1
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
2
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
3
|
GEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis. Proc Natl Acad Sci U S A 2016; 113:6973-8. [PMID: 27274054 DOI: 10.1073/pnas.1607179113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectional outgrowth. Here, using the bipolar PLM neurons in Caenorhabditis elegans, we show that the guanine nucleotide exchange factors (GEFs) UNC-73/Trio and TIAM-1 promote anterior and posterior neurite extension, respectively. The Rac subfamily GTPases act downstream of the GEFs; CED-10/Rac1 is activated by TIAM-1, whereas CED-10 and MIG-2/RhoG act redundantly downstream of UNC-73. Moreover, these two pathways antagonize each other and thus regulate the directional bias of neuritogenesis. Our study suggests that directional specificity of neurite extension is conferred through the intracellular activation of distinct GEFs and Rac GTPases.
Collapse
|
4
|
Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Dev Biol 2014; 396:121-35. [PMID: 25281934 DOI: 10.1016/j.ydbio.2014.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023]
Abstract
The Caenorhabditis elegans uterine seam cell (utse) is an H-shaped syncytium that connects the uterus to the body wall. Comprising nine nuclei that move outward in a bidirectional manner, this synctium undergoes remarkable shape change during development. Using cell ablation experiments, we show that three surrounding cell types affect utse development: the uterine toroids, the anchor cell and the sex myoblasts. The presence of the anchor cell (AC) nucleus within the utse is necessary for proper utse development and AC invasion genes fos-1, cdh-3, him-4, egl-43, zmp-1 and mig-10 promote utse cell outgrowth. Two types of uterine lumen epithelial cells, uterine toroid 1 (ut1) and uterine toroid 2 (ut2), mediate proper utse outgrowth and we show roles in utse development for two genes expressed in the uterine toroids: the RASEF ortholog rsef-1 and Trio/unc-73. The SM expressed gene unc-53/NAV regulates utse cell shape; ablation of sex myoblasts (SMs), which generate uterine and vulval muscles, cause defects in utse morphology. Our results clarify the nature of the interactions that exist between utse and surrounding tissue, identify new roles for genes involved in cell outgrowth, and present the utse as a new model system for understanding cell shape change and, putatively, diseases associated with cell shape change.
Collapse
|
5
|
Dynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension. Curr Biol 2014; 24:1778-85. [DOI: 10.1016/j.cub.2014.06.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 01/22/2023]
|
6
|
Marcus-Gueret N, Schmidt KL, Stringham EG. Distinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans. Genetics 2012; 190:129-42. [PMID: 21996675 PMCID: PMC3249371 DOI: 10.1534/genetics.111.134429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton regulator UNC-53/NAV2 is required for both the anterior and posterior outgrowth of several neurons as well as that of the excretory cell while the kinesin-like motor VAB-8 is essential for most posteriorly directed migrations in Caenorhabditis elegans. Null mutations in either unc-53 or vab-8 result in reduced posterior excretory canal outgrowth, while double null mutants display an enhanced canal extension defect, suggesting the genes act in separate pathways to control this posteriorly directed outgrowth. Genetic analysis of putative interactors of UNC-53 or VAB-8, and cell-specific rescue experiments suggest that VAB-8, SAX-3/ROBO, SLT-1/Slit, and EVA-1 are functioning together in the outgrowth of the excretory canals, while UNC-53 appears to function in a parallel pathway with UNC-71/ADAM. The known VAB-8 interactor, the Rac/Rho GEF UNC-73/TRIO operates in both pathways, as isoform specific alleles exhibit enhancement of the phenotype in double-mutant combination with either unc-53 or vab-8. On the basis of these results, we propose a bipartite model for UNC-73/TRIO activity in excretory canal extension: a cell autonomous function that is mediated by the Rho-specific GEF domain of the UNC-73E isoform in conjunction with UNC-53 and UNC-71 and a cell nonautonomous function that is mediated by the Rac-specific GEF domain of the UNC-73B isoform, through partnering with VAB-8 and the receptors SAX-3 and EVA-1.
