1
|
Thirkannad SM, Patil R. The Story of the Hand. Indian J Plast Surg 2021; 54:106-113. [PMID: 34239230 PMCID: PMC8257305 DOI: 10.1055/s-0041-1729771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
This review describes the Story of the Human Hand. It traces the functional needs that led to evolution of the human hand as well as its embryological development. The various in utero stages of formation of the human hand are covered along with a description of the various molecular and genetic factors that control this process.
Collapse
Affiliation(s)
- Sunil M. Thirkannad
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| | - Rahul Patil
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| |
Collapse
|
2
|
Kantaputra PN, Carlson BM. Genetic regulatory pathways of split-hand/foot malformation. Clin Genet 2018; 95:132-139. [PMID: 30101460 DOI: 10.1111/cge.13434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Split-hand/foot malformation (SHFM) is caused by mutations in TP63, DLX5, DLX6, FGF8, FGFR1, WNT10B, and BHLHA9. The clinical features of SHFM caused by mutations of these genes are not distinguishable. This implies that in normal situations these SHFM-associated genes share an underlying regulatory pathway that is involved in the development of the central parts of the hands and feet. The mutations in SHFM-related genes lead to dysregulation of Fgf8 in the central portion of the apical ectodermal ridge (AER) and subsequently lead to misexpression of a number of downstream target genes, failure of stratification of the AER, and thus SHFM. Syndactyly of the remaining digits is most likely the effects of dysregulation of Fgf-Bmp-Msx signaling on apoptotic cell death. Loss of digit identity in SHFM is hypothesized to be the effects of misexpression of HOX genes, abnormal SHH gradient, or the loss of balance between GLI3A and GLI3R. Disruption of canonical and non-canonical Wnt signaling is involved in the pathogenesis of SHFM. Whatever the causative genes of SHFM are, the mutations seem to lead to dysregulation of Fgf8 in AER cells of the central parts of the hands and feet and disruption of Wnt-Bmp-Fgf signaling pathways in AER.
Collapse
Affiliation(s)
- Piranit N Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Dentaland Clinic, Chiang Mai, Thailand
| | - Bruce M Carlson
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Al-Qattan MM. Central and ulnar cleft hands: a review of concurrent deformities in a series of 47 patients and their pathogenesis. J Hand Surg Eur Vol 2014; 39:510-9. [PMID: 23824219 DOI: 10.1177/1753193413496945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two main types of cleft hands have been described. The ulnar cleft hand deformity is very rare and is characterized by two constant features: a deep cleft radial to the little finger and hypoplasia of the ulnar digits. The pathogenesis of ulnar clefts is unknown. The second type is the central cleft hand deformity, which is characterized by a soft tissue/bone defect in the hand centrally. Patients with central clefts also have several concurrent deformities in the remaining digits. This paper reviews the clinical features of three cases with ulnar cleft hands and 44 cases of central cleft hands, with special emphasis on concurrent deformities. The author's hypothesis of pathogenesis for both types of clefts and their concurrent deformities is then offered.
Collapse
Affiliation(s)
- M M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Restelli M, Lopardo T, Lo Iacono N, Garaffo G, Conte D, Rustighi A, Napoli M, Del Sal G, Perez-Morga D, Costanzo A, Merlo GR, Guerrini L. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations. Hum Mol Genet 2014; 23:3830-42. [PMID: 24569166 PMCID: PMC4065156 DOI: 10.1093/hmg/ddu096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations.
Collapse
Affiliation(s)
- Michela Restelli
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Teresa Lopardo
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Nadia Lo Iacono
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Giulia Garaffo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Daniele Conte
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | | | - Marco Napoli
- Department of Biochemistry and Molecular Biology, Center for Genetics & Genomics, and Center for Stem Cell & Developmental Biology, MD Anderson, Houston, TX, USA
| | - Giannino Del Sal
- Molecular Oncology Unit, LNCIB Area Science Park, Trieste I-34149, Italy
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM, Université Libre de Bruxelles, Gosselies B-6041, Belgium and
| | - Antonio Costanzo
- Department of Dermatology, University of Rome 'Tor Vergata', Rome I-00133, Italy
| | - Giorgio Roberto Merlo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Luisa Guerrini
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| |
Collapse
|
5
|
Lehoczky JA, Thomas PE, Patrie KM, Owens KM, Villarreal LM, Galbraith K, Washburn J, Johnson CN, Gavino B, Borowsky AD, Millen KJ, Wakenight P, Law W, Van Keuren ML, Gavrilina G, Hughes ED, Saunders TL, Brihn L, Nadeau JH, Innis JW. A novel intergenic ETnII-β insertion mutation causes multiple malformations in polypodia mice. PLoS Genet 2013; 9:e1003967. [PMID: 24339789 PMCID: PMC3854779 DOI: 10.1371/journal.pgen.1003967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/04/2013] [Indexed: 11/28/2022] Open
Abstract
Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. Mobile genetic elements, particularly early transposons (ETn), cause malformations by inserting within genes leading to disruption of exons, splicing or polyadenylation. Few mutagenic early transposon insertions have been found outside genes and the effects of such insertions on surrounding gene regulation is poorly understood. We discovered a novel intergenic ETnII-β insertion in the mouse mutant Polypodia (Ppd). We reproduced the mutant phenotype after engineering the mutation in wild-type cells with homologous recombination, proving that this early transposon insertion is Ppd. Mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. Embryonic stem cells from mutant mice show upregulated transcription of an adjacent gene, Dusp9. Thus, at an early and critical stage of development, dysregulated gene transcription is one consequence of the insertion mutation. DNA methylation of the ETn 5′ LTR is not correlated with phenotypic outcome in mutant mice. Polypodia is an example of an intergenic mobile element insertion in mice causing dramatic morphogenetic defects and fetal death.
