1
|
Vetrova AA, Kupaeva DM, Kizenko A, Lebedeva TS, Walentek P, Tsikolia N, Kremnyov SV. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Sci Rep 2023; 13:9382. [PMID: 37296138 PMCID: PMC10256749 DOI: 10.1038/s41598-023-35979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila. Our analysis indicates two duplication events of Brachyury within the cnidarian lineage. The first duplication likely appeared in the medusozoan ancestor, resulting in two copies in medusozoans, while the second duplication arose in the hydrozoan ancestor, resulting in three copies in hydrozoans. Brachyury1 and 2 display a conservative expression pattern marking the oral pole of the body axis in D. pumila. On the contrary, Brachyury3 expression was detected in scattered presumably nerve cells of the D. pumila larva. Pharmacological modulations indicated that Brachyury3 is not under regulation of cWnt signaling in contrast to the other two Brachyury genes. Divergence in expression patterns and regulation suggest neofunctionalization of Brachyury3 in hydrozoans.
Collapse
Affiliation(s)
- Alexandra A Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova 26, Moscow, 119334, Russia
| | - Daria M Kupaeva
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1/12, Moscow, 119234, Russia
| | - Alena Kizenko
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Tatiana S Lebedeva
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Peter Walentek
- Renal Division, Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37085, Göttingen, Germany
| | - Stanislav V Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova 26, Moscow, 119334, Russia.
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1/12, Moscow, 119234, Russia.
| |
Collapse
|
2
|
Bruce AEE, Winklbauer R. Brachyury in the gastrula of basal vertebrates. Mech Dev 2020; 163:103625. [PMID: 32526279 DOI: 10.1016/j.mod.2020.103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
The Brachyury gene encodes a transcription factor that is conserved across all animals. In non-chordate metazoans, brachyury is primarily expressed in ectoderm regions that are added to the endodermal gut during development, and often form a ring around the site of endoderm internalization in the gastrula, the blastopore. In chordates, this brachyury ring is conserved, but the gene has taken on a new role in the formation of the mesoderm. In this phylum, a novel type of mesoderm that develops into notochord and somites has been added to the ancestral lateral plate mesoderm. Brachyury contributes to a shift in cell fate from neural ectoderm to posterior notochord and somites during a major lineage segregation event that in Xenopus and in the zebrafish takes place in the early gastrula. In the absence of this brachyury function, impaired formation of posterior mesoderm indirectly affects the gastrulation movements of peak involution and convergent extension. These movements are confined to specific regions and stages, leaving open the question why brachyury expression in an extensive, coherent ring, before, during and after gastrulation, is conserved in the two species whose gastrulation modes differ considerably, and also in many other metazoan gastrulae of diverse structure.
Collapse
Affiliation(s)
- Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
3
|
Characterization and expressional analysis of Dleu7 during Xenopus tropicalis embryogenesis. Gene 2012; 509:77-84. [PMID: 22939871 DOI: 10.1016/j.gene.2012.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 02/07/2023]
Abstract
We characterized the genomic structure and developmental expression of the Dleu7 (deleted in lymphocytic leukemia, 7) gene in Xenopus tropicalis and the evolution of the gene across species. Within the protein-coding sequence (CDS) region, X. tropicalis Dleu7 consists of two exons and one intron. However, bioinformatic analysis indicates that this 211-amino-acid protein contains no obvious functional domains or known motifs. Reverse-transcription polymerase chain reaction and whole-mount in situ hybridization results revealed that, in addition to its expression in the blood island region, some regions of the central nervous system, and subdomains of the neural tube, X. tropicalis Dleu7 is zygotically expressed primarily in mesoderm tissues such as notochord and muscles during early embryogenesis. Expression in notochord is consistent with results from genome-wide association studies suggesting that DLEU7 is related to human adult height. Expression in the blood island region, where blood cell precursors (including B cells) are generated, implies a potential conserved role for Dleu7 in B-cell development between amphibians and mammals. Expression of Dleu7 in some regions of the central nervous system and subdomains of the neural tube also suggests other functions in development. Phylogenetic analysis indicated that Dleu7 is a vertebrate-specific gene and undergoes strong selective pressure in lower vertebrates but is functionally constrained in higher mammals. When subcellular localization was examined by overexpression of enhanced green fluorescent protein fusion protein, Dleu7 showed centrosome localization with main distribution in cytoplasm. Treating gastrula embryos with SU5402, a small molecular inhibitor of the fibroblast growth factor (FGF) receptor, confirmed that Dleu7 expression in mesoderm is regulated by FGF signaling. Our data provide important clues for pathogenesis and physiology during development from the perspective of evolutionary conservation.
