1
|
Khan MA, Khan A, Alzohairy MA, Alruwetei AM, Alsahli MA, Allemailem KS, Alrumaihi F, Almatroudi A, Alhatlani BY, Rugaie OA, Malik A. Encapsulation of MERS antigen into α-GalCer-bearing-liposomes elicits stronger effector and memory immune responses in immunocompetent and leukopenic mice. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:102124. [PMID: 35663348 PMCID: PMC9135648 DOI: 10.1016/j.jksus.2022.102124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 05/28/2023]
Abstract
Objectives Here, we prepared a liposome-based vaccine formulation containing Middle East Respiratory Syndrome Coronavirus papain-like protease (MERS-CoV-PLpro). Methods A persistent leukopenic condition was induced in mice by injecting cyclophosphamide (CYP) three days before each dose of immunization. Mice were immunized on days 0, 14 and 21 with α-GalCer-bearing MERS-CoV PLpro-encapsulated DPPC-liposomes (α-GalCer-MERS-PLpro-liposomes or MERS-CoV PLpo-encapsulated DPPC-liposomes (MERS-PLpro-liposomes), whereas the antigen emulsified in Alum (MERS-PLpro-Alum) was taken as a control. On day 26, the blood was taken from the immunized mice to analyze IgG titer, whereas the splenocytes were used to analyze the lymphocyte proliferation and the level of cytokines. In order to assess the memory immune response, mice were given a booster dose after 150 days of the last immunization. Results The higher levels of MERS-CoV-PLpro-specific antibody titer, IgG2a and lymphocyte proliferation were noticed in mice immunized with α-GalCer-MERS-PLpro-liposomes. Besides, the splenocytes from mice immunized with α-GalCer-MERS-PLpro-liposomes produced larger amounts of IFN-γ as compared to the splenocytes from MERS-PLpro-liposomes or MERS- PLpro-Alum immunized mice. Importantly, an efficient antigen-specific memory immune response was observed in α-GalCer-MERS-PLpro-liposomes immunized mice. Conclusions These findings suggest that α-GalCer-MERS-PLpro-liposomes may substantiate to be a successful vaccine formulation against MERS-CoV infection, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Bader Y Alhatlani
- Department of Applied Medical Sciences, Applied College, Qassim University, Unayzah, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unayzah, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Khan MA, Malik A, Alruwetei A, Alzohairy MA, Alhatlani BY, Al Rugaie O, Alhumaydhi FA, Khan A. Delivery of MERS antigen encapsulated in α-GalCer-bearing liposomes elicits stronger antigen-specific immune responses. J Drug Target 2022; 30:884-893. [PMID: 35418263 DOI: 10.1080/1061186x.2022.2066681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alpha-Galactosylceramide (α-GalCer) effectively activates the natural killer T (NKT) cells to secrete remarkable amounts of Th1 and Th2 cytokines and therefore, acts as a potential immunoadjuvant in vaccine formulation. In the present study, we prepared α-GalCer-bearing or α-GalCer-free liposomes and loaded them with Middle East Respiratory Syndrome Corona virus papain-like protease (α-GalCer-Lip-MERS-CoV PLpro or Lip- MERS-CoV PLpro). These formulations were injected in mice to investigate the antigen-specific humoral and cell-mediated immune responses. The immunization with α-GalCer-Lip-MERS-CoV PLpro or Lip- MERS-CoV PLpro did not induce any notable toxicity in immunized mice. The results demonstrated that mice immunized with α-GalCer-Lip-MERS-CoV PLpro showed greater antigen-specific antibody titer, switching of IgG isotyping to IgG2a subclass and higher lymphocyte proliferation. Moreover, the splenocytes from α-GalCer-Lip-MERS-CoV PLpro immunized mice secreted greater levels of IFN-γ, IL-4, IL-2 and IL-12. Interestingly, a booster dose induced stronger memory immune responses in mice previously immunized with α-GalCer-Lip-MERS-CoV PLpro. In summary, α-GalCer-Lip-MERS-CoV PLpro may prove to be a promising vaccine formulation to protect the individuals against MERS-CoV infection.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Bader Y Alhatlani
- Department of Applied Medical Sciences, Applied College in Unayzah, Qassim University, Unayzah, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unayzah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Liposome-Mediated Delivery of MERS Antigen Induces Potent Humoral and Cell-Mediated Immune Response in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020403. [PMID: 35056718 PMCID: PMC8778403 DOI: 10.3390/molecules27020403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
Abstract
The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund’s Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection.
