1
|
Bray IE, Alshami IJJ, Kudoh T. The diversity and evolution of electric organs in Neotropical knifefishes. EvoDevo 2022; 13:9. [PMID: 35365204 PMCID: PMC8973549 DOI: 10.1186/s13227-022-00194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
The Gymnotiformes, also known as the South American or Neotropical knifefishes, include the strongly electric Electrophorus electricus and many other weakly electric species. These fish possess specialised electric organs that are able to release electric discharges into the water, for electrolocation and communication, and sometimes for predation and defence. All Gymnotiform species possess a myogenic electric organ (mEO) derived from the muscle tissue, and members of the Apteronotidae family uniquely possess a neurogenic electric organ (nEOs) derived from the nervous tissue. A mEO may consist of ‘Type A’ electrocytes that develop within the tail muscle (for example, in Apteronotus leptorhynchus), or ‘Type B’ electrocytes that develop below the tail muscle (for example, in Brachyhypopomus gauderio). In this review, we discuss the diversity in the anatomy, electric discharge and development of electric organs found in different Gymnotiform species, as well as the ecological and environmental factors that have likely contributed to this diversity. We then describe various hypotheses regarding the evolution of electric organs, and discuss the potential evolutionary origin of the nEO: a pair of nerve cords that are located on either side of the aorta in B. gauderio, and which may have expanded and developed into a nEO in the Apteronotidae family during its evolution from a common ancestral species. Finally, we compare potential Gymnotiform phylogenies and their supporting evidence.
Collapse
Affiliation(s)
- Isabelle E Bray
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Ilham J J Alshami
- Department of Fisheries and Marine Resources, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity. ACTA ACUST UNITED AC 2016; 110:233-244. [PMID: 27864094 DOI: 10.1016/j.jphysparis.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/03/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
Abstract
Electrical activity is an important regulator of cellular function and gene expression in electrically excitable cell types. In the weakly electric teleost fish Sternopygus macrurus, electrocytes, i.e., the current-producing cells of the electric organ, derive from a striated muscle lineage. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, and are driven continuously at frequencies higher than those exerted on muscle cells. Previous work showed that the removal of electrical activity by spinal cord transection (ST) for two and five weeks led to an upregulation of some sarcomeric proteins and a decrease in electrocyte size. To test whether changes in gene transcription preceded these phenotypic changes, we determined the sensitivity of electrocyte gene expression to electrical inactivity periods of two and five days after ST. Whole tissue gene expression profiles using deep RNA sequencing showed minimal alterations in the levels of myogenic transcription factor and sarcomeric transcripts after either ST period. Moreover, while analysis of differentially expressed genes showed a transient upregulation of genes associated with proteolytic mechanisms at two days and an increase in mRNA levels of cytoskeletal genes at five days after electrical silencing, electrocyte size was not affected. Electrical inactivity also resulted in the downregulation of genes that were classified into enriched clusters associated with functions of axon migration and synapse structure. Overall, these data demonstrate that unlike tissues in the myogenic lineage in other vertebrate species, regulation of gene transcription and cell size in the muscle-like electrocytes of S. macrurus is highly insensitive to short-term electrical inactivity. Moreover, together with data obtained from control and long-term ST studies, the present data suggest that neural input might influence post-transcriptional processes to affect the mature electrocyte phenotype.