Collapse
|
4
|
Li L, Jing N. Pluripotent stem cell studies elucidate the underlying mechanisms of early embryonic development. Genes (Basel) 2011; 2:298-312. [PMID: 24710192 PMCID: PMC3924820 DOI: 10.3390/genes2020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/08/2011] [Accepted: 03/21/2011] [Indexed: 01/02/2023] Open
Abstract
Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.
Collapse
Affiliation(s)
- Lingyu Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Naihe Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
5
|
Callery EM, Thomsen GH, Smith JC. A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. Dev Biol 2010; 340:75-87. [PMID: 20083100 PMCID: PMC2877776 DOI: 10.1016/j.ydbio.2010.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 12/23/2009] [Accepted: 01/08/2010] [Indexed: 10/31/2022]
Abstract
T-box family transcription factors play many roles in Metazoan development. Here we characterise Tbx6r, a unique Tbx6 paralogue isolated from the amphibian Xenopus. The evolution and developmental integration of this divergent T-box gene within the vertebrates reveals an unexpected level of plasticity within this conserved family of developmental regulators. We show that despite their co-expression, Tbx6 and Tbx6r have dissimilar transcriptional responses to ligand treatment, and their ability to activate ligand expression is also very different. The two paralogues have distinct inductive properties: Tbx6 induces mesoderm whereas Tbx6r induces anterior neural markers. We use hybrid proteins in an effort to understand this difference, and implicate the C-terminal regions of the proteins in their inductive specificities. Through loss-of-function analyses using antisense morpholino oligonucleotides we show that both Tbx6 paralogues perform essential functions in the development of the paraxial and intermediate mesoderm and the neural crest in Xenopus. We demonstrate that Tbx6 and Tbx6r both induce FGF8 expression as well as that of pre-placodal markers, and that Tbx6 can also induce neural crest markers via a ligand-dependent mechanism involving FGF8 and Wnt8. Our data thus identify an important new function for this key developmental regulator.
Collapse
Affiliation(s)
- Elizabeth M Callery
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | |
Collapse
|
6
|
Shindo A, Hara Y, Yamamoto TS, Ohkura M, Nakai J, Ueno N. Tissue-tissue interaction-triggered calcium elevation is required for cell polarization during Xenopus gastrulation. PLoS One 2010; 5:e8897. [PMID: 20126393 PMCID: PMC2814847 DOI: 10.1371/journal.pone.0008897] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 01/03/2010] [Indexed: 11/30/2022] Open
Abstract
The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium.
Collapse
Affiliation(s)
- Asako Shindo
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yusuke Hara
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Takamasa S. Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Masamichi Ohkura
- Saitama University Brain Science Institute, Saitama, Saitama, Japan
| | - Junichi Nakai
- Saitama University Brain Science Institute, Saitama, Saitama, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
7
|
Dhara SK, Hasneen K, Machacek DW, Boyd NL, Rao RR, Stice SL. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation 2008; 76:454-64. [DOI: 10.1111/j.1432-0436.2007.00256.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Abstract
New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.
Collapse
|
9
|
Shindo A, Yamamoto TS, Ueno N. Coordination of cell polarity during Xenopus gastrulation. PLoS One 2008; 3:e1600. [PMID: 18270587 PMCID: PMC2223072 DOI: 10.1371/journal.pone.0001600] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 01/17/2008] [Indexed: 12/16/2022] Open
Abstract
Cell polarity is an essential feature of animal cells contributing to morphogenesis. During Xenopus gastrulation, it is known that chordamesoderm cells are polarized and intercalate each other allowing anterior-posterior elongation of the embryo proper by convergent extension (CE). Although it is well known that the cellular protrusions at both ends of polarized cells exert tractive force for intercalation and that PCP pathway is known to be essential for the cell polarity, little is known about what triggers the cell polarization and what the polarization causes to control intracellular events enabling the intercalation that leads to the CE. In our research, we used EB3 (end-binding 3), a member of +TIPs that bind to the plus end of microtubule (MT), to visualize the intracellular polarity of chordamesoderm cells during CE to investigate the trigger of the establishment of cell polarity. We found that EB3 movement is polarized in chordamesoderm cells and that the notochord-somite tissue boundary plays an essential role in generating the cell polarity. This polarity was generated before the change of cell morphology and the polarized movement of EB3 in chordamesoderm cells was also observed near the boundary between the chordamesoderm tissue and naïve ectoderm tissue or lateral mesoderm tissues induced by a low concentration of nodal mRNA. These suggest that definitive tissue separation established by the distinct levels of nodal signaling is essential for the chordamesodermal cells to acquire mediolateral cell polarity.