Collapse
Affiliation(s)
- Nancy Marcus-Gueret
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kristopher L. Schmidt
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eve G. Stringham
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
7
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
8
|
Caenorhabditis elegans fibroblast growth factor receptor signaling can occur independently of the multi-substrate adaptor FRS2. Genetics 2010; 185:537-47. [PMID: 20308281 DOI: 10.1534/genetics.109.113373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The components of receptor tyrosine kinase signaling complexes help to define the specificity of the effects of their activation. The Caenorhabditis elegans fibroblast growth factor receptor (FGFR), EGL-15, regulates a number of processes, including sex myoblast (SM) migration guidance and fluid homeostasis, both of which require a Grb2/Sos/Ras cassette of signaling components. Here we show that SEM-5/Grb2 can bind directly to EGL-15 to mediate SM chemoattraction. A yeast two-hybrid screen identified SEM-5 as able to interact with the carboxy-terminal domain (CTD) of EGL-15, a domain that is specifically required for SM chemoattraction. This interaction requires the SEM-5 SH2-binding motifs present in the CTD (Y(1009) and Y(1087)), and these sites are required for the CTD role of EGL-15 in SM chemoattraction. SEM-5, but not the SEM-5 binding sites located in the CTD, is required for the fluid homeostasis function of EGL-15, indicating that SEM-5 can link to EGL-15 through an alternative mechanism. The multi-substrate adaptor protein FRS2 serves to link vertebrate FGFRs to Grb2. In C. elegans, an FRS2-like gene, rog-1, functions upstream of a Ras/MAPK pathway for oocyte maturation but is not required for EGL-15 function. Thus, unlike the vertebrate FGFRs, which require the multi-substrate adaptor FRS2 to recruit Grb2, EGL-15 can recruit SEM-5/Grb2 directly.
Collapse
|
9
|
McNeill EM, Roos KP, Moechars D, Clagett-Dame M. Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Dev 2010; 5:6. [PMID: 20184720 PMCID: PMC2843687 DOI: 10.1186/1749-8104-5-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/25/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND All-trans retinoic acid (atRA) is required for nervous system development, including the developing hindbrain region. Neuron navigator 2 (Nav2) was first identified as an atRA-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, Rainb1), and is required for atRA-mediated neurite outgrowth. In this paper, we explore the importance of Nav2 in nervous system development and function in vivo. RESULTS Nav2 hypomorphic homozygous mutants show decreased survival starting at birth. Nav2 mutant embryos show an overall reduction in nerve fiber density, as well as specific defects in cranial nerves IX (glossopharyngeal) and X (vagus). Nav2 hypomorphic mutant adult mice also display a blunted baroreceptor response compared to wild-type controls. CONCLUSIONS Nav2 functions in mammalian nervous system development, and is required for normal cranial nerve development and blood pressure regulation in the adult.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
10
|
Stringham EG, Schmidt KL. Navigating the cell: UNC-53 and the navigators, a family of cytoskeletal regulators with multiple roles in cell migration, outgrowth and trafficking. Cell Adh Migr 2009; 3:342-6. [PMID: 19684480 DOI: 10.4161/cam.3.4.9451] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Changes in cell shape are associated with a variety of processes including cell migration, axon outgrowth, cell division and vesicle trafficking. C. elegans UNC-53 and its vertebrate homologs, the Navigators, are required for the migration of cells and the outgrowth of neuronal processes. The identification of novel molecular interactions and live imaging studies have revealed that UNC-53/NAVs are signal transducers associated with actin filaments, microtubules and intermediate filaments. In addition to modulating cytoskeletal dynamics at the leading edge of migrating or outgrowing cells, both UNC-53 and the navigators are expressed in adult cells, conspicuously those with specialized roles in endocytosis or secretion. Collectively, these results suggest that UNC-53/NAVs may be a central regulator of cytoskeletal dynamics, responsible for integrating signaling cues to multiple components of the cytoskeleton to coordinate rearrangement during cell outgrowth or trafficking.