Collapse
Affiliation(s)
- Jessica A. Lehoczky
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peedikayil E. Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin M. Patrie
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kailey M. Owens
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa M. Villarreal
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth Galbraith
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joe Washburn
- Biomedical Research Core Facilities, DNA Sequencing Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Biomedical Research Core Facilities, DNA Sequencing Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bryant Gavino
- Murine Molecular Constructs Laboratory-MMCL Mouse Biology Program, University of California, Davis, California, United States of America
| | - Alexander D. Borowsky
- University of California, Davis, Center for Comparative Medicine and Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, Davis, California, United States of America
| | - Kathleen J. Millen
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Paul Wakenight
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - William Law
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margaret L. Van Keuren
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Galina Gavrilina
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elizabeth D. Hughes
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Saunders
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lesil Brihn
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph H. Nadeau
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Jeffrey W. Innis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
6
|
Split-hand/foot malformation - molecular cause and implications in genetic counseling. J Appl Genet 2013; 55:105-15. [PMID: 24163146 PMCID: PMC3909621 DOI: 10.1007/s13353-013-0178-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Split-hand/foot malformation (SHFM) is a congenital limb defect affecting predominantly the central rays of the autopod and occurs either as an isolated trait or part of a multiple congenital anomaly syndrome. SHFM is usually sporadic, familial forms are uncommon. The condition is clinically and genetically heterogeneous and shows mostly autosomal dominant inheritance with variable expressivity and reduced penetrance. To date, seven chromosomal loci associated with isolated SHFM have been described, i.e., SHFM1 to 6 and SHFM/SHFLD. The autosomal dominant mode of inheritance is typical for SHFM1, SHFM3, SHFM4, SHFM5. Autosomal recessive and X-linked inheritance is very uncommon and have been noted only in a few families. Most of the known SHFM loci are associated with chromosomal rearrangements that involve small deletions or duplications of the human genome. In addition, three genes, i.e., TP63, WNT10B, and DLX5 are known to carry point mutations in patients affected by SHFM. In this review, we focus on the known molecular basis of isolated SHFM. We provide clinical and molecular information about each type of abnormality as well as discuss the underlying pathways and mechanism that contribute to their development. Recent progress in the understanding of SHFM pathogenesis currently allows for the identification of causative genetic changes in about 50 % of the patients affected by this condition. Therefore, we propose a diagnostic flow-chart helpful in the planning of molecular genetic tests aimed at identifying disease causing mutation. Finally, we address the issue of genetic counseling, which can be extremely difficult and challenging especially in sporadic SHFM cases.
Collapse
|
7
|
Gurrieri F, Everman DB. Clinical, genetic, and molecular aspects of split-hand/foot malformation: an update. Am J Med Genet A 2013; 161A:2860-72. [PMID: 24115638 DOI: 10.1002/ajmg.a.36239] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
We here provide an update on the clinical, genetic, and molecular aspects of split-hand/foot malformation (SHFM). This rare condition, affecting 1 in 8,500-25,000 newborns, is extremely complex because of its variability in clinical presentation, irregularities in its inheritance pattern, and the heterogeneity of molecular genetic alterations that can be found in affected individuals. Both syndromal and nonsyndromal forms are reviewed and the major molecular genetic alterations thus far reported in association with SHFM are discussed. This updated overview should be helpful for clinicians in their efforts to make an appropriate clinical and genetic diagnosis, provide an accurate recurrence risk assessment, and formulate a management plan.
Collapse
Affiliation(s)
- Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
8
|
Abstract
Zusammenfassung
Spalthand-/Spaltfußfehlbildungen (SHFM), auch Ektrodaktylie genannt, sind charakterisiert durch Fehlbildungen, die vor allem die medianen Strahlen der Hände/Füße betreffen und häufig mit einer Spaltbildung einhergehen. Basierend auf der Untersuchung von Mausmodellen wird derzeit ein Defekt der apikalen ektodermalen Randleiste als Pathomechanismus postuliert. Bisher wurden für SHFM sechs verschiedene Loci kartiert und sowohl Punktmutationen als auch genomische Rearrangements (Duplikationen, Translokationen, Deletionen) nachgewiesen. Die Ursache für SHFM bleibt in vielen Fällen dennoch ungeklärt. Mit Hilfe genomweiter Such-Methoden wie der Array-CGH konnten kürzlich Mikroduplikationen am Locus 17p13.3 als Ursache für Ektrodaktylie in Kombination mit Tibia-Reduktionsfehlbildungen identifiziert werden. Dieser Artikel gibt einen Überblick über die genetischen Grundlagen, die Pathogenese sowie die Vererbung von SHFM und präsentiert ein Schema zum diagnostischen Vorgehen basierend auf der Häufigkeit der jeweiligen genetischen Ursache.
Collapse
Affiliation(s)
- E. Klopocki
- Aff1_314 grid.6363.0 0000000122184662 Institut für Medizinische Genetik und Humangenetik Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum Augustenburger Platz 1 13353 Berlin Deutschland
| |
Collapse
|
9
|
A symphony of regulations centered on p63 to control development of ectoderm-derived structures. J Biomed Biotechnol 2011; 2011:864904. [PMID: 21716671 PMCID: PMC3118300 DOI: 10.1155/2011/864904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/25/2011] [Accepted: 03/16/2011] [Indexed: 12/27/2022] Open
Abstract
The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies.
