1
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of oocytes. Sci Rep 2024; 14:18809. [PMID: 39138273 PMCID: PMC11322307 DOI: 10.1038/s41598-024-69528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming was examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions-consistent with crystallization of most free water-during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-warming oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.
Collapse
Affiliation(s)
- Abdallah W Abdelhady
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - David W Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick L Crane
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Robert E Thorne
- Physics Department, Cornell University, Ithaca, NY, 14853, USA.
- MiTeGen, LLC, Ithaca, NY, 14850, USA.
| |
Collapse
|
2
|
Sirotinskaya V, Bar Dolev M, Yashunsky V, Bahari L, Braslavsky I. Extended Temperature Range of the Ice-Binding Protein Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7395-7404. [PMID: 38527127 PMCID: PMC11008235 DOI: 10.1021/acs.langmuir.3c03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Ice-binding proteins (IBPs) are expressed in various organisms for several functions, such as protecting them from freezing and freeze injuries. Via adsorption on ice surfaces, IBPs depress ice growth and recrystallization and affect nucleation and ice shaping. IBPs have shown promise in mitigating ice growth under moderate supercooling conditions, but their functionality under cryogenic conditions has been less explored. In this study, we investigate the impact of two types of antifreeze proteins (AFPs): type III AFP from fish and a hyperactive AFP from an insect, the Tenebrio molitor AFP, in vitrified dimethylsulfoxide (DMSO) solutions. We report that these AFPs depress devitrification at -80 °C. Furthermore, in cases where devitrification does occur, AFPs depress ice recrystallization during the warming stage. The data directly demonstrate that AFPs are active at temperatures below the regime of homogeneous nucleation. This research paves the way for exploring AFPs as potential enhancers of cryopreservation techniques, minimizing ice-growth-related damage, and promoting advancements in this vital field.
Collapse
Affiliation(s)
- Vera Sirotinskaya
- Institute
of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Maya Bar Dolev
- Institute
of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Faculty
of Biotechnology and Food Engineering, Technion, Haifa 3200003, Israel
| | - Victor Yashunsky
- Institute
of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7610001, Israel
- The
Swiss Institute for Dryland Environmental and Energy Research, Ben Gurion University, Beer-Sheva 84105, Israel
| | - Liat Bahari
- Institute
of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ido Braslavsky
- Institute
of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Dey MK, Devireddy RV. Adult Stem Cells Freezing Processes and Cryopreservation Protocols. Methods Mol Biol 2024; 2783:53-89. [PMID: 38478226 DOI: 10.1007/978-1-0716-3762-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of bovine oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567270. [PMID: 38014098 PMCID: PMC10680738 DOI: 10.1101/2023.11.15.567270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction using cryopreserved oocytes and embryos. We use synchrotron-based time-resolved x-ray diffraction and tools from protein cryocrystallography to characterize ice formation within bovine oocytes after cooling at rates between ∼1000 °C/min and ∼600,000°C /min and during warming at rates between 20,000 and 150,000 °C /min. Maximum crystalline ice diffraction intensity, maximum ice volume, and maximum ice grain size are always observed during warming. All decrease with increasing CPA concentration, consistent with the decreasing free water fraction. With the cooling rates, warming rates and CPA concentrations of current practice, oocytes may show no ice after cooling but always develop substantial ice fractions on warming, and modestly reducing CPA concentrations causes substantial ice to form during cooling. With much larger cooling and warming rates achieved using cryocrystallography tools, oocytes soaked as in current practice remain essentially ice free during both cooling and warming, and when soaked in half-strength CPA solution oocytes remain ice free after cooling and develop small grain ice during warming. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes, establish the character of ice formed, and suggest that substantial further improvements in warming rates are feasible. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development, allowing other deleterious effects of the cryopreservation cycle to be studied, and osmotic stress and CPA toxicity reduced. Significance Statement Cryopreservation of oocytes and embryos is critical in assisted reproduction of humans and domestic animals and in preservation of endangered species. Success rates are limited by damage from crystalline ice, toxicity of cryoprotective agents (CPAs), and damage from osmotic stress. Time-resolved x-ray diffraction of bovine oocytes shows that ice forms much more readily during warming than during cooling, that maximum ice fractions always occur during warming, and that the tools and large CPA concentrations of current protocols can at best only prevent ice formation during cooling. Using tools from cryocrystallography that give dramatically larger cooling and warming rates, ice formation can be completely eliminated and required CPA concentrations substantially reduced, expanding the scope for species-specific optimization of post-thaw reproductive outcomes.
Collapse
|
5
|
Alcalá E, Encabo L, Barroso F, Puentes A, Risco I, Risco R. Sound waves for solving the problem of recrystallization in cryopreservation. Sci Rep 2023; 13:7603. [PMID: 37165149 PMCID: PMC10172391 DOI: 10.1038/s41598-023-34681-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Organ biobanking is the pending subject of cryopreservation. Although the problem is multifaceted, advances in recent decades have largely related it to achieving rapid and uniform rewarming of cryopreserved samples. This is a physical challenge largely investigated in past in addition to cryoprotectant toxicity studies, which have also shown a great amount of advancement. This paper presents a proof-of-principle, based on the nematode Caenorhabditis elegans, of a technology capable of performing such a function: high intensity focused ultrasound. Thus, avoiding the problem of recrystallization, this worm, in its adult state, preserved at - [Formula: see text], has been systematically brought back to life after being heated with High Intensity Focused Ultrasound (HIFU) waves. The great advantage of this technology is that it is scalable; in addition, rewarming can be monitored in real time by MRI thermography and can be controlled by acoustic interferometry. We anticipate that our findings are the starting point for a possible approach to rewarming that can be used for cryopreservation of millimeter scale systems: either alone or in combination with other promising ways of heating, like nanowarming or dielectric heating, the present technology provides new ways of solving the physical aspects of the problem of recrystallization in cryopreservation, opening the door for the long-term storage of larger samples.