Collapse
Affiliation(s)
- Asako Shindo
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
| | - Takamasa S. Yamamoto
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Naoto Ueno
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
10
|
Bielen H, Oberleitner S, Marcellini S, Gee L, Lemaire P, Bode HR, Rupp R, Technau U. Divergent functions of two ancientHydra Brachyuryparalogues suggest specific roles for their C-terminal domains in tissue fate induction. Development 2007; 134:4187-97. [DOI: 10.1242/dev.010173] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologues of the T-box gene Brachyury play important roles in mesoderm differentiation and other aspects of early development in all bilaterians. In the diploblast Hydra, the Brachyuryhomologue HyBra1 acts early in the formation of the hypostome, the location of the organiser in adult Hydra. We now report the isolation and characterisation of a second Brachyury gene, HyBra2. Sequence analysis suggests that HyBra1 and HyBra2 are paralogues, resulting from an ancient lineage-specific gene duplication. We show that both paralogues acquired novel functions, both at the level of their cis-regulation as well as through significant divergence of the coding sequence. Both genes are expressed in the hypostome, but HyBra1 is predominantly endodermal, whereas HyBra2 transcripts are found primarily in the ectoderm. During bud formation, both genes are activated before any sign of evagination, suggesting an early role in head formation. During regeneration, HyBra1 is an immediate-early response gene and is insensitive to protein synthesis inhibition, whereas the onset of expression of HyBra2 is delayed and requires protein synthesis. The functional consequence of HyBra1/2 protein divergence on cell fate decisions was tested in Xenopus. HyBra1 induces mesoderm, like vertebrate Brachyury proteins. By contrast, HyBra2 shows a strong cement-gland and neural-inducing activity. Domain-swapping experiments show that the C-terminal domain of HyBra2 is responsible for this specific phenotype. Our data support the concept of sub- and neofunctionalisation upon gene duplication and show that divergence of cis-regulation and coding sequence in paralogues can lead to dramatic changes in structure and function.
Collapse
Affiliation(s)
- Holger Bielen
- Sars International Centre for Marine Molecular Biology, University of Bergen,Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Sabine Oberleitner
- Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrase 44, D-80336 München, Germany
| | - Sylvain Marcellini
- IBDM/LGPD Case 907, Campus de Luminy, 13288 Marseille, France
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C,Concepción, Chile
| | - Lydia Gee
- Developmental Biology Center and Developmental and Cell Biology Department,University of California at Irvine, Irvine, CA 92697, USA
| | - Patrick Lemaire
- IBDM/LGPD Case 907, Campus de Luminy, 13288 Marseille, France
| | - Hans R. Bode
- Developmental Biology Center and Developmental and Cell Biology Department,University of California at Irvine, Irvine, CA 92697, USA
| | - Ralph Rupp
- Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrase 44, D-80336 München, Germany
| | - Ulrich Technau
- Sars International Centre for Marine Molecular Biology, University of Bergen,Thormøhlensgt. 55, 5008 Bergen, Norway
| |
Collapse
|
11
|
Rana AA, Collart C, Gilchrist MJ, Smith JC. Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2006; 2:e193. [PMID: 17112317 PMCID: PMC1636699 DOI: 10.1371/journal.pgen.0020193] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 10/03/2006] [Indexed: 12/03/2022] Open
Abstract
To identify novel genes involved in early development, and as proof-of-principle of a large-scale reverse genetics approach in a vertebrate embryo, we have carried out an antisense morpholino oligonucleotide (MO) screen in Xenopus tropicalis, in the course of which we have targeted 202 genes expressed during gastrula stages. MOs were designed to complement sequence between −80 and +25 bases of the initiating AUG codons of the target mRNAs, and the specificities of many were tested by (i) designing different non-overlapping MOs directed against the same mRNA, (ii) injecting MOs differing in five bases, and (iii) performing “rescue” experiments. About 65% of the MOs caused X. tropicalis embryos to develop abnormally (59% of those targeted against novel genes), and we have divided the genes into “synphenotype groups,” members of which cause similar loss-of-function phenotypes and that may function in the same developmental pathways. Analysis of the expression patterns of the 202 genes indicates that members of a synphenotype group are not necessarily members of the same synexpression group. This screen provides new insights into early vertebrate development and paves the way for a more comprehensive MO-based analysis of gene function in X. tropicalis. Genome sequencing projects have provided remarkable insights into the expression and regulation of many genes. For some species, such as the invertebrates Caenorhabditis elegans and Drosophila melanogaster, it has been possible to assign functions to these genes on a genome-wide scale. For the vertebrates, similar efforts are being made in mouse and zebrafish, but work in the former species is expensive and slow, and the zebrafish experienced a whole genome duplication event, so that some genes may have retained redundant functions. Here, this study uses antisense morpholino oligonucleotides (MOs) to show that the diploid amphibian Xenopus tropicalis provides a powerful alternative species. The authors have designed MOs to target sequences around the initiating AUG codons of 202 genes expressed during early development and confirmed that these function in a specific manner. About 65% of the MOs caused embryos to develop abnormally, and the authors have divided the genes into “synphenotype groups,” members of which cause similar loss-of-function phenotypes. Expression pattern analysis indicates that members of a synphenotype group are not necessarily members of the same synexpression group. This screen provides new insights into vertebrate development and paves the way for a comprehensive MO-based analysis of gene function in X. tropicalis.