Collapse
|
10
|
Lo Iacono N, Mantero S, Chiarelli A, Garcia E, Mills AA, Morasso MI, Costanzo A, Levi G, Guerrini L, Merlo GR. Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects. Development 2008; 135:1377-88. [PMID: 18326838 DOI: 10.1242/dev.011759] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The congenital malformation Split Hand-Foot Malformation (SHFM, or ectrodactyly) is characterized by a medial cleft of hands and feet, and missing central fingers. Five genetically distinct forms are known in humans; the most common (type-I) is linked to deletions of DSS1 and the distalless-related homeogenes DLX5 and DLX6. As Dlx5;Dlx6 double-knockout mice show a SHFM-like phenotype, the human orthologs are believed to be the disease genes. SHFM-IV and Ectrodactyly-Ectodermal dysplasia-Cleft lip (EEC) are caused by mutations in p63, an ectoderm-specific p53-related transcription factor. The similarity in the limb phenotype of different forms of SHFM may underlie the existence of a regulatory cascade involving the disease genes. Here, we show that p63 and Dlx proteins colocalize in the nuclei of the apical ectodermal ridge (AER). In homozygous p63- (null) and p63EEC (R279H) mutant limbs, the AER fails to stratify and the expression of four Dlx genes is strongly reduced; interestingly, the p63+/EEC and p63+/- hindlimbs, which develop normally and have a normally stratified AER, show reduced Dlx gene expression. The p63+/EEC mutation combined with an incomplete loss of Dlx5 and Dlx6 alleles leads to severe limb phenotypes, which are not observed in mice with either mutation alone. In vitro, DeltaNp63alpha induces transcription from the Dlx5 and Dlx6 promoters, an activity abolished by EEC and SHFM-IV mutations, but not by Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) mutations. ChIP analysis shows that p63 is directly associated with the Dlx5 and Dlx6 promoters. Thus, our data strongly implicate p63 and the Dlx5-Dlx6 locus in a pathway relevant in the aetio-pathogenesis of SHFM.
Collapse
Affiliation(s)
- Nadia Lo Iacono
- Dulbecco Telethon Institute, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ugur SA, Tolun A. Homozygous WNT10b mutation and complex inheritance in Split-Hand/Foot Malformation. Hum Mol Genet 2008; 17:2644-53. [PMID: 18515319 DOI: 10.1093/hmg/ddn164] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Split-Hand/Foot Malformation (SHFM) is a complex limb malformation affecting the central rays of the autopod. We studied a large consanguineous kindred afflicted with autosomal recessive SHFM. Twelve affected members had central feet reductions with or without hand involvement while the remaining one had the mildest phenotype and atypical SHFM. We identified by homozygosity mapping a novel SHFM locus at 12q13.11-q13 with a maximum multipoint lod score of 5.47 and by subsequent candidate gene approach a homozygous missense WNT10b mutation (p.R332W) in all affected individuals but the atypical case plus in an asymptomatic female. We propose that either a second locus contributes to the manifestation of SHFM phenotype or a suppressor locus prevented trait manifestation in the non-penetrant female. We also investigated linkage to the five known SHFM loci. Four of the loci were excluded, while in TP63 [tumor protein p63 (SHFM4)], the only known gene responsible for SHFM, we detected in most affected subjects a rare insertion variant (rs34201045) at the alternate promoter used for transcription of the N-terminal-truncated p63 isotype. This is the first reported WNT10b mutation on the pathogenesis of limb development and recessive mutation in SHFM.
Collapse
Affiliation(s)
- Sibel Aylin Ugur
- Department of Molecular Biology and Genetics, Boaziçi University, Istanbul 34342, Turkey.
| | | |
Collapse
|
12
|
Chen CP, Chen YJ, Chern SR, Tsai FJ, Chang TY, Lee CC, Town DD, Lee MS, Wang W. Prenatal diagnosis of concomitant Wolf–Hirschhorn syndrome and split hand-foot malformation associated with partial monosomy 4p (4p16.1→pter) and partial trisomy 10q (10q25.1→qter). Prenat Diagn 2008; 28:450-3. [DOI: 10.1002/pd.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Kano H, Kurahashi H, Toda T. Genetically regulated epigenetic transcriptional activation of retrotransposon insertion confers mouse dactylaplasia phenotype. Proc Natl Acad Sci U S A 2007; 104:19034-9. [PMID: 17984064 PMCID: PMC2141903 DOI: 10.1073/pnas.0705483104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Indexed: 01/17/2023] Open
Abstract
Dactylaplasia, characterized by missing central digital rays, is an inherited mouse limb malformation that depends on two genetic loci. The first locus, Dac, is an insertional mutation around the dactylin gene that is inherited as a semidominant trait. The second locus is an unlinked modifier, mdac/Mdac, that is polymorphic among inbred strains. Mdac dominantly suppresses the dactylaplasia phenotype in mice carrying Dac. However, little is known about either locus or the nature of their interaction. Here we show that Dac is a LTR retrotransposon insertion caused by the type D mouse endogenous provirus element (MusD). This insertion exhibits different epigenetic states and spatiotemporally expresses depending on the mdac/Mdac modifier background. In dactylaplasia mutants (Dac/+ mdac/mdac), the LTRs of the insertion contained unmethylated CpGs and active chromatin. Furthermore, MusD elements expressed ectopically at the apical ectodermal ridge of limb buds, accompanying the dactylaplasia phenotype. On the other hand, in Dac mutants carrying Mdac (Dac/+ Mdac/mdac), the 5' LTR of the insertion was heavily methylated and enriched with inactive chromatin, correlating with inhibition of the dactylaplasia phenotype. Ectopic expression was not observed in the presence of Mdac, which we refined to a 9.4-Mb region on mouse chromosome 13. We report a pathogenic mutation caused by MusD. Our findings indicate that ectopic expression from the MusD insertion correlates with the dactylaplasia phenotype and that Mdac acts as a defensive factor to protect the host genome from pathogenic MusD insertions.