Collapse
|
3
|
Frasch M. Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Curr Top Dev Biol 2016; 116:331-55. [PMID: 26970627 DOI: 10.1016/bs.ctdb.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In some rare and striking cases, striated muscle fibers of the skeleton or body wall, which consist of terminally differentiated syncytia with complex ultrastructures, were found to be capable of dedifferentiating and fragmenting into mononucleate cells. Examples of such events will be discussed in which the dedifferentiated cells reenter the cell cycle, proliferate, and rebuilt damaged muscle fibers during limb regeneration or transdifferentiate to generate new types of muscles during normal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Unguez GA. Electric fish: new insights into conserved processes of adult tissue regeneration. J Exp Biol 2013; 216:2478-86. [PMID: 23761473 PMCID: PMC3680508 DOI: 10.1242/jeb.082396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
5
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
6
|
Gallant JR, Hopkins CD, Deitcher DL. Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius. ACTA ACUST UNITED AC 2012; 215:2479-94. [PMID: 22723488 DOI: 10.1242/jeb.063222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electric organs (EOs) have evolved independently in vertebrates six times from skeletal muscle (SM). The transcriptional changes accompanying this developmental transformation are not presently well understood. Mormyrids and gymnotiforms are two highly convergent groups of weakly electric fish that have independently evolved EOs: while much is known about development and gene expression in gymnotiforms, very little is known about development and gene expression in mormyrids. This lack of data limits prospects for comparative work. We report here on the characterization of 28 differentially expressed genes between SM and EO tissues in the mormyrid Brienomyrus brachyistius, which were identified using suppressive subtractive hybridization (SSH). Forward and reverse SSH was performed on tissue samples of EO and SM resulting in one cDNA library enriched with mRNAs expressed in EO, and a second library representing mRNAs unique to SM. Nineteen expressed sequence tags (ESTs) were identified in EO and nine were identified in SM using BLAST searching of Danio rerio sequences available in NCBI databases. We confirmed differential expression of all 28 ESTs using RT-PCR. In EO, these ESTs represent four classes of proteins: (1) ion pumps, including the α- and β-subunits of Na(+)/K(+)-ATPase, and a plasma membrane Ca(2+)-ATPase; (2) Ca(2+)-binding protein S100, several parvalbumin paralogs, calcyclin-binding protein and neurogranin; (3) sarcomeric proteins troponin I, myosin heavy chain and actin-related protein complex subunit 3 (Arcp3); and (4) the transcription factors enhancer of rudimentary homolog (ERH) and myocyte enhancer factor 2A (MEF2A). Immunohistochemistry and western blotting were used to demonstrate the translation of seven proteins (myosin heavy chain, Na(+)/K(+)-ATPase, plasma membrane Ca(2+)-ATPase, MEF2, troponin and parvalbumin) and their cellular localization in EO and SM. Our findings suggest that mormyrids express several paralogs of muscle-specific genes and the proteins they encode in EOs, unlike gymnotiforms, which may post-transcriptionally repress several sarcomeric proteins. In spite of the similarity in the physiology and function of EOs in mormyrids and gymnotiforms, this study indicates that the mechanisms of development in the two groups may be considerably different.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
7
|
Kim HJ, Archer E, Escobedo N, Tapscott SJ, Unguez GA. Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Dev Dyn 2008; 237:2830-43. [PMID: 18816861 DOI: 10.1002/dvdy.21702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tissue regeneration through stem cell activation and/or cell dedifferentiation is widely distributed across the animal kingdom. By comparison, regeneration in mammals is poor and this may reflect a limited dedifferentiation potential of mature cells. Because mammalian myotubes can dedifferentiate in the presence of newt blastema extract, the present study tested the dedifferentiation induction capability of the blastema from the teleost Sternopygus macrurus (SmBE). Our in vitro data showed that SmBE did not induce cell cycle reentry of myonuclei in myotubes. Instead, SmBE caused myotubes to detach and time-lapse imaging analyses characterized the cellular events before their detachment. Furthermore, SmBE enhanced myoblast proliferation and reversibly inhibited their differentiation. These data suggest the presence of protein factors in SmBE that regulate mammalian muscle physiology and differentiation, but do not support the conservation of a dedifferentiation induction capability by the blastema of S. macrurus.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Biology Department, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | |
Collapse
|
8
|
Cuellar H, Kim JA, Unguez GA. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB J 2006; 20:2540. [PMID: 17077280 DOI: 10.1096/fj.06-6474fje] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrocytes, the current-producing cells of electric organs (EOs) in electric fish, are unique in that they derive from striated muscle and they possess biochemical characteristics of both muscle and non-muscle cells. In the freshwater teleost Sternopygus macrurus, electrocytes are multinucleated cells that do not contract yet retain expression of some proteins common to skeletal muscle cells. Given the role that transcriptional regulation plays in the activation of the myogenic program in vertebrates, we examined the expression patterns of several genes associated with multiple functions of skeletal muscle in mature electrocytes of S. macrurus. Our expression analyses detected transcripts for alpha-actin, alpha-acetylcholine (ACh) receptor (alpha-AChR), desmin, muscle creatine kinase (MCK), myosin heavy chain (MHC) isoforms, titin, tropomyosin, and troponin-T genes in the EO. However, immunolabeling studies revealed that electrocytes do not contain MCK, MHCs, or tropomyosin or troponin-T proteins. These results underscore the contribution of gene regulatory mechanisms in the maintenance of the muscle-like phenotype of EO that may be transcriptional-independent. We also report the classification and frequency of distinct transcripts from a random selection of 420 clones from an EO cDNA library. This is the first characterization of expressed genes in an EO, and it is an important step toward identifying mechanisms that affect different muscle protein systems for the evolution of highly specialized noncontractile tissues. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus.