Collapse
Affiliation(s)
- Enrique Alcalá
- Escuela Superior de Ingenieria, C/Camino de los Descubrimientos s/n, University of Seville, 41092, Seville, Spain
| | - Laura Encabo
- Escuela Superior de Ingenieria, C/Camino de los Descubrimientos s/n, University of Seville, 41092, Seville, Spain
| | - Fatima Barroso
- Escuela Superior de Ingenieria, C/Camino de los Descubrimientos s/n, University of Seville, 41092, Seville, Spain
| | - Adriana Puentes
- Escuela Superior de Ingenieria, C/Camino de los Descubrimientos s/n, University of Seville, 41092, Seville, Spain
| | - Isabel Risco
- SafePreservation, C/Avda. De la Ciencias 55, 41020, Seville, Spain
| | - Ramon Risco
- Escuela Superior de Ingenieria, C/Camino de los Descubrimientos s/n, University of Seville, 41092, Seville, Spain.
- National Accelerators Centre-US, JA, CSIC, C/Tomas Alva Edison 7, 41092, Seville, Spain.
| |
Collapse
|
6
|
Gangwar L, Phatak SS, Etheridge M, Bischof JC. Perspective: A Guide to Successful ml to L Scale Vitrification and Rewarming. CRYOLETTERS 2022. [DOI: 10.54680/fr22610110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cryopreservation by vitrification to achieve an "ice free" glassy state is an effective technique for preserving biomaterials including cells, tissues, and potentially even whole organs. The major challenges in cooling to and rewarming from a vitrified state remain ice crystallization
and cracking/fracture. Ice crystallization can be inhibited by the use of cryoprotective agents (CPAs), though the inhibition further depends upon the rates achieved during cooling and rewarming. The minimal rate required to prevent any ice crystallization or recrystallization/devitrification
in a given CPA is called the critical cooling rate (CCR) or critical warming rate (CWR), respectively. On the other hand, physical cracking is mainly related to thermomechanical stresses, which can be avoided by maintaining temperature differences below a critical threshold. In this simplified
analysis, we calculate ΔT as the largest temperature difference occurring in a system during cooling or rewarming in the brittle/glassy phase. This ΔT is then used in a simple "thermal shock equation" to estimate thermal stress within the material to decide if the material is above
the yield strength and to evaluate the potential for fracture failure. In this review we aimed to understand the limits of success and failure at different length scales for cryopreservation by vitrification, due to both ice crystallization and cracking. Here we use thermal modeling to help
us understand the magnitude and trajectory of these challenges as we scale the biomaterial volume for a given CPA from the milliliter to liter scale. First, we solved the governing heat transfer equations in a cylindrical geometry for three common vitrification cocktails (i. e., VS55, DP6,
and M22) to estimate the cooling and warming rates during convective cooling and warming and nanowarming (volumetric heating). Second, we estimated the temperature difference (ΔT) an d compared it to a tolerable threshold ( ΔTmax) based on a simplified "thermal shock" equation
for the same cooling and rewarming conditions . We found, not surprisingly, that M22 achieves vitrification more easily during convective cooling and rewarming for all volumes compared to VS55 or DP6 due to its considerably lower CCR and CWR. Further, convective rewarming (boundary rewarming)
leads to larger temperature differences and smaller rates compared to nanowarming (volumetric rewarming) for all CPAs with increasing failure at larger volumes. We conclude that as more and larger systems are vitrified and rewarmed with standard CPA cocktails, this work can serve as a practical
guide to successful implementation based on the characteristic length (volume/surface area) of the system and the specific conditions of cooling and warming.
Collapse
Affiliation(s)
- Lakshya Gangwar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - Shaunak S. Phatak
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - Michael Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - John C. Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| |
Collapse
|
7
|
William N, Acker JP. Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives. Cryobiology 2020; 97:123-130. [PMID: 33007287 DOI: 10.1016/j.cryobiol.2020.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
To promote the recovery of cells that undergo intracellular ice formation (IIF), it is imperative that the recrystallization of intracellular ice is minimized. Hepatocytes are more prone to IIF than most mammalian cells, and thus we assessed the ability of novel small molecule carbohydrate-based ice recrystallization inhibitors (IRIs) to permeate and function within hepatocytes. HepG2 monolayers were treated with N-(4-chlorophenyl)-d-gluconamide (IRI 1), N-(2-fluorophenyl)-d-gluconamide (IRI 2), or para-methoxyphenyl-β-D-glycoside (IRI 3) and fluorescent cryomicroscopy was used for real time visualization of intracellular ice recrystallization. Both IRI 2 and IRI 3 reduced rates of intracellular recrystallization, whereas IRI 1 did not. IRI 2 and IRI 3, however, demonstrated a marked reduction in efficiency in the presence of the most frequently used permeating cryoprotectants (CPAs): glycerol, propylene glycol (PG), dimethyl sulfoxide (DMSO), and ethylene glycol (EG). Nevertheless, IRI 3 reduced rates of intracellular recrystallization relative to CPA-only controls in the presence of glycerol, PG, and DMSO. Interestingly, IRI preparation in trehalose, a commonly used non-permeating CPA, did not impact the activity of IRI 3. However, trehalose did increase the activity of IRI 1 while decreasing that of IRI 2. While this study suggests that each of these compounds could prove relevant in hepatocyte cryopreservation protocols where IIF would be prominent, CPA-mediated modulation of intracellular IRI activity is apparent and warrants further investigation.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Centre for Innovation, Canadian Blood Services, 8249 114th Street, Edmonton, AB, T6G 2R8, Canada.