Collapse
Affiliation(s)
- Hiroki Kano
- *Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; and
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Tatsushi Toda
- *Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; and
| |
Collapse
|
14
|
Early morphological changes leading to central polydactyly, syndactyly, and central deficiencies: an experimental study in rats. J Hand Surg Am 2007; 32:1413-7. [PMID: 17996777 DOI: 10.1016/j.jhsa.2007.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 06/11/2007] [Accepted: 06/20/2007] [Indexed: 02/02/2023]
Abstract
PURPOSE Various combinations of central polydactyly, syndactyly, and cleft hand have been frequently observed in the individual hands and feet in the same patients. Little is known, however, about the early changes of abnormal induction of digital rays during limb development. To determine the early changes and process of formation of central polydactyly, syndactyly, and cleft hand, we experimentally induced these anomalies in the hind limbs of rat embryos and discussed the relationship among these abnormalities. METHODS Inbred WKAH/Hkm rats were used for this study. Pregnant females were treated with busulfan at embryonic day (E) 11. The embryos were removed at E12 to E21 and stained with alcian blue and alizarin red S. The abnormal changes in the treated embryos' hind limbs were observed with a microscope. RESULTS The edges of the footplates were irregular, and their growth was reduced at E14. By E15, abnormal clefts in the distal edge were present that disrupted the central digits (2 to 4) of the footplates. Because of these abnormal clefts, the digital rays were bent or branched, and the neighboring interdigital spaces were narrowed. These changes led to central polydactyly, syndactyly, and central deficiencies. CONCLUSIONS These findings show that central polydactyly, syndactyly, and central deficiencies have the same early morphological changes: abnormal clefts in the central part of the footplate.
Collapse
|
15
|
Naruse T, Takahara M, Takagi M, Oberg KC, Ogino T. Busulfan‐induced central polydactyly, syndactyly and cleft hand or foot: A common mechanism of disruption leads to divergent phenotypes. Dev Growth Differ 2007; 49:533-41. [PMID: 17661743 DOI: 10.1111/j.1440-169x.2007.00949.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prevalence of clinical phenotypes that exhibit combinations of central polydactyly, syndactyly, or cleft hand or foot is higher than would be expected for random independent mutations. We have previously demonstrated that maternal ingestion of a chemotherapeutic agent, busulfan, at embryonic day 11 (E11) induces these defects in various combinations in rat embryo limbs. In an effort to determine the mechanism by which busulfan disrupts digital development, we examined cell death by Nile Blue staining and TdT-mediated dUTP nick end labeling (TUNEL) assays; we also carried out whole mount in situ hybridization for fibroblast growth factor-8 (Fgf8), bone morphogenetic protein-4 (Bmp4), and sonic hedgehog (Shh) to examine developmental pathways linked to these defects. In busulfan-treated embryos, diffuse cell death was evident in both ectoderm and mesoderm, peaking at E13. The increased cell death leads to regression of Fgf8 in the apical ectodermal ridge (AER) and Bmp4 and Shh in the underlying mesoderm. The subsequent pattern of interdigital apoptosis and cartilage condensation was variably disrupted. These results suggest that busulfan manifests its teratogenic effects by inducing cell death of both ectoderm and mesoderm, with an associated reduction in tissue and a disruption in the generation of patterning molecules during critical periods of digit specification.