Collapse
Affiliation(s)
- Heriberto Cuellar
- Department of Biology, Foster Hall, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
9
|
Kim JA, Jonsson CB, Calderone T, Unguez GA. Transcription of MyoD and myogenin in the non-contractile electrogenic cells of the weakly electric fish, Sternopygus macrurus. Dev Genes Evol 2004; 214:380-92. [PMID: 15309633 DOI: 10.1007/s00427-004-0421-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
The MyoD family of basic helix-loop-helix (bHLH) myogenic regulatory factors (MRFs) are transcriptional activators of skeletal muscle gene expression and are pivotal in inducing the full myogenic program. The expression of these factors after muscle differentiation is complete and the mechanism by which they modulate (or maintain) the muscle phenotype is less well understood. The myogenically derived electric organ (EO) of the electric fish Sternopygus macrurus is an excellent model to address this question. The electrocytes, i.e., the electrogenic cells of the EO, are not contractile but they do retain some muscle proteins. In order to examine the molecular regulatory pathways that control the muscle-to-electrocyte cell conversion, we have cloned the MyoD and myogenin cDNAs from S. macrurus. Clustal-based alignments showed that the functional domains observed in mammalian MyoD and myogenin are highly conserved in these MRF homologs. Expression analyses revealed that mature electrocytes, which retain the muscle proteins dystrophin, desmin, acetylcholine receptors (AChRs), alpha-actin, and alpha-actinin, also transcribe the MyoD and myogenin genes. RT-PCR studies confirmed that expression of these MRFs is confined to the myogenic lineage. Surprisingly, the levels of MyoD and myogenin transcripts in skeletal muscle and EO could not be used to predict the level to which a cell manifests the muscle program. We conclude that expression of multiple MRFs is not sufficient to induce non-contractile cells to fully express the skeletal muscle program. These data also suggest that the MRF transcriptional program in S. macrurus may be distinct from MRF-dependent myogenesis in other vertebrate systems.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Biology, New Mexico State University, Foster Hall, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
10
|
Koester DM. Anatomy and motor pathways of the electric organ of skates. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 273:648-62. [PMID: 12808649 DOI: 10.1002/ar.a.10076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The electric organ of skates is a paired structure within the tail consisting of two longitudinal columns of electrocytes contained within the lateral musculature on each side of the vertebral column. The electrocytes develop from hypaxial skeletal muscle fibers, and, depending upon the species, are generally classified as either cup-shaped or disc-shaped. The disc-shaped electrocytes are considered to be the more derived type. Regardless of the morphology of the electrocyte, the electric organ discharge of all skates is characterized as a weak asynchronous and long-lasting signal. Although recent behavioral investigations have revealed a communicative function for the electric organ, details as to which specific behaviors utilize this motor system remain uncertain. The electric organ is innervated by segmental motor nerves that branch from the ventral root of caudal spinal nerves at all levels of the electric organ. The cells of origin of the electromotor nerves, or electromotoneurons (EMNs), are large multipolar neurons with extensive dendrites located within the ventral gray matter of the spinal cord. The EMNs are uniformly distributed among the somatic motoneurons at levels corresponding to the rostrocaudal extent of the electric organ, and therefore do not form a discrete nucleus. The medullary command nucleus is comprised of neurons located within the nucleus raphe magnus, and forms a descending spinal pathway to the EMNs.
Collapse
Affiliation(s)
- David M Koester
- Anatomy Department, University of New England, Biddeford, Maine 04005, USA.
| |
Collapse
|
11
|
Unguez GA, Zakon HH. Skeletal muscle transformation into electric organ in S. macrurus depends on innervation. JOURNAL OF NEUROBIOLOGY 2002; 53:391-402. [PMID: 12382266 DOI: 10.1002/neu.10121] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cells of the electric organ, called electrocytes, of the weakly electric fish Sternopygus macrurus derive from the fusion of mature fast muscle fibers that subsequently disassemble and downregulate their sarcomeric components. Previously, we showed a reversal of the differentiated state of electrocytes to that of their muscle fiber precursors when neural input is eliminated. The dependence of the mature electrocyte phenotype on neural input led us to test the hypothesis that innervation is also critical during formation of electrocytes. We used immunohistochemical analyses to examine the regeneration of skeletal muscle and electric organ in the presence or absence of innervation. We found that blastema formation is a nerve-dependent process because regeneration was minimal when tail amputation and denervation were performed at the same time. Denervation at the onset of myogenesis resulted in the differentiation of both fast and slow muscle fibers. These were fewer in number, but in a spatial distribution similar to controls. However, in the absence of innervation, fast muscle fibers did not progress beyond the formation of closely apposed clusters, suggesting that innervation is required for their fusion and subsequent transdifferentiation into electrocytes. This study contributes further to our knowledge of the influence of innervation on cell differentiation in the myogenic lineage.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Foster Hall, Las Cruces, NM 88003, USA.