| |
Collapse
|
8
|
Kreiner A, Stracke F, Zimmermann H. On the assessment of the stability of vitrified cryo-media by differential scanning calorimetry: A new tool for biobanks to derive standard operating procedures for storage, access and transport. Cryobiology 2019; 89:26-34. [DOI: 10.1016/j.cryobiol.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
|
9
|
Alsalim H, Jafarpour F, Ghazvini Zadegan F, Nasr-Esfahani MH, Niasari-Naslaji A. Epigenotoxic Effect of Dimethyl Sulfoxide on Buffalo Somatic Cells and Buffalo-Bovine Interspecies Somatic Cell Nuclear Transfer Embryos. CELL JOURNAL 2018; 20:544-551. [PMID: 30124001 PMCID: PMC6099134 DOI: 10.22074/cellj.2019.5446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Objective In the present study, we investigated the possible epigenotoxic effect of dimethyl sulfoxide (DMSO) on buffalo
fibroblast cells and on reconstructed oocytes during buffalo-bovine interspecies somatic cell nuclear transfer (iSCNT)
procedure and its effect on rate and quality of blastocyst which derived from these reconstructed oocytes.
Materials and Methods In this experimental study, cell viability of buffalo fibroblasts was assessed after exposure to various
concentration (0.5, 1, 2 and 4%) of DMSO using MTS assay. The epigenetic effect of DMSO was also assessed in terms of
DNA methylation in treated cells by flowcytometry. Reconstructed oocytes of buffalo-bovine iSCNT exposed for 16 hours after
activation to non-toxic concentration of DMSO (0.5%) to investigate the respective level of 5-methylcytosine, cleavage and
blastocyst rates and gene expression (pluripotent genes: OCT4, NANOG, SOX2, and trophectodermal genes: CDX2 and
TEAD4) of produced blastocysts.
Results Supplementation of culture medium with 4% DMSO had substantial adverse effect on the cell viability after
24 hours. DMSO, at 2% concentration, affected cell viability after 48 hours and increased DNA methylation and
mRNA expression of DNMT3A in fibroblast cells. Exposure of reconstructed oocytes to 0.5% DMSO for 16 hours post
activation did not have significant effect on DNA methylation, nor on the developmental competency of reconstructed
oocyte, however, it decreased the mRNA expression of NANOG in iSCNT blastocysts.
Conclusion Depending on the dose, DMSO might have epigenotoxic effect on buffalo fibroblast cells and reconstructed
oocytes and perturb the mRNA expression of NANOG in iSCNT blastocysts.
Collapse
Affiliation(s)
- Husamaldeen Alsalim
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Theriogenology, Faculty of Veterinary Medicine, University of Basra, Basra, Iraq
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Faezeh Ghazvini Zadegan
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Electronic Address:
| | - Amir Niasari-Naslaji
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. Electronic Address:
| |
Collapse
|
10
|
Shaik S, Devireddy R. Cryopreservation Protocols for Human Adipose Tissue Derived Adult Stem Cells. Methods Mol Biol 2018; 1773:231-259. [PMID: 29687394 DOI: 10.1007/978-1-4939-7799-4_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown to be most promising but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
11
|
Andreev AA, Sadikova DG, Ivlicheva NA, Boroda AV. Formation of ice microparticles in cryoprotective solutions. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s000635091702004x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Natesan H, Bischof JC. Multiscale Thermal Property Measurements for Biomedical Applications. ACS Biomater Sci Eng 2017; 3:2669-2691. [PMID: 33418696 DOI: 10.1021/acsbiomaterials.6b00565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioheat transfer-based innovations in health care include applications such as focal treatments for cancer and cardiovascular disease and the preservation of tissues and organs for transplantation. In these applications, the ability to preserve or destroy a biomaterial is directly dependent on its temperature history. Thus, thermal measurement and modeling are necessary to either avoid or induce the injury required. In this review paper, we will first define and discuss thermal conductivity and calorimetric measurements of biomaterials in the cryogenic (<-40 °C), subzero (<0 °C), hypothermic (<37 °C), and hyperthermic (>37 °C) regimes. For thermal conductivity measurements, we review the use of 3ω and laser flash techniques for measurement of thermal conductivity in thin (1 μm-2 mm thick), anisotropic, and/or multilayered tissues. At the nanoscale, we review the use of pump-probe and scanning probe methods to measure thermal conductivity at short temporal scales (10 ps-100 ns) and spatial scales (1 nm-1 μm), particularly in the coating and surrounding medium around metallic nanoparticles (1 nm-20 nm). For calorimetric techniques, we review differential scanning calorimetry (DSC), which is intrinsically at the microscale (e.g., tissue pieces or millions of cells in media). DSC is used with large sample mass (∼3-100 mg) over wide temperature ranges (-180 to 750 °C) with low-temperature scanning rates (<750 °C/min). The need to assess smaller samples at higher rates has led to the development of nanocalorimetry on a silicon based membrane. Here the sample weight is as low as 10 ng, thereby allowing ultra-rapid heating rates (∼1 × 107 C/min). Finally, we discuss various opportunities that are driving the need for new micro- and nanoscale thermal measurements.