Collapse
|
5
|
Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines 2021; 20:935-944. [PMID: 34184607 DOI: 10.1080/14760584.2021.1945448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: An efficacious vaccine for HIV-1 has been sought for over 30 years to eliminate the virus from the human population. Many challenges have occurred in the attempt to produce a successful immunogen, mainly caused by the basic biology of the virus. Immunogens have been developed focusing on inducing one or more of the following types of immune responses; neutralizing antibodies, non-neutralizing antibodies, and T-cell mediated responses. One way to better present and develop an immunogen for HIV-1 is through the use of nanotechnology and nanoparticles.Areas covered: This article gives a basic overview of the HIV-1 vaccine field, as well as nanotechnology, specifically nanovaccines. It then covers the application of nanovaccines made from biological macromolecules to HIV-1 vaccine development for neutralizing antibodies, non-neutralizing antibodies, and T-cell-mediated responses.Expert opinion: Nanovaccines are an area that is ripe for further exploration in HIV-1 vaccine field. Not only are nanovaccines capable of carrying and presenting antigens in native-like conformations, but they have also repeatedly been shown to increase immunogenicity over recombinant antigens alone. Only through further research can the true role of nanovaccines in the development of an efficacious HIV-1 vaccine be established.
Collapse
Affiliation(s)
- Christopher P Karch
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Laboratory of Adjuvant and Antigen Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
6
|
Lipid nanovesicles for biomedical applications: 'What is in a name'? Prog Lipid Res 2021; 82:101096. [PMID: 33831455 DOI: 10.1016/j.plipres.2021.101096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Vesicles, generally defined as self-assembled structures formed by single or multiple concentric bilayers that surround an aqueous core, have been widely used for biomedical applications. They can either occur naturally (e.g. exosomes) or be produced artificially and range from the micrometric scale to the nanoscale. One the most well-known vesicle is the liposome, largely employed as a drug delivery nanocarrier. Liposomes have been modified along the years to improve physicochemical and biological features, resulting in long-circulating, ligand-targeted and stimuli-responsive liposomes, among others. In this process, new nomenclatures were reported in an extensive literature. In many instances, the new names suggest the emergence of a new nanocarrier, which have caused confusion as to whether the vesicles are indeed new entities or could simply be considered modified liposomes. Herein, we discussed the extensive nomenclature of vesicles based on the suffix "some" that are employed for drug delivery and composed of various types and proportions of lipids and others amphiphilic compounds. New names have most often been selected based on changes of vesicle lipid composition, but the payload, structural complexity (e.g. multicompartment) and new/improved proprieties (e.g. elasticity) have also inspired new vesicle names. Based on this discussion, we suggested a rational classification for vesicles.
Collapse
|
7
|
Chauhan A, Zubair S, Nadeem A, Ansari SA, Ansari MY, Mohammad O. Escheriosome-mediated cytosolic delivery of PLK1-specific siRNA: potential in treatment of liver cancer in BALB/c mice. Nanomedicine (Lond) 2014; 9:407-20. [PMID: 24910873 DOI: 10.2217/nnm.13.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In the present study, the anticancer efficacy of a novel escheriosome-based formulation of PLK1-specific siRNA was evaluated against liver cancer in BALB/c mice. MATERIALS & METHODS The escheriosome-based siRNA nanoparticles were prepared using lipids isolated from Escherichia coli. The escheriosomes were characterized for size, surface charge and stability. The anticancer potential of PLK1-specific siRNA formulation was ascertained on the basis of expression of pro-/anti-apoptotic factors and histopathological studies. RESULTS The escheriosome-entrapped siRNA was found to be released in surrounding milieu in a sustained manner. The nanoformulation was successful in modulating proapoptotic factors and eventually helped in better survival of the treated animals. CONCLUSION Our data demonstrate the efficacy of systemically administered siRNA in the treatment of experimental liver cancer. This novel therapeutic strategy may be applicable to a broad range of cancers in patients with the obstinate form of the disease.