| | | |
Collapse
|
12
|
|
13
|
Kessler PD, Byrne BJ. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 1999; 61:219-42. [PMID: 10099688 DOI: 10.1146/annurev.physiol.61.1.219] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys a wide range of cellular and molecular approaches to strengthening the injured or weakened heart, focusing on strategies to replace dysfunctional, necrotic, or apoptotic cardiomyocytes with new cells of mesodermal origin. A variety of cell types, including myogenic cell lines, adult skeletal myoblasts, immoratalized atrial cells, embryonic and adult cardiomyocytes, embryonic stem cells, tetratoma cells, genetically altered fibroblasts, smooth muscle cells, and bone marrow-derived cells have all been proposed as useful cells in cardiac repair and may have the capacity to perform cardiac work. We focus on the implantation of mesodermally derived cells, the best developed of the options. We review the developmental and cell biology that have stimulated these studies, examine the limitations of current knowledge, and identify challenges for the future, which we believe are considerable.
Collapse
Affiliation(s)
- P D Kessler
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
14
|
Abstract
The electric organ (EO) of the weakly electric fish Sternopygus macrurus derives from striated myofibers that fuse and suppress many muscle properties. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, or express myosin heavy chain (MHC) or tropomyosin. Furthermore, electrocytes express keratin, a protein not expressed in muscle. In S. macrurus the EO is driven continuously at frequencies higher than those of the intermittently active skeletal muscle. The extent to which differences in EO and muscle phenotype are accounted for by activity patterns, or innervation per se, was determined by assessing the expression of MHC, tropomyosin, and keratin 2 and 5 weeks after the elimination of (1) activity patterns by spinal transection or (2) all synaptic input by denervation. Immunohistochemical analyses showed no changes in muscle fiber phenotypes after either experimental treatment. In contrast, the keratin-positive electrocytes revealed an upregulation of MHC and tropomyosin. Nearly one-third of all electrocytes expressed MHC (35%) and tropomyosin (25%) 2 weeks after spinal transection, whereas approximately two-thirds (61%) expressed MHC 2 weeks after denervation. After 5 weeks of denervation or spinal transection, all electrocytes contained MHC and tropomyosin. Newly formed sarcomere clusters also were observed in denervated electrocytes. The MHC expressed in electrocytes corresponded to that present in a select population of muscle fibers, i.e., type II fibers. Thus, the elimination of electrical activity or all synaptic input resulted in a partial reversal of the electrocyte phenotype to an earlier developmental stage of its myogenic lineage.
Collapse
|
15
|
Link BA, Nishi R. Development of the avian iris and ciliary body: mechanisms of cellular differentiation during the smooth-to-striated muscle transition. Dev Biol 1998; 203:163-76. [PMID: 9806781 DOI: 10.1006/dbio.1998.9019] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The avian iris and ciliary body undergoes a transition from smooth-to-striated muscle during embryonic development. Using antibodies specific for smooth muscle-specific alpha-actin and myosin heavy chain, we confirm that a smooth-to-striated muscle transition occurs between E8 and E17 in both iris and ciliary body of the chick. To study the mechanisms regulating the transition in muscle type, we analyzed the fate of quail clones derived from E7 iris cells. When cells were cloned alone, 45/71 colonies differentiated into smooth muscle and 10/71 became striated muscle. None of the colonies were mixed with respect to muscle phenotype, indicating a lack of pluripotent stem cells. Furthermore, clones giving rise to nonstriated muscle could not be forced to incorporate into myotubes when cocultured with chick myocytes. Clones grown in coculture with chick embryo fibroblasts or E11 iris cells had very high cloning efficiencies (>98%). Significantly more clones differentiated into striated muscle when cocultured with E11 cells (60/156) than when cocultured with fibroblasts (29/108). This was due to an increased recruitment of undifferentiated cells into striated muscle, rather than a change in the percentage of cells differentiating into smooth muscle. In vivo and in vitro, various smooth and striated muscle-specific markers including contractile proteins, acetylcholine receptor subtypes, and transcription factors were colocalized in cells. Although our data argue against a multipotent stem cell for smooth and striated muscle cells, they cannot exclude a role for transdifferentiation. Cumulatively these results suggest that both smooth muscle and migratory myoblasts contribute to the development of myotubes in the avian iris and that this process is regulated in a non-cell-autonomous fashion by locally generated signals.
Collapse
Affiliation(s)
- B A Link
- Department of Cell and Developmental Biology, L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201, USA
| | | |
Collapse
|
16
|
|