Collapse
Affiliation(s)
- Eve G Stringham
- Department of Biology, Trinity Western University, Langley, BC, Canada.
| | | |
Collapse
|
11
|
van Haren J, Draegestein K, Keijzer N, Abrahams JP, Grosveld F, Peeters PJ, Moechars D, Galjart N. Mammalian Navigators are microtubule plus-end tracking proteins that can reorganize the cytoskeleton to induce neurite-like extensions. ACTA ACUST UNITED AC 2009; 66:824-38. [DOI: 10.1002/cm.20370] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Polanska UM, Fernig DG, Kinnunen T. Extracellular interactome of the FGF receptor-ligand system: complexities and the relative simplicity of the worm. Dev Dyn 2009; 238:277-93. [PMID: 18985724 DOI: 10.1002/dvdy.21757] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate a multitude of biological functions in embryonic development and in adult. A major question is how does one family of growth factors and their receptors control such a variety of functions? Classically, specificity was thought to be imparted by alternative splicing of the FGFRs, resulting in isoforms that bind specifically to a subset of the FGFs, and by different saccharide sequences in the heparan sulfate proteoglycan (HSPG) co-receptor. A growing number of noncanonical co-receptors such as integrins and neural cell adhesion molecule (NCAM) are now recognized as imparting additional complexity to classic FGFR signaling. This review will discuss the noncanonical FGFR ligands and speculate on the possibility that they provide additional and alternative means to determining the functional specificity of FGFR signaling. We will also discuss how invertebrate models such as C. elegans may advance our understanding of noncanonical FGFR signaling.
Collapse
Affiliation(s)
- Urszula M Polanska
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
13
|
Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 2009; 136:563-74. [PMID: 19168673 DOI: 10.1242/dev.016816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The shape changes that are required to position a cell to migrate or grow out in a particular direction involve a coordinated reorganization of the actin cytoskeleton. Although it is known that the ARP2/3 complex nucleates actin filament assembly, exactly how the information from guidance cues is integrated to elicit ARP2/3-mediated remodeling during outgrowth remains vague. Previous studies have shown that C. elegans UNC-53 and its vertebrate homolog NAV (Neuronal Navigators) are required for the migration of cells and neuronal processes. We have identified ABI-1 as a novel molecular partner of UNC-53/NAV2 and have found that a restricted calponin homology (CH) domain of UNC-53 is sufficient to bind ABI-1. ABI-1 and UNC-53 have an overlapping expression pattern, and display similar cell migration phenotypes in the excretory cell, and in mechanosensory and motoneurons. Migration defects were also observed after RNAi of proteins known to function with abi-1 in actin dynamics, including nck-1, wve-1 and arx-2. We propose that UNC-53/NAV2, through its CH domain, acts as a scaffold that links ABI-1 to the ARP2/3 complex to regulate actin cytoskeleton remodeling.
Collapse
|
14
|
ADAM function in embryogenesis. Semin Cell Dev Biol 2008; 20:153-63. [PMID: 18935966 DOI: 10.1016/j.semcdb.2008.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 12/22/2022]
Abstract
Cleavage of proteins inserted into the plasma membrane (shedding) is an essential process controlling many biological functions including cell signaling, cell adhesion and migration as well as proliferation and differentiation. ADAM surface metalloproteases have been shown to play an essential role in these processes. Gene inactivation during embryonic development have provided evidence of the central role of ADAM proteins in nematodes, flies, frogs, birds and mammals. The relative contribution of four subfamilies of ADAM proteins to developmental processes is the focus of this review.
Collapse
|
15
|
Martínez-López MJ, Alcántara S, Mascaró C, Pérez-Brangulí F, Ruiz-Lozano P, Maes T, Soriano E, Buesa C. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration. Mol Cell Neurosci 2005; 28:599-612. [PMID: 15797708 DOI: 10.1016/j.mcn.2004.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 11/21/2022] Open
Abstract
The development of the nervous system (NS) requires the coordinated migration of multiple waves of neurons and subsequent processes of neurite maturation, both involving selective guidance mechanisms. In Caenorhabditis elegans, unc-53 codes for a new multidomain protein involved in the directional migration of a subset of cells. We describe here the first functional characterization of the mouse homologue, mouse Neuron navigator 1 (mNAV1), whose expression is largely restricted to the NS during development. EGFP-mNAV1 associates with microtubules (MTs) plus ends present in the growth cone through a new microtubule-binding (MTB) domain. Moreover, its overexpression in transfected cells leads to MT bundling. The abolition of mNAV1 causes loss of directionality in the leading processes of pontine-migrating cells, providing evidence for a role of mNAV1 in mediating Netrin-1-induced directional migration.