Collapse
|
8
|
Singha H, Mallick AI, Jana C, Fatima N, Owais M, Chaudhuri P. Co-immunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu-Zn superoxide dismutase protein against Brucella abortus. Vaccine 2011; 29:4720-7. [PMID: 21565241 DOI: 10.1016/j.vaccine.2011.04.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella abortus and a number of closely related species. Brucellosis has severe impact on the health and economic prosperity of the developing countries due to the persistent nature of infection and unavailability of effective control measures. The Cu-Zn superoxide dismuatse (SOD) protein of Brucella have been extensively studied as a major antigen involved in bacterial evading mechanism of host defence. Being a critical pro-inflammatory cytokine interleukin-18 (IL-18) plays key role in induction of immune mediated protection against intracellular pathogens. In the present study, we aimed to investigate the immunogenic potential of fusogenic liposomes (escheriosomes) encapsulated recombinant Cu-Zn SOD (rSOD) protein alone or in combination with recombinant IL-18 (rIL-18). Escheriosomes encapsulated rSOD mediated immune responses were further increased upon co-immunization with rIL-18. Furthermore, immunization with escheriosomes encapsulated rSOD alone or in combination with rIL-18, increased resistance in mice against challenge with B. abortus 544.
Collapse
Affiliation(s)
- Harisankar Singha
- Division of Biotechnology, Indian Veterinary Research Institute, Izatnagar 243122, India.
| | | | | | | | | | | |
Collapse
|
9
|
Pattani A, Malcolm RK, Curran RM. Retro-engineering of liposomal vaccine adjuvants: Role of a microarray-based screen. Vaccine 2010; 28:1438-9. [DOI: 10.1016/j.vaccine.2009.11.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
|
10
|
Mallick A, Singha H, Khan S, Anwar T, Ansari M, Khalid R, Chaudhuri P, Owais M. Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis. Vaccine 2007; 25:7873-84. [DOI: 10.1016/j.vaccine.2007.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 11/29/2022]
|
11
|
Sharma SK, Dube A, Nadeem A, Khan S, Saleem I, Garg R, Mohammad O. Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine 2005; 24:1800-10. [PMID: 16310900 DOI: 10.1016/j.vaccine.2005.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 09/20/2005] [Accepted: 10/10/2005] [Indexed: 11/24/2022]
Abstract
Leishmania donovani promastigote soluble antigens (sLAg) were encapsulated in non-phosphatidylcholine (non-PC) liposomes (escheriosomes) prepared from E. coli lipids. The escheriosome-based vaccine was investigated for its potential to elicit a protective immune response against experimental visceral leishmaniasis. The vaccine administration induced strong humoral as well as cell mediated immune responses both in hamsters and BALB/c mice. Immunization of BALB/c mice with escheriosome entrapped sLAg (EL-sLAg) elicited stronger CD8+ cytotoxic T lymphocyte (CTL) response as compared to sLAg entrapped in egg PC/chol liposome (EPC-sLAg) or sLAg administered with incomplete Freund's adjuvant (IFA-sLAg). EL-sLAg also induced the release of mixed (Th1 and Th2) types of cytokines in the immunized BALB/c mice. In addition, the delivery of sLAg via escheriosomes enhanced the expression of costimulatory signals (CD80 and CD86) as determined in peritoneal macrophages obtained from BALB/c mice. In another set of experiments, the EL-sLAg immunized hamsters were found to be better protected than those immunized with EPC-sLAg. The prophylaxis coincided with increased lymphocyte proliferation as well as high nitric oxide (NO) production by peritoneal macrophages among EL-sLAg immunized hamsters. Escheriosomes thus seem to have potential in delivering the antigen to cytosol of the antigen presenting cells (APCs) and in the development of liposome-based vaccine against leishmaniasis as well as other intracellular infections.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- B7-1 Antigen/analysis
- B7-2 Antigen/analysis
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Cricetinae
- Cytokines/analysis
- Cytotoxicity Tests, Immunologic
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/pharmacology