Collapse
Affiliation(s)
- Takuji Naruse
- Department of Orthopaedic Surgery, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | |
Collapse
|
16
|
Babbs C, Heller R, Everman DB, Crocker M, Twigg SRF, Schwartz CE, Giele H, Wilkie AOM. A new locus for split hand/foot malformation with long bone deficiency (SHFLD) at 2q14.2 identified from a chromosome translocation. Hum Genet 2007; 122:191-9. [PMID: 17569090 DOI: 10.1007/s00439-007-0390-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Split hand/foot malformation (SHFM) with long bone deficiency (SHFLD) is a distinct entity in the spectrum of ectrodactylous limb malformations characterised by associated tibial a/hypoplasia. Pedigrees with multiple individuals affected by SHFLD often include non-penetrant intermediate relatives, making genetic mapping difficult. Here we report a sporadic patient with SHFLD who carries a de novo chromosomal translocation t(2;18)(q14.2;p11.2). Characterisation of the breakpoints revealed that neither disrupts any known gene; however, the chromosome 2 breakpoint lies between GLI2 and INHBB, two genes known to be involved in limb development. To investigate whether mutation of a gene in proximity to the chromosome 2 breakpoint underlies the SHFLD, we sought independent evidence of mutations in GLI2, INHBB and two other genes (RALB and FLJ14816) in 44 unrelated patients with SHFM, SHFLD or isolated long bone deficiency. No convincing pathogenic mutations were found, raising the possibility that a long-range cis acting regulatory element may be disrupted by this translocation. The previous description of a translocation with a 2q14.2 breakpoint associated with ectrodactyly, and the mapping of the ectrodactylous Dominant hemimelia mouse mutation to a region of homologous synteny, suggests that 2q14.2 represents a novel locus for SHFLD.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Base Sequence
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Human, Pair 2/genetics
- Computational Biology
- DNA Mutational Analysis
- DNA Primers/genetics
- Foot Deformities, Congenital/genetics
- Foot Deformities, Congenital/pathology
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/pathology
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Tibia/abnormalities
- Tibia/pathology
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Christian Babbs
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Basel D, Kilpatrick MW, Tsipouras P. The expanding panorama of split hand foot malformation. Am J Med Genet A 2006; 140:1359-65. [PMID: 16763964 DOI: 10.1002/ajmg.a.31304] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The split hand/foot malformation is a developmental defect of the extremities resulting from errors in the initiation and maintenance of the apical ectodermal ridge. The phenotype is genetically heterogeneous, and it can be identified either as an isolated phenotypic manifestation or as a constituent component of a malformation syndrome. This overview describes the clinical phenotype, related animal models, and the evolving genetic heterogeneity of the malformation.
Collapse
Affiliation(s)
- Donald Basel
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
18
|
Lyle R, Radhakrishna U, Blouin JL, Gagos S, Everman DB, Gehrig C, Delozier-Blanchet C, Solanki JV, Patel UC, Nath SK, Gurrieri F, Neri G, Schwartz CE, Antonarakis SE. Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic methods and gene expression from the region. Am J Med Genet A 2006; 140:1384-95. [PMID: 16691619 DOI: 10.1002/ajmg.a.31247] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Split-hand/split-foot malformation (SHFM, also called ectrodactyly) is a clinically variable and genetically heterogeneous group of limb malformations. Several SHFM loci have been mapped, including SHFM1 (7q21), SHFM2 (Xq26), SHFM3 (10q24), SHFM4 (3q27) and SHFM5 (2q31). To date, mutations in a gene (TP63) have only been identified for SHFM4. SHFM3 has been shown by pulsed-field gel electrophoresis to be caused by an approximately 500 kb DNA rearrangement at 10q24. This region contains a number of candidate genes for SHFM3, though which gene(s) is (are) involved in the pathogenesis of SHFM3 is not known. Our aim in this study was to improve the diagnosis of SHFM3, and to begin to understand which genes are involved in SHFM3. Here we show, using two different techniques, FISH and quantitative PCR that SHFM3 is caused by a minimal 325 kb duplication containing only two genes (BTRC and POLL). The data presented provide improved methods for diagnosis and begin to elucidate the pathogenic mechanism of SHFM3. Expression analysis of 13 candidate genes within and flanking the duplicated region shows that BTRC (present in three copies) and SUFU (present in two copies) are overexpressed in SHFM3 patients compared to controls. Our data suggest that SHFM3 may be caused by overexpression of BTRC and SUFU, both of which are involved in beta-catenin signalling.
Collapse
Affiliation(s)
- Robert Lyle
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Beermann F, Kaloulis K, Hofmann D, Murisier F, Bucher P, Trumpp A. Identification of evolutionarily conserved regulatory elements in the mouse Fgf8 locus. Genesis 2006; 44:1-6. [PMID: 16397882 DOI: 10.1002/gene.20177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The secreted signaling molecule fibroblast growth factor 8 (Fgf8) is an essential component of certain embryonic signaling centers including the mid-hindbrain (isthmic) organizer, the first branchial arch (BA1), and the apical ectodermal ridge (AER). In these signaling centers Fgf8 transcripts are expressed in a dynamic and transient fashion, but the mechanism by which this highly specific expression pattern is established remains largely unknown. We used DNA sequence comparisons coupled to transgenic approaches to obtain insight into the structure and function of regulatory elements in the Fgf8 locus. First, a bacterial artificial chromosome (BAC) containing the mouse Fgf8 gene partially rescues the embryonic lethality of Fgf8-deficient mice and controls Fgf8-specific gene expression of a coinjected lacZ reporter transgene. Second, sequence comparison of vertebrate Fgf8 loci revealed evolutionarily highly conserved noncoding sequences that were unexpectedly located mainly 3' of the Fgf8 coding region. Third, in transgenic mice some of these elements were sufficient to target expression to the AER, tail bud, and brain, including the isthmic organizer, indicating that they may represent Fgf8 cis-acting elements. Collectively, these data identify novel regulatory elements of the Fgf8 gene sufficient to drive expression to regions of known Fgf8 activity.