Collapse
Affiliation(s)
- María José Martínez-López
- Department of Biochemistry and Molecular Biology, Cell Signaling Group, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Birnbaum D, Popovici C, Roubin R. A pair as a minimum: the two fibroblast growth factors of the nematode Caenorhabditis elegans. Dev Dyn 2005; 232:247-55. [PMID: 15614779 DOI: 10.1002/dvdy.20219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factors (FGFs) regulate many important developmental and homeostatic physiological events. The FGF superfamily contains several families. In this review, we present recent findings on the two FGFs of the nematode Caenorhabditis elegans from both functional and phylogenic points of view. C. elegans has a single FGFR (EGL-15) with two functionally exclusive isoforms, and two FGFs (LET-756 and EGL-17), which play distinct roles: an essential function for the former, and guidance of the migrating sex myoblasts for the latter. Regulation of homeostasis by control of the fluid balance could be the basis for the essential function of LET-756. Phylogenetic and functional studies suggest that LET-756, like vertebrate FGF9, -16, and -20, belongs to the FGF9 family, whereas EGL-17, like vertebrate FGF8, -17, and -18, could be included in the FGF8 family.
Collapse
Affiliation(s)
- Daniel Birnbaum
- Molecular Oncology Laboratory, UMR599 INSERM, 27 Bd. Lei Roure, 13009 Marseille, France.
| | | | | |
Collapse
|
17
|
Peeters PJ, Baker A, Goris I, Daneels G, Verhasselt P, Luyten WHML, Geysen JJGH, Kass SU, Moechars DWE. Sensory deficits in mice hypomorphic for a mammalian homologue of unc-53. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:89-101. [PMID: 15158073 DOI: 10.1016/j.devbrainres.2004.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/20/2004] [Indexed: 10/26/2022]
Abstract
The migration of cells and the extension of cellular processes along pathways to their defined destinations are crucial in the development of higher organisms. Caenorhabditis elegans unc-53 plays an important role in cell migration and the outgrowth of cellular processes such as axons. To gain further insight into the biological function of unc53H2, a recently identified mammalian homologue of unc-53, we have generated mice carrying a mutation of unc53H2 and provide evidence that unc53H2 is involved in neuronal development and, more specifically, the development of different sensory systems. The unc53H2 hypomorphic mouse showed a general impaired acuity of several sensory systems (olfactory, auditory, visual and pain sensation) which in case of the visual system was corroborated by the morphological observation of hypoplasia of the optic nerve. We hypothesize that in analogy with its C. elegans homologue, unc53H2 may play a role in the processes of cellular outgrowth and migration.
Collapse
Affiliation(s)
- Pieter J Peeters
- Johnson & Johnson Pharmaceutical Research and Development, A Division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang X, Huang P, Robinson MK, Stern MJ, Jin Y. UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 2003; 130:3147-61. [PMID: 12783787 DOI: 10.1242/dev.00518] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The migration of cells and growth cones is a process that is guided by extracellular cues and requires the controlled remodeling of the extracellular matrix along the migratory path. The ADAM proteins are important regulators of cellular adhesion and recognition because they can combine regulated proteolysis with modulation of cell adhesion. We report that the C. elegans gene unc-71 encodes a unique ADAM with an inactive metalloprotease domain. Loss-of-function mutations in unc-71 cause distinct defects in motor axon guidance and sex myoblast migration. Many unc-71 mutations affect the disintegrin and the cysteine-rich domains, supporting a major function of unc-71 in cell adhesion. UNC-71 appears to be expressed in a selected set of cells. Genetic mosaic analysis and tissue-specific expression studies indicate that unc-71 acts in a cell non-autonomous manner for both motor axon guidance and sex myoblast migration. Finally, double mutant analysis of unc-71 with other axon guidance signaling molecules suggests that UNC-71 probably functions in a combinatorial manner with integrins and UNC-6/netrin to provide distinct axon guidance cues at specific choice points for motoneurons.