- Leishmania donovani/growth & development
- Leishmania donovani/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Liposomes
- Macrophages, Peritoneal/chemistry
- Macrophages, Peritoneal/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/biosynthesis
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
Collapse
Affiliation(s)
- Sharad Kumar Sharma
- Inter-Disciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202002, India
| | | | | | | | | | | | | |
Collapse
|
12
|
Deeba F, Tahseen HN, Sharad KS, Ahmad N, Akhtar S, Saleemuddin M, Mohammad O. Phospholipid diversity: Correlation with membrane–membrane fusion events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:170-81. [PMID: 15893520 DOI: 10.1016/j.bbamem.2005.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
The transport of various metabolically important substances along the endocytic and secretory pathways involves budding as well as fusion of vesicles with various intracellular compartments and plasma membrane. The membrane-membrane fusion events between various sub-compartments of the cell are believed to be mainly mediated by so-called "fusion proteins". This study shows that beside the proteins, lipid components of membrane may play an equally important role in fusion and budding processes. Inside out (ISO) as well as right side out (RSO) erythrocyte vesicles were evaluated for their fusogenic potential using conventional membrane fusion assay methods. Both fluorescence dequenching as well as content mixing assays revealed fusogenic potential of the erythrocyte vesicles. Among two types of vesicles, ISO were found to be more fusogenic as compared to the RSO vesicles. Interestingly, ISO retained nearly half of their fusogenic properties after removal of the proteins, suggesting the remarkable role of lipids in the fusion process. In another set of experiments, fusogenic properties of the liposomes (subtilosome), prepared from phospholipids isolated from Bacillus subtilis (a lower microbe) were compared with those of erythrocyte vesicles. We have also demonstrated that various types of vesicles upon interaction with macrophages deliver encapsulated materials to the cytosol of the cells. Membrane-membrane fusion was also followed by the study, in which a protein synthesis inhibitor ricin A (that does not cross plasma membrane), when encapsulated in the erythrocyte vesicles or subtilosomes was demonstrated to gain access to the cytosol.
Collapse
Affiliation(s)
- F Deeba
- Inter-disciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 India
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Vaccines play important roles in preventing infectious diseases caused by different pathogens. However, some pathogens such as HIV-1 challenge current vaccine strategy. Poor immunogenicity and the high mutation rate of HIV-1 make great difficulties in inducing potent immune responses strong enough to prevent infection via vaccination. Epitope-vaccine, which could intensively enhance predefined epitope-specific immune responses, was suggested as a new strategy against HIV-1 and HIV-1 mutation. Epitope-vaccines afford powerful approaches to elicit potent, broad and complete immune protection against not only primary homologous viral isolates but also heterologous viral mutants. Although most studies are still preliminary now, epitope-vaccine as a novel strategy against the AIDS epidemic has great developmental potential. To trigger T-cell-dependent IgG antibody responses and improve affinities of the epitope-specific antibodies, approaches such as recombinant multi-epitope-vaccination and prime-boosting vaccination were suggested. Cellular immune responses, especially CTL responses, could also be elicited and enhanced in addition to humoral immune responses. Developed epitope-vaccines activating both arms of the immune system would benefit prevention and immunotherapy not only against HIV but also other chronic infections.
Collapse
Affiliation(s)
- Zuqiang Liu
- Laboratory of Immunology, Research Center for Medical Science, Department of Biology, Tsinghua University, Beijing 100084, PR China
| | | | | |
Collapse
|
14
|
|