Collapse
Affiliation(s)
- Harishankar Natesan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Hubel A, Spindler R, Skubitz APN. Storage of human biospecimens: selection of the optimal storage temperature. Biopreserv Biobank 2014; 12:165-75. [PMID: 24918763 DOI: 10.1089/bio.2013.0084] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Millions of biological samples are currently kept at low tempertures in cryobanks/biorepositories for long-term storage. The quality of the biospecimen when thawed, however, is not only determined by processing of the biospecimen but the storage conditions as well. The overall objective of this article is to describe the scientific basis for selecting a storage temperature for a biospecimen based on current scientific understanding. To that end, this article reviews some physical basics of the temperature, nucleation, and ice crystal growth present in biological samples stored at low temperatures (-20°C to -196°C), and our current understanding of the role of temperature on the activity of degradative molecules present in biospecimens. The scientific literature relevant to the stability of specific biomarkers in human fluid, cell, and tissue biospecimens is also summarized for the range of temperatures between -20°C to -196°C. These studies demonstrate the importance of storage temperature on the stability of critical biomarkers for fluid, cell, and tissue biospecimens.
Collapse
Affiliation(s)
- Allison Hubel
- 1 Biopreservation Core Resource, University of Minnesota , Minneapolis, Minnesota
| | | | | |
Collapse
|
14
|
Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions. Cryobiology 2014; 68:84-90. [DOI: 10.1016/j.cryobiol.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 11/27/2013] [Accepted: 12/16/2013] [Indexed: 11/22/2022]
|
15
|
GhattyVenkataKrishna PK, Carri GA. The effect of complex solvents on the structure and dynamics of protein solutions: The case of Lysozyme in trehalose/water mixtures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:14. [PMID: 23404569 DOI: 10.1140/epje/i2013-13014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/15/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
We present a Molecular Dynamics simulation study of the effect of trehalose concentration on the structure and dynamics of individual proteins immersed in trehalose/water mixtures. Hen egg-white Lysozyme is used in this study and trehalose concentrations of 0%, 10%, 20%, 30% and 100% by weight are explored. Surprisingly, we have found that changes in trehalose concentration do not change the global structural characteristics of the protein as measured by standard quantities like the mean square deviation, radius of gyration, solvent accessible surface area, inertia tensor and asphericity. Only in the limit of pure trehalose these metrics change significantly. Specifically, we found that the protein is compressed by 2% when immersed in pure trehalose. At the amino acid level there is noticeable rearrangement of the surface residues due to the change in polarity of the surrounding environment with the addition of trehalose. From a dynamic perspective, our computation of the Incoherent Intermediate Scattering Function shows that the protein slows down with increasing trehalose concentration; however, this slowdown is not monotonic. Finally, we also report in-depth results for the hydration layer around the protein including its structure, hydrogen-bonding characteristics and dynamic behavior at different length scales.
Collapse
|
16
|
Warkentin M, Sethna JP, Thorne RE. Critical droplet theory explains the glass formability of aqueous solutions. PHYSICAL REVIEW LETTERS 2013; 110:015703. [PMID: 23383808 DOI: 10.1103/physrevlett.110.015703] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Indexed: 05/11/2023]
Abstract
When pure water is cooled at ~10(6) K / s, it forms an amorphous solid (glass) instead of the more familiar crystalline phase. The presence of solutes can reduce this required (or "critical") cooling rate by orders of magnitude. Here, we present critical cooling rates for a variety of solutes as a function of concentration and a theoretical framework for understanding these rates. For all solutes tested, the critical cooling rate is an exponential function of concentration. The exponential's characteristic concentration for each solute correlates with the solute's Stokes radius. A modification of critical droplet theory relates the characteristic concentration to the solute radius and the critical nucleation radius of ice in pure water. This simple theory of ice nucleation and glass formability in aqueous solutions has consequences for general glass-forming systems, and in cryobiology, cloud physics, and climate modeling.
Collapse
Affiliation(s)
- Matthew Warkentin
- Physics Department, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
17
|
Hopkins JB, Badeau R, Warkentin M, Thorne RE. Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions. Cryobiology 2012; 65:169-78. [PMID: 22728046 PMCID: PMC3500404 DOI: 10.1016/j.cryobiol.2012.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/25/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10-10⁴ K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates.
