1
|
Käser T, Renois F, Wilson HL, Cnudde T, Gerdts V, Dillon JAR, Jungersen G, Agerholm JS, Meurens F. Contribution of the swine model in the study of human sexually transmitted infections. INFECTION GENETICS AND EVOLUTION 2017; 66:346-360. [PMID: 29175001 DOI: 10.1016/j.meegid.2017.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
The pig has garnered more and more interest as a model animal to study various conditions in humans. The growing success of the pig as an experimental animal model is explained by its similarities with humans in terms of anatomy, genetics, immunology, and physiology, by their manageable behavior and size, and by the general public acceptance of using pigs for experimental purposes. In addition, the immunological toolbox of pigs has grown substantially in the last decade. This development led to a boost in the use of pigs as a preclinical model for various human infections including sexually transmitted diseases (STIs) like Chlamydia trachomatis. In the current review, we discuss the use of animal models for biomedical research on the major human STIs. We summarize results obtained in the most common animal models and focus on the contributions of the pig model towards the understanding of pathogenesis and the host immune response. In addition, we present the main features of the porcine model that are particularly relevant for the study of pathogens affecting human female and male genital tracts. We also inform on the technological advancements in the porcine toolbox to facilitate new discoveries in this biologically important animal model. There is a continued need for improvements in animal modeling for biomedical research inclusive STI research. With all its advantages and the highly improved toolbox, the porcine model can play a crucial role in STI research and open the door to new exciting discoveries.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA
| | - Fanny Renois
- LUNAM Université, Oniris, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), UMR INRA 1329, 44307 Nantes, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Thomas Cnudde
- BIOMAP, Laboratoire Biomédicaments Anti-Parasitaires, ISP, UMR INRA 1282, Université Tours, 37380 Nouzilly, France
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Jo-Anne R Dillon
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Canada
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Jørgen S Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Abstract
The initial description of murine strains deficient in complement component C5 has been followed by the recognition in a range of animal species of a variety of natural complement component deficiencies, many of which have been characterized at the molecular level. The use of such species in inflammatory and infectious experimental models has led to significant progress in understanding the role of specific complement factors (and pathways) in disease pathogenesis. Deficiencies of early complement factors are characterized by impairment of immune response, possibly due to defective processing of immune complexes. Complete (but not partial) deficiency of the central component C3 predisposes affected animals to significant risk of infection and renal disease. Studies in species deficient in the terminal pathway component C6 are particularly relevant for investigating the pathogenetic role of the terminal membrane attack complex (MAC), implicating it as a causative agent in diverse inflammatory insults such as reperfusion injury, glomerular damage, and xenograft hyperacute rejection. Further investigations in such naturally deficient strains, added to results derived from studies in knockout animals, are likely to expand our understanding of the role of the activated complement system in experimental inflammatory disease, with significant potential implications for the treatment of human disease.
Collapse
Affiliation(s)
- S Linton
- Department of Rheumatology, Nevill Hall Hospital, Brecon Road, Abergavenny, NP7 7EG, UK.
| |
Collapse
|