Collapse
Affiliation(s)
- Friedrich Beermann
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Elliott AM, Reed MH, Roscioli T, Evans JA. Discrepancies in upper and lower limb patterning in split hand foot malformation. Clin Genet 2005; 68:408-23. [PMID: 16207208 DOI: 10.1111/j.1399-0004.2005.00511.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Discrepancies in upper and lower limb patterning in split hand foot malformation. Split hand foot malformation (SHFM) is genetically heterogeneous with five loci mapped to date. Highly variable in presentation, it can occur as an isolated finding or with other anomalies. The genetic heterogeneity and clinical variability make genetic counselling of SHFM families challenging. By establishing genotype/phenotype correlations, one can provide insight into responsible developmental genes and help to direct mapping efforts and target genetic testing, ultimately providing more accurate information for family members. Preaxial involvement of the upper extremities was a significant discriminating limb-specific variable in our analysis of genetically mapped SHFM cases. This finding, which was originally identified through descriptive epidemiology, was subsequently confirmed by discriminant function analysis (p < 0.0001) to be a significant locus discriminator. Preaxial involvement of the upper extremities was most commonly seen at the SHFM3 locus mapped to chromosome 10q24 (OMIM 600095) and consisted of proximally placed thumbs and/or triphalangeal thumbs (TPT), preaxial polydactyly and/or absence of the first ray. These patients' feet, however, tended to show a classical central longitudinal deficiency without a significant preaxial component. This article discusses this discrepant clefting pattern between the upper and lower extremities and proposes potential mechanisms.
Collapse
Affiliation(s)
- A M Elliott
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
21
|
Basel D, DePaepe A, Kilpatrick MW, Tsipouras P. Split hand foot malformation is associated with a reduced level of Dactylin gene expression. Clin Genet 2003; 64:350-4. [PMID: 12974740 DOI: 10.1034/j.1399-0004.2003.00153.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Split hand foot malformation (SHFM) is a congenital limb malformation presenting with a median cleft of the hand and/or foot, syndactyly and polydactyly. SHFM is genetically heterogeneous with four loci mapped to date. Murine Dactylaplasia (Dac) is phenotypically similar, and it has been mapped to a syntenic region of 10q24, where SHFM3 has been localized. Structural alterations of the gene-encoding dactylin, a constituent of the ubiquitinization pathway, leading to reduced levels of transcript have been identified in Dac. Here, we report a significant decrease of Dactylin transcript in several individuals affected by SHFM. This observation supports a central role for dactylin in the pathogenesis of SHFM.
Collapse
Affiliation(s)
- D Basel
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
22
|
Bell SM, Schreiner CM, Hess KA, Anderson KP, Scott WJ. Asymmetric limb malformations in a new transgene insertional mutant, footless. Mech Dev 2003; 120:597-605. [PMID: 12782276 DOI: 10.1016/s0925-4773(03)00021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Six to eight copies of a transgene integrated into mouse chromosome 15 resulting in a new transgene insertional mutant, Footless, presenting with malformations of the limbs, kidney, and soft palate. Homozygotes possess a unique asymmetric pattern of limb truncations. Posterior structures from the autopod and zeugopod of the hindlimbs are missing with left usually more severely affected than right. In contrast, anterior structures are missing from the right forelimbs. The left forelimb is usually normal except for the absence of the distal telephalanges and nails. These structures are absent on all formed digits. In situ hybridization assays examined the expression of Shh, dHand, Msx2, Fgf8, En1, and Lmx1b in mutant limb buds and indicated normal establishment of the anterior/posterior and dorsal/ventral axes of the developing limbs. However, dysmorphology of the apical ectodermal ridge was observed in the mutant limb buds.
Collapse
Affiliation(s)
- Sheila M Bell
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | |
Collapse
|
23
|
Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 2002; 16:1089-101. [PMID: 12000792 PMCID: PMC186247 DOI: 10.1101/gad.988402] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 03/27/2002] [Indexed: 11/24/2022]
Abstract
Dlx homeobox genes are mammalian homologs of the Drosophila Distal-less (Dll) gene. The Dlx/Dll gene family is of ancient origin and appears to play a role in appendage development in essentially all species in which it has been identified. In Drosophila, Dll is expressed in the distal portion of the developing appendages and is critical for the development of distal structures. In addition, human Dlx5 and Dlx6 homeobox genes have been identified as possible candidate genes for the autosomal dominant form of the split-hand/split-foot malformation (SHFM), a heterogeneous limb disorder characterized by missing central digits and claw-like distal extremities. Targeted inactivation of Dlx5 and Dlx6 genes in mice results in severe craniofacial, axial, and appendicular skeletal abnormalities, leading to perinatal lethality. For the first time, Dlx/Dll gene products are shown to be critical regulators of mammalian limb development, as combined loss-of-function mutations phenocopy SHFM. Furthermore, spatiotemporal-specific transgenic overexpression of Dlx5, in the apical ectodermal ridge of Dlx5/6 null mice can fully rescue Dlx/Dll function in limb outgrowth.
Collapse
Affiliation(s)
- Raymond F Robledo
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Chick embryos are good models for vertebrate development. The principles that underlie chick wing development have been discovered and there is increasing knowledge about the molecules involved. The importance of identifying molecules is that this provides a direct link to understanding the genetic basis of diversity in form. Chick wing development will be compared with limb development in other vertebrates. Possible mechanisms that could lead to variations in form, including limb reductions and limblessness, differences between fore- and hindlimbs, limb proportions, and interdigital webbing can be suggested.
Collapse
Affiliation(s)
- Cheryll Tickle
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
25
|
Capdevila J, Izpisúa Belmonte JC. Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol 2002; 17:87-132. [PMID: 11687485 DOI: 10.1146/annurev.cellbio.17.1.87] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate limb buds are embryonic structures for which much molecular and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior-posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, specific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-beta/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.