Collapse
Affiliation(s)
| | - Ryan Badeau
- Physics Department, Cornell University, Ithaca, NY 14853 USA
| | | | | |
Collapse
|
18
|
Chen C, Li WZ, Song YC, Weng LD, Zhang N. Concentration dependence of water self-diffusion coefficients in dilute glycerol–water binary and glycerol–water–sodium chloride ternary solutions and the insights from hydrogen bonds. Mol Phys 2012. [DOI: 10.1080/00268976.2011.641602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. There are three primary storage techniques, freezing (cryopreservation), drying (anhydrobiosis), and freeze drying (lyophilization), each with its own advantages and disadvantages. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. Preservation by desiccation is an alternative that attempts to reproduce a naturally occurring preservative technique, namely, the phenomenon of anhydrobiosis and requires the use of high (and possibly, toxic) concentration of CPAs as well as disaccharides (sugars). Lyophilization works by first cryopreserving (freezing) the material and then desiccating (drying) it by the process of sublimation or the conversion of ice (solid) to water vapor (gas phase). The purpose of this chapter is to present a general overview of these storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage and drying storage.
Collapse
|
20
|
Choi J, Bischof JC. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. Cryobiology 2009; 60:52-70. [PMID: 19948163 DOI: 10.1016/j.cryobiol.2009.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/16/2009] [Accepted: 11/24/2009] [Indexed: 01/06/2023]
Abstract
It is well accepted in cryobiology that the temperature history and cooling rates experienced in biomaterials during freezing procedures correlate strongly with biological outcome. Therefore, heat transfer measurement and prediction in the cryogenic regime is central to the field. Although direct measurement of temperature history (i.e. heat transfer) can be performed, accuracy is usually achieved only for local measurements within a given system and cannot be readily generalized to another system without the aid of predictive models. The accuracy of these models rely upon thermal properties which are known to be highly dependent on temperature, and in the case of significant cryoprotectant loading, also on crystallized fraction. In this work, we review the available thermal properties of biomaterials in the cryogenic regime. The review shows a lack of properties for many biomaterials in the subzero temperature domain, and especially for systems with cryoprotective agents. Unfortunately, use of values from the limited data available (usually only down to -40 degrees C) lead to an underestimation of thermal property change (i.e. conductivity rise and specific heat drop due to ice crystallization) with lower temperatures. Conversely, use of surrogate values based solely on ice thermal properties lead to an overestimation of thermal property change for most biomaterials. Additionally, recent work extending the range of available thermal properties to -150 degrees C has shown that the thermal conductivity will drop in both PBS and tissue (liver) due to amorphous/glassy phases (versus crystalline) of biomaterials with the addition of cryoprotective additives such as glycerol. Thus, we investigated the implications of using approximated or constant property values versus measured temperature-dependent values for predicting temperature history during freezing in PBS (phosphate-buffered saline) and porcine liver with and without cryoprotectants (glycerol). Using measured property values (thermal conductivity, specific heat, and latent heat of phase change) of porcine liver, a standard was created which showed that values based on surrogate ice properties under-predicted cooling times, while constant properties (i.e. based on limited data reported near the freezing point) over-predicted cooling times. Additionally, a new iterative numerical method that accommodates non-equilibrium cooling effects as a function of time and position (i.e. crystallization versus amorphous phase) was used to predict temperature history during freezing in glycerol loaded systems. Results indicate that in addition to the increase in cooling times due to the lowering of thermal diffusivity with more glycerol, non-equilibrium effects such as the prevention of maximal crystallization (i.e. amorphous phases) will further increase required cooling times. It was also found that the amplified effect of non-equilibrium cooling and crystallization with system size prevents the thermal history to be described with non-dimensional lengths, such as was possible under equilibrium cooling. These results affirm the need to use accurate thermal properties that incorporate temperature dependence and crystallized fraction. Further studies are needed to extract thermal properties of other important biomaterials in the subzero temperature domain and to develop accurate numerical methods which take into account non-equilibrium cooling events encountered in cryobiology when partial or total vitrification occurs.
Collapse
Affiliation(s)
- Jeunghwan Choi
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
21
|
Meakin P, Jamtveit B. Geological pattern formation by growth and dissolution in aqueous systems. Proc Math Phys Eng Sci 2009. [DOI: 10.1098/rspa.2009.0189] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progress towards the development of a better understanding of the formation of geological patterns in wet systems due to precipitation and dissolution is reviewed. Emphasis is placed on the formation of terraces, stalactites, stalagmites and other carbonate patterns due to precipitation from flowing supersaturated solutions and the formation of scallops by dissolution in undersaturated turbulent fluids. In addition, the formation of spherulites, dendrites and very large, essentially euhedral, crystals is discussed. In most cases, the formation of very similar patterns as a result of the freezing/melting of ice and the precipitation/dissolution of minerals strongly suggests that complexity associated with aqueous chemistry, interfacial chemistry and biological processes has only a secondary effect on these pattern formation processes.
