells.
Collapse
|
15
|
Okun E, Mattson MP, Arumugam TV. Involvement of Fc receptors in disorders of the central nervous system. Neuromolecular Med 2009; 12:164-78. [PMID: 19844812 DOI: 10.1007/s12017-009-8099-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/07/2009] [Indexed: 01/09/2023]
Abstract
Immunoglobulins are proteins with a highly variable antigen-binding domain and a constant region (Fc domain) that binds to a cell surface receptor (FcR). Activation of FcRs in immune cells (lymphocytes, macrophages, and mast cells) triggers effector responses including cytokine production, phagocytosis, and degranulation. In addition to their roles in normal responses to infection or tissue injury, and in immune-related diseases, FcRs are increasingly recognized for their involvement in neurological disorders. One or more FcRs are expressed in microglia, astrocytes, oligodendrocytes, and neurons. Aberrant activation of FcRs in such neural cells may contribute to the pathogenesis of major neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, ischemic stroke, and multiple sclerosis. On the other hand, FcRs may play beneficial roles in counteracting pathological processes; for e.g., FcRs may facilitate removal of amyloid peptides from the brain and so protect against Alzheimer's disease. Knowledge of the functions of FcRs in the nervous system in health and disease is leading to novel preventative and therapeutic strategies for stroke, Alzheimer's disease, and other neurological disorders.
Collapse
Affiliation(s)
- Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
16
|
Tamma SML, Coico RF. IgD-receptor (IgD-R) cross-linking partially protects murine T cells from dexamethasone-induced apoptosis. J Leukoc Biol 2003; 73:764-70. [PMID: 12773509 DOI: 10.1189/jlb.1002492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Based on our previous findings that immunoglobulin D (IgD) receptor (IgD-R) cross-linking with oligomeric IgD (IgD-R-xL) led to T cell activation, we examined the effect of IgD-R-xL on the expression of Fas antigen and apoptosis induction. In splenic T cells, IgD-R-xL followed by dexamethasone (dex) treatment resulted in a decreased percentage of Fas-positive cells as well as a decreased mean fluorescence intensity (P<0.05) when compared with cells treated with dex alone. There are significant differences in annexin-fluorescein isothiocyanate (FITC) and phosphatidylinositol (PI) staining between samples treated with dex alone and IgD-R-xL followed by dex-treated samples (P<0.05), suggesting a protective role for IgD-R-xL. No significant differences are seen in Fas antigen expression, annexin-FITC staining, and/or PI staining in murine T hybridoma (7C5) cells cultured under similar conditions (P<0.07). We hypothesize that ligation of IgD-R may predispose antigen-specific T lymphocytes for survival during primary immune responses when IgD-positive B cells serve as antigen-presenting cells.
Collapse
Affiliation(s)
- Seetha M Lakshmi Tamma
- Department of Microbiology and Immunology, CUNY Medical School, New York, New York 10031, USA
| | | |
Collapse
|