Collapse
Affiliation(s)
- Xun Huang
- Department of Molecular, Cellular and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
19
|
Stringham E, Pujol N, Vandekerckhove J, Bogaert T. unc-53 controls longitudinal migration in C. elegans. Development 2002; 129:3367-79. [PMID: 12091307 DOI: 10.1242/dev.129.14.3367] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell migration and outgrowth are thought to be based on analogous mechanisms that require repeated cycles of process extension, reading and integration of multiple directional signals, followed by stabilisation in a preferred direction, and renewed extension. We have characterised a C. elegans gene, unc-53, that appears to act cell autonomously in the migration and outgrowth of muscles, axons and excretory canals. Abrogation of unc-53 function disrupts anteroposterior outgrowth in those cells that normally express the gene. Conversely, overexpression of unc-53 in bodywall muscles leads to exaggerated outgrowth. UNC-53 is a novel protein conserved in vertebrates that contains putative SH3- and actin-binding sites. unc-53 interacts genetically with sem-5 and we demonstrated a direct interaction in vitro between UNC-53 and the SH2-SH3 adaptor protein SEM-5/GRB2. Thus, unc-53 is involved in longitudinal navigation and might act by linking extracellular guidance cues to the intracellular cytoskeleton.
Collapse
Affiliation(s)
- Eve Stringham
- Department of Biochemistry, Ghent University - Flanders Interuniversity Institute for Biotechnology (VIB09), Gent 9000, Belgium
| | | | | | | |
Collapse
|
20
|
Maes T, Barceló A, Buesa C. Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics 2002; 80:21-30. [PMID: 12079279 DOI: 10.1006/geno.2002.6799] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned the gene neuron navigator-1 (NAV1), a human homolog of unc-53, a gene involved in axon guidance in Caenorhabditis elegans. Duplications during evolution gave rise to three human homologs located on chromosomes 1q32.1, 11p15.1, and 12q21.1. NAV1 and NAV2 are expressed in the developing brain. NAV1, NAV2, and NAV3 expression is detected in adult heart, kidney, and brain, respectively. NAV1 encodes a protein lacking, in the aminoterminal part, a CH domain present in the other NAV genes. The first exon of NAV1 arose through an ancient internal duplication of sequences that also gave rise to exon 8 of NAV3 and exon 7 of NAV2. A detailed study of the NAV environment on the different chromosomes reveals incomplete micro-syntheny between the three regions. Through analysis of the phylogenetic relationships for three different gene families in the NAV environment, we reconstructed part of the events that formed these regions.
Collapse
Affiliation(s)
- Tamara Maes
- Cell Signaling Group, Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | |
Collapse
|
21
|
Schutzman JL, Borland CZ, Newman JC, Robinson MK, Kokel M, Stern MJ. The Caenorhabditis elegans EGL-15 signaling pathway implicates a DOS-like multisubstrate adaptor protein in fibroblast growth factor signal transduction. Mol Cell Biol 2001; 21:8104-16. [PMID: 11689700 PMCID: PMC99976 DOI: 10.1128/mcb.21.23.8104-8116.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15.
Collapse
Affiliation(s)
- J L Schutzman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | | | | | | | | | |
Collapse
|
22
|
Spencer AG, Orita S, Malone CJ, Han M. A RHO GTPase-mediated pathway is required during P cell migration in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2001; 98:13132-7. [PMID: 11687661 PMCID: PMC60836 DOI: 10.1073/pnas.241504098] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2001] [Accepted: 09/24/2001] [Indexed: 11/18/2022] Open
Abstract
The Rho family of guanine triphosphate hydrolases controls various cellular processes, including cell migration. We describe here the demonstration of a role for a RhoA GTPase homologue during cell migration in Caenorhabditis elegans. We show that eliminating or reducing rho-1 gene function by using a dominant-negative transgene or dsRNA interference results in a severe defect in migration of hypodermal P cells to a ventral position. Biochemical and genetic data also suggest that unc-73, which encodes a Trio-like guanine nucleotide exchange factor, may act as an activator of rho-1 in the migration process. Mutations in let-502 ROCK, a homologue of a RhoA effector in mammals, also cause defects in P cell migration, suggesting that it may be one of several effectors acting downstream of rho-1 during P cell migration. Finally, we provide evidence to support the idea that other small Rac subfamily small GTPases act redundantly and in parallel to RHO-1 in this specific cell migration event.