Collapse
Affiliation(s)
- J Capdevila
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
26
|
Ferro P, dell'Eva R, Pfeffer U. Are there CAG repeat expansion-related disorders outside the central nervous system? Brain Res Bull 2001; 56:259-64. [PMID: 11719259 DOI: 10.1016/s0361-9230(01)00663-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Expansions of poly-glutamine tracts in proteins that are expressed in the central nervous system cause neurodegenerative diseases. The altered proteins accumulate over long periods of time, forming nuclear inclusions, and lead to neuronal cell death. A similar mechanism could also be operant in non-dividing cells outside the central nervous system because nuclear inclusions are not limited to neurons. In addition, variations of the repeat length within the normal range may affect cellular function as it has been shown for the androgen receptor that is involved in neoplastic degeneration of several tissues. We have identified a poly-glutamine/poly-proline repeat in the homeobox gene DLX6. DLX genes are expressed in non-proliferative cells of the apical ectodermal ridge of developing limbs. Ablation of these cells leads to limb malformation. We propose that CAG triplet expansions in this gene could lead to cell death in the apical ectodermal ridge causing limb malformations. Indeed, autosomal dominant limb malformations with increasing severity in successive generations have been linked to the chromosomal region that contains DLX6. The analysis of a limited number of patients affected by split hand/foot malformation so far revealed only a slight modifier effect of repeat length within the normal range and no expansions have been detected.
Collapse
Affiliation(s)
- P Ferro
- Laboratory of Molecular Biology, National Cancer Research Institute, Genova, Italy
| | | | | |
Collapse
|
27
|
Sifakis S, Basel D, Ianakiev P, Kilpatrick M, Tsipouras P. Distal limb malformations: underlying mechanisms and clinical associations. Clin Genet 2001; 60:165-72. [PMID: 11595015 DOI: 10.1034/j.1399-0004.2001.600301.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Congenital malformations of the extremities are conspicuous and have been described through the ages. Over the past decade, a wealth of knowledge has been generated regarding the genetic regulation of limb development and the underlying molecular mechanisms. Recent studies have identified several of the signaling molecules, growth factors, and transcriptional regulators involved in the initiation and maintenance of the apical ectodermal ridge (AER) as well as the molecular markers defining the three axes of the developing limb. Studies of abnormal murine phenotypes have uncovered the role played by genes such as p63 and Dactylin in the maintenance of AER activity. These phenotypes resemble human malformations and in this review we describe the underlying mechanisms and clinical associations of split hand/foot malformation and ectrodactyly-ectodermal dysplasia-cleft lip/palate syndrome, which have both been associated with mutations in the p63 gene.
Collapse
Affiliation(s)
- S Sifakis
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
With the discoveries of different death mechanisms, an emerging definition of apoptosis is the process of cell death associated with caspase activation or caspase-mediated cell death. This definition accepts that caspases represent the final common mechanistic pathway in apoptosis. Apoptosis may be triggered either by activation events that target mitochondria or endoplasmic reticulum or by activation of cell surface "death receptors," for example, those in the tumor necrosis factor (TNF) superfamily. In the postnatal and adult skeleton, apoptosis is integral to physiological bone turnover, repair, and regeneration. The balance of osteoblast proliferation, differentiation, and apoptosis determines the size of the osteoblast population at any given time. Although apoptosis has been recorded in many studies of bone, the selective mechanisms invoked in the different models studied rarely have been identified. This review offers a broad overview of the current general concepts and controversies in apoptosis research and then considers specific examples of osteoblast apoptosis pertinent to skeletal development and to the regulation of bone turnover. In reviewing selected work on interdigital apoptosis in the developing skeleton, we discuss the putative roles of the bone morphogenetic proteins (BMPs), Msx2, RAR-gamma, and death inducer obliterator 1 (DIO-1). In reviewing factors regulating apoptosis in the postnatal skeleton, we discuss roles of cytokines, growth factors, members of the TNF pathway, and the extracellular matrix (ECM). Finally, the paradoxical effects of parathyroid hormone (PTH) on osteoblast apoptosis in vivo are considered in the perspective of a recent hypothesis speculating that this may be a key mechanism to explain the anabolic effects of the hormone. An improved understanding of the apoptotic pathways and their functional outcomes in bone turnover and fracture healing may facilitate development of more targeted therapeutics to control bone balance in patients with osteoporosis and other skeletal diseases.
Collapse
Affiliation(s)
- J M Hock
- School of Medicine, Indiana University, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet 2000; 67:59-66. [PMID: 10839977 PMCID: PMC1287102 DOI: 10.1086/302972] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2000] [Accepted: 05/08/2000] [Indexed: 11/04/2022] Open
Abstract
Split-hand/split-foot malformation (SHFM), a limb malformation involving the central rays of the autopod and presenting with syndactyly, median clefts of the hands and feet, and aplasia and/or hypoplasia of the phalanges, metacarpals, and metatarsals, is phenotypically analogous to the naturally occurring murine Dactylaplasia mutant (Dac). Results of recent studies have shown that, in heterozygous Dac embryos, the central segment of the apical ectodermal ridge (AER) degenerates, leaving the anterior and posterior segments intact; this finding suggests that localized failure of ridge maintenance activity is the fundamental developmental defect in Dac and, by inference, in SHFM. Results of gene-targeting studies have demonstrated that p63, a homologue of the cell-cycle regulator TP53, plays a critically important role in regulation of the formation and differentiation of the AER. Two missense mutations, 724A-->G, which predicts amino acid substitution K194E, and 982T-->C, which predicts amino acid substitution R280C, were identified in exons 5 and 7, respectively, of the p63 gene in two families with SHFM. Two additional mutations (279R-->H and 304R-->Q) were identified in families with EEC (ectrodactyly, ectodermal dysplasia, and facial cleft) syndrome. All four mutations are found in exons that fall within the DNA-binding domain of p63. The two amino acids mutated in the families with SHFM appear to be primarily involved in maintenance of the overall structure of the domain, in contrast to the p63 mutations responsible for EEC syndrome, which reside in amino acid residues that directly interact with the DNA.