Collapse
Affiliation(s)
- Paul Meakin
- Physics of Geological Processes, University of Oslo, Norway
- Idaho National Laboratory, Center for Advanced Modeling and Simulation, Idaho Falls, ID 83415-3553, USA
- Idaho Multiphase Flow Assurance Innovation Center, Institute for Energy Technology, Kjeller, Norway
| | - Bjørn Jamtveit
- Physics of Geological Processes, University of Oslo, Norway
| |
Collapse
|
22
|
Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution. Cryobiology 2009; 59:83-9. [DOI: 10.1016/j.cryobiol.2009.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/16/2009] [Accepted: 04/16/2009] [Indexed: 11/19/2022]
|
23
|
Aksan A, Hubel A, Bischof JC. Frontiers in biotransport: water transport and hydration. J Biomech Eng 2009; 131:074004. [PMID: 19640136 DOI: 10.1115/1.3173281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biotransport, by its nature, is concerned with the motions of molecules in biological systems while water remains as the most important and the most commonly studied molecule across all disciplines. In this review, we focus on biopreservation and thermal therapies from the perspective of water, exploring how its molecular motions, properties, kinetic, and thermodynamic transitions govern biotransport phenomena and enable preservation or controlled destruction of biological systems.
Collapse
Affiliation(s)
- Alptekin Aksan
- Center for Biotransport, Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
24
|
Abstract
Biotransport, by its nature, is concerned with the motions of molecules in biological systems while water remains as the most important and the most commonly studied molecule across all disciplines. In this review, we focus on biopreservation and thermal therapies from the perspective of water, exploring how its molecular motions, properties, kinetic, and thermodynamic transitions govern biotransport phenomena and enable preservation or controlled destruction of biological systems.
Collapse
Affiliation(s)
- Alptekin Aksan
- Center for Biotransport, Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455; Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Allison Hubel
- Center for Biotransport, Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455; Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - John C. Bischof
- Center for Biotransport, Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455; Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
25
|
Waybright TJ, Britt JR, McCloud TG. Overcoming Problems of Compound Storage in DMSO: Solvent and Process Alternatives. ACTA ACUST UNITED AC 2009; 14:708-15. [DOI: 10.1177/1087057109335670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The common practice of preparing storage libraries of compounds in 100% DMSO solution well in advance of bioassay brings with it difficulties that affect the accuracy of the data obtained. This publication presents a series of studies done on a subset of compounds that are difficult to bioassay because they precipitate from DMSO solution. These compounds are members of a frequently used, diverse compound library of the sort commonly used in the high-throughput screening (HTS) environment. Experiments were performed to determine the concentration of drug in solution above the precipitate, observe the time course and effect of various mixtures of solvents upon precipitation, measure the viscosity of cosolvents to determine compatibility with HTS, determine water absorption rates for various solvent combinations, and investigate resolubilization techniques to ensure proper drug solution for HTS. Recommendations are made on how to best maximize the probability that problem compounds will remain in solution, be accurately transferred during assay plate production, and, as a result, be accurately bioassayed at the specified molar concentration. ( Journal of Biomolecular Screening 2009:708-715)
Collapse
Affiliation(s)
- Timothy J. Waybright
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., Frederick, Maryland
| | - John R. Britt
- Natural Products Support Group, Applied/Developmental Research Support Program, SAIC-Frederick, Inc., Frederick, Maryland
| | - Thomas G. McCloud
- Natural Products Support Group, Applied/Developmental Research Support Program, SAIC-Frederick, Inc., Frederick, Maryland,
| |
Collapse
|
26
|
A quantitative analysis of the thermal properties of porcine liver with glycerol at subzero and cryogenic temperatures. Cryobiology 2008; 57:79-83. [DOI: 10.1016/j.cryobiol.2008.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 11/19/2022]
|
27
|
Zhivotova E, Zinchenko A, Kuleshova L, Dukhopelnikov E, Chekanova V. Low-temperature phase behaviour of the binary system water–oxyethylated glycerol of polymerization degree n= 5 and intermolecular interactions in the system. Mol Phys 2008. [DOI: 10.1080/00268970802275579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Morris GJ, Faszer K, Green JE, Draper D, Grout BWW, Fonseca F. Rapidly cooled horse spermatozoa: Loss of viability is due to osmotic imbalance during thawing, not intracellular ice formation. Theriogenology 2007; 68:804-12. [PMID: 17645937 DOI: 10.1016/j.theriogenology.2007.06.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 05/04/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
The cellular damage that spermatozoa encounter at rapid rates of cooling has often been attributed to the formation of intracellular ice. However, no direct evidence of intracellular ice has been presented. An alternative mechanism has been proposed by Morris (2006) that cell damage is a result of an osmotic imbalance encountered during thawing. This paper examines whether intracellular ice forms during rapid cooling or if an alternative mechanism is present. Horse spermatozoa were cooled at a range of cooling rates from 0.3 to 3,000 degrees C/min in the presence of a cryoprotectant. The ultrastructure of the samples was examined by Cryo Scanning Electron Microscopy (CryoSEM) and freeze substitution, to determine whether intracellular ice formed and to examine alternative mechanisms of cell injury during rapid cooling. No intracellular ice formation was detected at any cooling rate. Differential scanning Calorimetry (DSC) was employed to examine the amount of ice formed at different rate of cooling. It is concluded that cell damage to horse spermatozoa, at cooling rates of up to 3,000 degrees C/min, is not caused by intracellular ice formation. Spermatozoa that have been cooled at high rates are subjected to an osmotic shock when they are thawed.