Collapse
Affiliation(s)
- A G Spencer
- Howard Hughes Medical Institute, Department of Molecular Cell and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
23
|
Branda CS, Stern MJ. Mechanisms controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. Dev Biol 2000; 226:137-51. [PMID: 10993679 DOI: 10.1006/dbio.2000.9853] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex myoblast migration in C. elegans hermaphrodites is controlled by multiple guidance mechanisms. A gonad-dependent attraction functions to guide the sex myoblasts to their precise final positions flanking the gonad. In the absence of this attraction, a gonad-dependent repulsion is revealed. In addition to gonad-dependent influences, a gonad-independent mechanism propels the sex myoblasts anteriorly to a broad range of positions near the center of the animal. Here we describe a temporal analysis of sex myoblast migration that reveals when the gonad-dependent attraction and the gonad-independent mechanisms normally function. We provide evidence that EGL-17, a fibroblast growth factor-like protein, is expressed in the gonadal cells required to attract the sex myoblasts to their precise final positions, further supporting our model that EGL-17 defines the gonad-dependent attractant. Furthermore, cell ablation experiments reveal that EGL-17 and the gonad-dependent repellent likely emanate from the same cellular sources. Analyses of candidate mutations for their effects on the gonad-dependent repulsion reveal that a set of genes known to affect multiple aspects of axonogenesis, unc-14, unc-33, unc-44, and unc-51, is essential for this repulsive mechanism. In addition, we have discovered that a SAX-3/Roundabout-dependent mechanism is used to maintain the sex myoblasts along the ventral muscle quadrants.
Collapse
Affiliation(s)
- C S Branda
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | |
Collapse
|
24
|
Chang C, Hopper NA, Sternberg PW. Caenorhabditis elegans SOS-1 is necessary for multiple RAS-mediated developmental signals. EMBO J 2000; 19:3283-94. [PMID: 10880441 PMCID: PMC313952 DOI: 10.1093/emboj/19.13.3283] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vulval induction in Caenorhabditis elegans has helped define an evolutionarily conserved signal transduction pathway from receptor tyrosine kinases (RTKs) through the adaptor protein SEM-5 to RAS. One component present in other organisms, a guanine nucleotide exchange factor for Ras, has been missing in C.ELEGANS: To understand the regulation of this pathway it is crucial to have all positive-acting components in hand. Here we describe the identification, cloning and genetic characterization of C.ELEGANS: SOS-1, a putative guanine nucleotide exchanger for LET-60 RAS. RNA interference experiments suggest that SOS-1 participates in RAS-dependent signaling events downstream of LET-23 EGFR, EGL-15 FGFR and an unknown RTK. We demonstrate that the previously identified let-341 gene encodes SOS-1. Analyzing vulval development in a let-341 null mutant, we find an SOS-1-independent pathway involved in the activation of RAS signaling. This SOS-1-independent signaling is not inhibited by SLI-1/Cbl and is not mediated by PTP-2/SHP, raising the possibility that there could be another RasGEF.
Collapse
Affiliation(s)
- C Chang
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
25
|
|
26
|
Nishiwaki K. Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 1999; 152:985-97. [PMID: 10388818 PMCID: PMC1460665 DOI: 10.1093/genetics/152.3.985] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rotational symmetry of the Caenorhabditis elegans gonad arms is generated by the symmetrical migration of two distal tip cells (DTCs), located on the anterior and posterior ends of the gonad primordium. Mutations that cause asymmetrical migration of the two DTCs were isolated. All seven mutations were recessive and assigned to six different complementation groups. vab-3(k121) and vab-3(k143) affected anterior DTC migration more frequently than posterior, although null mutants showed no bias. The other five mutations, mig-14(k124), mig-17(k113), mig-18(k140), mig-19(k142), and mig-20(k148), affected posterior DTC migration more frequently than anterior. These observations imply that the migration of each DTC is regulated differently. mig-14 and mig-19 also affected the migration of other cells in the posterior body region. Four distinct types of DTC migration abnormalities were defined on the basis of the mutant phenotypes. vab-3; mig-14 double mutants exhibited the types of DTC migration defects seen for vab-3 single mutants. Combination of mig-17 and mig-18 or mig-19, which are characterized by the same types of posterior DTC migration defects, exhibited strong enhancement of anterior DTC migration defects, suggesting that they affect the same or parallel pathways regulating anterior DTC migration.