Collapse
Affiliation(s)
- Peter Ianakiev
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT; and Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Michael W. Kilpatrick
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT; and Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Iva Toudjarska
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT; and Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Donald Basel
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT; and Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Peter Beighton
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT; and Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Petros Tsipouras
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT; and Department of Human Genetics, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Abstract
Between days 9.5 and 10, the forelimb buds of developing murine embryos progress from stage 1 which are just beginning to express shh and whose posterior mesoderm has only weak polarizing activity to stage 2 limbs with a distinguishable shh expression domain and full polarizing activity. We find that exposure on day 9.5 to teratogens that induce the loss of posterior skeletal elements disrupts the polarizing activity of the stage 2 postaxial mesoderm and polarizing activity is not subsequently restored. The ontogeny of expression of the mesodermal markers shh, ptc, bmp2, and hoxd-12 and 13, as well as the ectodermal markers wnt7a, fgf4, fgf8, cx43, and p21 occurred normally in day 9.5 teratogen-exposed limb buds. At stage 3, the treated limb apical ectodermal ridge usually possessed no detectable abnormalities, but with continued outgrowth postaxial deficiencies became evident. Recombining control, stage matched limb bud ectoderm with treated mesoderm prior to ZPA grafting restored the duplicating activity of treated ZPA tissue. We conclude that in addition to shh an early ectoderm-dependent signal is required for the establishment of the mouse ZPA and that this factor is dependent on the posterior ectoderm.
Collapse
Affiliation(s)
- S M Bell
- Children's Hospital Research Foundation, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
31
|
De Arcangelis A, Mark M, Kreidberg J, Sorokin L, Georges-Labouesse E. Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development 1999; 126:3957-68. [PMID: 10433923 DOI: 10.1242/dev.126.17.3957] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrins alpha6beta1 and alpha6beta4 are cell surface receptors for laminins. Integrin alpha6-null mice die at birth with severe skin blistering and defects in the cerebral cortex and in the retina. Integrin alpha3beta1 can associate with laminins and other ligands. Integrin alpha3-null mice also die at birth, with kidney and lung defects at late stages of development, and moderate skin blistering. To investigate possible overlapping functions between alpha3 and alpha6 integrins, we analyzed the phenotype of compound alpha3−/−/alpha6−/− mutant embryos. Double homozygous mutant embryos were growth-retarded and displayed several developmental defects not observed in the single mutant animals. First, limb abnormalities characterized by an absence of digit separation and the fusion of preskeletal elements were observed. Further analyses indicated a defect in the apical ectodermal ridge, an essential limb organizing center. In the double mutant, the ridge appeared flattened, and ridge cells did not show a columnar morphology. A strong reduction in ridge cell proliferation and alterations of the basal lamina underlying the ectoderm were observed. These results suggest that alpha3 and alpha6 integrins are required for the organization or compaction of presumptive apical ectodermal ridge cells into a distinct differentiated structure. Additional defects were present: an absence of neural tube closure, bilateral lung hypoplasia, and several abnormalities in the urogenital tract. Finally, an aggravation of brain and eye lamination defects was observed. The presence of novel phenotypes in double mutant embryos demonstrates the synergism between alpha3 and alpha6 integrins and their essential roles in multiple processes during embryogenesis.
Collapse
Affiliation(s)
- A De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, CU de Strasbourg, France
| | | | | | | | | |
Collapse
|
32
|
Sidow A, Bulotsky MS, Kerrebrock AW, Birren BW, Altshuler D, Jaenisch R, Johnson KR, Lander ES. A novel member of the F-box/WD40 gene family, encoding dactylin, is disrupted in the mouse dactylaplasia mutant. Nat Genet 1999; 23:104-7. [PMID: 10471509 DOI: 10.1038/12709] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early outgrowth of the vertebrate embryonic limb requires signalling by the apical ectodermal ridge (AER) to the progress zone (PZ), which in response proliferates and lays down the pattern of the presumptive limb in a proximal to distal progression. Signals from the PZ maintain the AER until the anlagen for the distal phalanges have been formed. The semidominant mouse mutant dactylaplasia (Dac) disrupts the maintenance of the AER, leading to truncation of distal structures of the developing footplate, or autopod. Adult Dac homozygotes thus lack hands and feet except for malformed single digits, whereas heterozygotes lack phalanges of the three middle digits. Dac resembles the human autosomal dominant split hand/foot malformation (SHFM) diseases. One of these, SHFM3, maps to chromosome 10q24 (Refs 6,7), which is syntenic to the Dac region on chromosome 19, and may disrupt the orthologue of Dac. We report here the positional cloning of Dac and show that it belongs to the F-box/WD40 gene family, which encodes adapters that target specific proteins for destruction by presenting them to the ubiquitination machinery. In conjuction with recent biochemical studies, this report demonstrates the importance of this gene family in vertebrate embryonic development.
Collapse
Affiliation(s)
- A Sidow
- Departments of Pathology and Genetics, SUMC R248B, Stanford, California 94305-5324, USA.
| | | | | | | | | | | | | | | |
Collapse
|