Collapse
Affiliation(s)
- G J Morris
- Asymptote Ltd, St John's Innovation Centre, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Lian G, Moore S, Heeney L. Population balance and computational fluid dynamics modelling of ice crystallisation in a scraped surface freezer. Chem Eng Sci 2006. [DOI: 10.1016/j.ces.2006.08.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Bischof JC, Mahr B, Choi JH, Behling M, Mewes D. Use of X-ray Tomography to Map Crystalline and Amorphous Phases in Frozen Biomaterials. Ann Biomed Eng 2006; 35:292-304. [PMID: 17136446 DOI: 10.1007/s10439-006-9176-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 08/10/2006] [Indexed: 11/25/2022]
Abstract
The outcome of both cryopreservation and cryosurgical freezing applications is influenced by the concentration and type of the cryoprotective agent (CPA) or the cryodestructive agent (i.e., the chemical adjuvants referred to here as CDA) added prior to freezing. It also depends on the amount and type of crystalline, amorphous and/or eutectic phases formed during freezing which can differentially affect viability. This work describes the use of X-ray computer tomography (CT) for non-invasive, indirect determination of the phase, solute concentration and temperature within biomaterials (CPA, CDA loaded solutions and tissues) by X-ray attenuation before and after freezing. Specifically, this work focuses on establishing the feasibility of CT (100-420 kV acceleration voltage) to accurately measure the concentration of glycerol or salt as model CPA and CDAs in unfrozen solutions and tissues at 20 degrees C, or the phase in frozen solutions and tissue systems at -78.5 and -196 degrees C. The solutions are composed of water with physiological concentrations of NaCl (0.88% wt/wt) and DMEM (Dulbecco's Modified Eagle's Medium) with added glycerol (0-8 M). The tissue system is chosen as 3 mm thick porcine liver slices as well as 2 cm diameter cores which were either imaged fresh (3-4 h cold ischemia) or after loading with DMEM based glycerol solutions (0-8 M) for times ranging from hours to 7 days at 4 degrees C. The X-ray attenuation is reported in Hounsfield units (HU), a clinical measurement which normalizes X-ray attenuation values by the difference between those of water and air. NaCl solutions from 0 to 23.3% wt/wt (i.e. water to eutectic concentration) were found to linearly correspond to HU in a range from 0 to 155. At -196 degrees C the variation was from -80 to 95 HU while at -78.5 degrees C all readings were roughly 10 HU lower. At 20 degrees C NaCl and DMEM solutions with 0-8 M glycerol loading show a linear variation from 0 to 145 HU. After freezing to -78.5 degrees C the variation of the NaCl and DMEM solutions is more than twice as large between -90 and +190 HU and was distinctly non-linear above 6 M. After freezing to -196 degrees C the variation of the NaCl and DMEM solutions increased even further to -80 to +225 HU and was distinctly non-linear above 4 M, which after modeling the phase change and crystallization process is shown to correlate with an amorphous phase. In all tissue systems the HU readings were similar to solutions but higher by roughly 30 HU, as well as showing some deviations at 0 M after storage, probably due to tissue swelling. The standard deviations in all measurements were roughly 5 HU or below in all samples. In addition, two practical examples for CT use were demonstrated including: (1) glycerol loading and freezing of tissue cores and, (2) a mock cryosurgical procedure. In the loading experiment CT was able to measure the permeation of the glycerol into the sample at 20 degrees C, as well as the evolution of distinct amorphous vs. crystalline phases after freezing to -196 degrees C. In the mock cryosurgery example, the iceball edge was clearly visualized, and attempts to determine the temperature within the iceball are discussed. An added benefit of this work is that the density of these frozen samples, an essential property in measurement and modeling of thermal processes, was obtained in comparison to ice.
Collapse
Affiliation(s)
- J C Bischof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
An optical-DSC system was designed, built, tested, calibrated and verified to incorporate into a single device the capability for simultaneous optical cryomicroscopy and differential scanning calorimetry (DSC). This instrument can be used to obtain both visual and thermal data for an individual specimen subjected to a defined freezing and thawing protocol with very little compromise in quality or range of data available in comparison with dedicated single instruments. Temperature and caloric calibrations were performed based on phase transition states in water, n-dodecane and n-decane. The instrument has proven effective for process analysis in living cells and in foodstuffs.
Collapse
Affiliation(s)
- S Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-1084, USA
| | | |
Collapse
|
32
|
Markarian SA, Bonora S, Bagramyan KA, Arakelyan VB. Glass-forming property of the system diethyl sulphoxide/water and its cryoprotective action on Escherichia coli survival. Cryobiology 2005; 49:1-9. [PMID: 15265712 DOI: 10.1016/j.cryobiol.2004.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 04/19/2004] [Indexed: 11/25/2022]
Abstract
In this work the thermal properties of diethyl sulphoxide (Et2SO), as well as its cryoprotective ability are studied and related to other well-known cryoprotectant substances, like dimethyl sulphoxide (Me2SO). We have investigated the thermal properties of Et2SO/water systems using Differential Scanning Calorimetry at a very low heating/cooling rate (2 degrees C/min). Liquid/solid or glassy/crystalline transitions have been observed only for the solutions with content of Et2SO ranging from 5 up to 40% w/w and/or greater than 85%. In the 45-75% w/w Et2SO range we have found a noticeable glass-forming tendency and a great stability of the amorphous state to the reheating. In samples with Et2SO content ranging from 80 to 85%, we observed a great stability of the glass forming by cooling, but a lesser stability to the subsequent reheating. The glass-forming tendency of these solutions is discussed in terms of existing competitive interactions between molecules of Et2SO, on the one hand, and Et2SO and water molecules, on the other hand. The results are well explainable on the basis of the model structure of water/Et2SO solutions, deduced by Raman and infrared studies [J. Mol. Struct. 665 (2003) 285-292]. The cryoprotective ability of Et2SO on Escherichia coli survival has been also investigated, and a comparison among Et2SO and other widely used cryoprotectants, like Me2SO and glycerol has been done. Survival of E. coli, determined after freezing-thawing process, was maximal at 45% w/w Et2SO (more than 85% viability). It should be noted that at the same concentration the survival is only about 35% in the presence of Me2SO and not more than 15% in the presence of glycerol. These features are well consisted with the glass-forming properties of Et2SO.