Collapse
Affiliation(s)
- K Nishiwaki
- PRESTO, Japan Science and Technology Corporation and Fundamental Research Laboratories, NEC Corporation, Miyukigaoka, Tsukuba 305, Japan.
| |
Collapse
|
27
|
Abstract
Genetic analysis of the RAS function in Caenorhabditis elegans has not only clarified the functional relationship of signal transduction proteins, but also led to the discovery of new proteins involved positively or negatively in RAS signaling. The stereotyped development of C. elegans has allowed many of the functions of RAS to be elucidated at the level of fates of individual cells.
Collapse
|
28
|
Chen EB, Stern MJ. Understanding cell migration guidance: lessons from sex myoblast migration in C. elegans. Trends Genet 1998; 14:322-7. [PMID: 9724965 DOI: 10.1016/s0168-9525(98)01507-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studies of sex myoblast (SM) migration in the nematode Caenorhabditis elegans have shown that multiple guidance mechanisms cooperate to ensure the accurate and reproducible targeting of the SMs. Many issues arise in the analysis of SM migration, including the action of multiple guidance mechanisms, redundant sources of guidance information, the multiple uses of molecular components, and whether factors affect cell fate determination events or the guidance mechanisms themselves. These issues are common to many cell migration events and make the analysis of SM migration instructive to our general understanding of how cell migrations are controlled.
Collapse
Affiliation(s)
- E B Chen
- Center for Molecular Medicine, Emory University, Decatur, GA 30322, USA.
| | | |
Collapse
|
29
|
Kokel M, Borland CZ, DeLong L, Horvitz HR, Stern MJ. clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in Caenorhabditis elegans. Genes Dev 1998; 12:1425-37. [PMID: 9585503 PMCID: PMC316843 DOI: 10.1101/gad.12.10.1425] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Receptor tyrosine phosphatases have been implicated in playing important roles in cell signaling events by their ability to regulate the level of protein tyrosine phosphorylation. Although the catalytic activity of their phosphatase domains has been well established, the biological roles of these molecules are, for the most part, not well understood. Here we show that the Caenorhabditis elegans protein CLR-1 (CLeaR) is a receptor tyrosine phosphatase (RTP) with a complex extracellular region and two intracellular phosphatase domains. Mutations in clr-1 result in a dramatic Clr phenotype that we have used to study the physiological requirements for the CLR-1 RTP. We show that the phosphatase activity of the membrane-proximal domain is essential for the in vivo function of CLR-1. By contrast, we present evidence that the membrane-distal domain is not required to prevent the Clr phenotype in vivo. The Clr phenotype of clr-1 mutants is mimicked by activation of the EGL-15 fibroblast growth factor receptor (FGFR) and is suppressed by mutations that reduce or eliminate the activity of egl-15. Our data strongly indicate that CLR-1 attenuates the action of an FGFR-mediated signaling pathway by dephosphorylation.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- COS Cells
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins
- Chromosomes, Artificial, Yeast
- Consensus Sequence
- DNA, Complementary/genetics
- DNA, Helminth/genetics
- Escherichia coli
- Genes, Helminth
- Genes, Suppressor
- Genetic Heterogeneity
- Helminth Proteins/genetics
- Helminth Proteins/physiology
- Molecular Sequence Data
- Phenotype
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- Receptor-Like Protein Tyrosine Phosphatases
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction/genetics
- Signal Transduction/physiology
- Structure-Activity Relationship
- Temperature
- Transfection
Collapse
Affiliation(s)
- M Kokel
- Yale University School of Medicine, Department of Genetics, New Haven, Connecticut 06520-8005, USA
| | | | | | | | | |
Collapse
|
30
|
Steven R, Kubiseski TJ, Zheng H, Kulkarni S, Mancillas J, Ruiz Morales A, Hogue CW, Pawson T, Culotti J. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 1998; 92:785-95. [PMID: 9529254 DOI: 10.1016/s0092-8674(00)81406-3] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
unc-73 is required for cell migrations and axon guidance in C. elegans and encodes overlapping isoforms of 283 and 189 kDa that are closely related to the vertebrate Trio and Kalirin proteins, respectively. UNC-73A contains, in order, eight spectrin-like repeats, a Dbl/Pleckstrin homology (DH/PH) element, an SH3-like domain, a second DH/PH element, an immunoglobulin domain, and a fibronectin type III domain. UNC-73B terminates just downstream of the SH3-like domain. The first DH/PH element specifically activates the Rac GTPase in vitro and stimulates actin polymerization when expressed in Rat2 cells. Both functions are eliminated by introducing the S1216F mutation of unc-73(rh40) into this DH domain. Our results suggest that UNC-73 acts cell autonomously in a protein complex to regulate actin dynamics during cell and growth cone migrations.