Collapse
Affiliation(s)
- Shiraz A Markarian
- Department of Chemistry, Yerevan State University, 375049 Yerevan, Armenia.
| | | | | | | |
Collapse
|
33
|
Han B, Bischof JC. Thermodynamic Nonequilibrium Phase Change Behavior and Thermal Properties of Biological Solutions for Cryobiology Applications. J Biomech Eng 2004; 126:196-203. [PMID: 15179849 DOI: 10.1115/1.1688778] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures ⩽−40°C. Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions–either water-NaCl or phosphate buffered saline (PBS)–with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight=6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes–water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures ⩽−100°C regardless of the additives, but they increase between −100°C and −30°C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.
Collapse
Affiliation(s)
- Bumsoo Han
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
34
|
Wang JH. A comprehensive evaluation of the effects and mechanisms of antifreeze proteins during low-temperature preservation. Cryobiology 2000; 41:1-9. [PMID: 11017755 DOI: 10.1006/cryo.2000.2265] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the past 10 years, it has become clear that the effects of antifreeze proteins (AFPs) on cell viability and on thermodynamic properties during low-temperature preservation are complex, even controversial. In this paper, these studies are reviewed systematically and some conclusions are drawn. It is shown that AFPs can display both protective and cytotoxic actions and both nucleation of ice and inhibition of ice crystal growth, depending on several factors; these include the specific storage protocol, the dose and type of AFP, the composition and concentration of cryoprotectant, and the features of the biological material. A novel model, incorporating some recent findings concerning these proteins, is proposed to explain this dual effect of AFPs during cryopreservation. AFP-ice complexes have some affinity interactions with cell membranes and with many other molecules present in cryopreservation solutions. When the intensity of these interactions reaches a certain level, the AFP-ice complexes may be induced to aggregate, thereby inducing ice nucleation and loss of the ability to inhibit recrystallization.
Collapse
Affiliation(s)
- J H Wang
- College of Life Science, Zhejiang University, Wensan Road, Hangzhou 310012, China
| |
Collapse
|
35
|
Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM. Vitrification enhancement by synthetic ice blocking agents. Cryobiology 2000; 40:228-36. [PMID: 10860622 DOI: 10.1006/cryo.2000.2243] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small concentrations of the synthetic polymer polyvinyl alcohol (PVA) were found to inhibit formation of ice in water/cryoprotectant solutions. Ice inhibition improved with decreasing molecular weight. A PVA copolymer of molecular weight 2 kDa consisting of 20% vinyl acetate was found to be particularly effective. PVA copolymer concentrations of 0.001, 0.01, 0.1, and 1% w/w decreased the concentration of glycerol required to vitrify in a 10-ml volume by 1, 3, 4, and 5% w/w, respectively. Dimethyl sulfoxide concentrations required for vitrification were also reduced by 1, 2, 2, and 3% w/w, respectively. Crystallization of ice on borosilicate glass in contact with cryoprotectant solutions was inhibited by only 1 ppm of PVA copolymer. Devitrification of ethylene glycol solutions was also strongly inhibited by PVA copolymer. Visual observation and differential scanning calorimeter data suggest that PVA blocks ice primarily by inhibition of heterogeneous nucleation. PVA thus appears to preferentially bind and inactivate heterogeneous nucleators and/or nascent ice crystals in a manner similar to that of natural antifreeze proteins found in cold-hardy fish and insects. Synthetic PVA-derived ice blocking agents can be produced much less expensively than antifreeze proteins, offering new opportunities for improving cryopreservation by vitrification.
Collapse
Affiliation(s)
- B Wowk
- 21st Century Medicine, Inc., Rancho Cucamonga, CA 91730, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The glass-forming tendency on cooling and the stability of the wholly amorphous state on warming have been previously reported for many cryoprotective solutions. However, unlike the other solutions, those of dimethyl sulfoxide (Me(2)SO) have not been studied on cooling. In this paper, the glass-forming tendency of Me(2)SO aqueous solutions has been measured for solutions containing 40, 43, 45, and 47.5% (w/w) Me(2)SO. At a concentration of 45% (w/w), the glass-forming tendency decreases in the following order: levo-2, 3-butanediol, 1,3-butanediol, 1,2-propanediol, 1,2,3-butanetriol, dimethyl sulfoxide, dimethylformamide, diethylformamide, 1, 4-butanediol, ethylene glycol, glycerol, 1,3-propanediol. New measurements have also been made on warming the Me(2)SO solutions.
Collapse
Affiliation(s)
- A Baudot
- Centre de Recherches sur les Très Basses Températures, C.N.R.S., Grenoble Cedex 9, 38042, France
| | | | | |
Collapse
|