Collapse
Affiliation(s)
- R Steven
- Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Burdine RD, Branda CS, Stern MJ. EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans. Development 1998; 125:1083-93. [PMID: 9463355 DOI: 10.1242/dev.125.6.1083] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the development of the egg-laying system in Caenorhabditis elegans hermaphrodites, central gonadal cells organize the alignment of the vulva with the sex myoblasts, the progenitors of the egg-laying muscles. A fibroblast growth factor [EGL-17(FGF)] and an FGF receptor [EGL-15(FGFR)] are involved in the gonadal signals that guide the migrations of the sex myoblasts. Here we show that EGL-17(FGF) can act as an instructive guidance cue to direct the sex myoblasts to their final destinations. We find that egl-17 reporter constructs are expressed in the primary vulval cell and that EGL-17(FGF) expression in this cell correlates with the precise positioning of the sex myoblasts. We postulate that EGL-17(FGF) helps to coordinate the development of a functional egg-laying system, linking vulval induction with proper sex myoblast migration.
Collapse
Affiliation(s)
- R D Burdine
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | | | |
Collapse
|
32
|
Takagi S, Bénard C, Pak J, Livingstone D, Hekimi S. Cellular and axonal migrations are misguided along both body axes in the maternal-effect mau-2 mutants of Caenorhabditis elegans. Development 1997; 124:5115-26. [PMID: 9362469 DOI: 10.1242/dev.124.24.5115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the mau-2 mutants of Caenorhabditis elegans and found that migrating cells and axons are mispositioned along both the antero-posterior and dorsoventral body axes. This is in contrast to previously characterized guidance mutations in Caenorhabditis and in Drosophila, which have been found to be axis-specific. Two observations suggest that mau-2 acts very early during development: most behavioral phenotypes of mau-2 can be rescued by a maternal effect, and variations in expressivity involve an entire body side at a time. The possibility that mau-2 is involved in the spatial organization of guidance cues encoded by other genes is discussed.
Collapse
Affiliation(s)
- S Takagi
- Department of Biology, McGill University, Montréal, Canada
| | | | | | | | | |
Collapse
|
33
|
Burdine RD, Chen EB, Kwok SF, Stern MJ. egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1997; 94:2433-7. [PMID: 9122212 PMCID: PMC20105 DOI: 10.1073/pnas.94.6.2433] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proper guidance of the Caenorhabditis elegans hermaphrodite sex myoblasts (SMs) requires the genes egl-15 and egl-17. egl-15 has been shown to encode the C. elegans orthologue of the fibroblast growth factor receptor (FGFR). Here we clone egl-17 and show it to be a member of the fibroblast growth factor (FGF) family, one of the first functional invertebrate FGFs known. egl-17 shares homology with other FGF members, conserving the key residues required to form the distinctive tertiary structure common to FGFs. Genetic and molecular evidence demonstrates that the SM migration defect seen in egl-17 mutant animals represents complete loss of egl-17 function. While mutations in egl-17 affect only SM migration, mutations in egl-15 can result in larval arrest, scrawny body morphology, and the ability to suppress mutations in clr-1. We propose that EGL-17 (FGF) acts as a ligand for EGL-15 (FGFR) specifically during SM migration and that another ligand(s) activates EGL-15 for its other functions.
Collapse
Affiliation(s)
- R D Burdine
- Department of Cell Biology, Yale University, New Haven, CT 06520-8005, USA
| | | | | | | |
Collapse
|