Collapse
Affiliation(s)
- Amer Ahmed Rana
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Clara Collart
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael J Gilchrist
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - J. C Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 2005; 287:390-402. [PMID: 16216232 DOI: 10.1016/j.ydbio.2005.09.011] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/29/2005] [Accepted: 09/05/2005] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factors (FGF) are secreted molecules which function through the activation of specific tyrosine kinases receptors, the FGF receptors that transduce the signal by activating different pathways including the Ras/MAP kinase and the phospholipase-C gamma pathways. FGFs are involved in the regulation of many developmental processes including patterning, morphogenesis, differentiation, cell proliferation or migration. Such a diverse set of activities requires a tight control of the transduction signal which is achieved through the induction of different feedback inhibitors such as the Sproutys, Sef and MAP kinase phosphatase 3 which are responsible for the attenuation of FGF signals, limiting FGF activities in time and space.
Collapse
Affiliation(s)
- Bernard Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 10142, CU de Strasbourg, 67404 ILLKIRCH cedex, France
| | | |
Collapse
|
13
|
Abstract
During neural induction, the embryonic neural plate is specified and set aside from other parts of the ectoderm. A popular molecular explanation is the 'default model' of neural induction, which proposes that ectodermal cells give rise to neural plate if they receive no signals at all, while BMP activity directs them to become epidermis. However, neural induction now appears to be more complex than once thought, and can no longer be fully explained by the default model alone. This review summarizes neural induction events in different species and highlights some unanswered questions about this important developmental process.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Sugiura T, Taniguchi Y, Tazaki A, Ueno N, Watanabe K, Mochii M. Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis. Dev Growth Differ 2005; 46:97-105. [PMID: 15008858 DOI: 10.1111/j.1440-169x.2004.00727.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regeneration of the amputated tail of Xenopus laevis larvae is an excellent model system for regeneration research. The wound left by the amputated tail is covered with epidermis within 24 h. Then, the cell number increases near the amputation plane at the notochord, spinal cord and muscle regions. An apparently complete tail with notochord, muscle and spinal cord is regenerated within two weeks. To reveal whether the molecular mechanism underlying the tail regeneration is the same as that in embryonic tail development, the gene expression patterns of the embryonic tail bud and the regenerating tail were compared by in situ hybridization and reverse transcription-polymerase chain reaction. Most genes analyzed were expressed at similar levels in both tissues, whereas two bone morphogenetic protein (BMP)-antagonists, chordin and noggin, were detected only in the embryonic tail bud. The regenerating tail also lacked expression of Xshh in the floor plate and expression of Xdelta-1 in the spinal cord and presomitic mesoderm. These results show that there are some differences in gene expression between the two processes. Furthermore, when the tail of Xenopus larvae is amputated, the regenerating tail has a gene expression pattern similar to the distal portion of the larval tail rather than the embryonic tail bud, suggesting that the cut larval tail does not make a new embryonic tail bud, but rather a new larval tail tip for regeneration.
Collapse
Affiliation(s)
- Takuji Sugiura
- Department of Life Science, Graduate School of Science, Himeji Institue of Technology, 3-2-1 Kouto, Kamigori, Akou, Hyogo 678-1297, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
16
|
Nitta KR, Tanegashima K, Takahashi S, Asashima M. XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Dev Biol 2004; 275:258-67. [PMID: 15464588 DOI: 10.1016/j.ydbio.2004.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 11/26/2022]
Abstract
Neural differentiation is induced by inhibition of BMP signaling. Secreted inhibitors of BMP such as Chordin from the Spemann organizer contribute to the initial step of neural induction. Xenopus Smad-interacting protein-1 gene (XSIP1) is expressed in neuroectoderm from the early gastrula stage through to the neurula stage. XSIP1 is able to inhibit BMP signaling and overexpression of XSIP1 induces neural differentiation. To clarify the function of XSIP1 in neural differentiation, we performed a loss-of-function study of XSIP1. Knockdown of XSIP1 inhibited SoxD expression and neural differentiation. These results indicate that XSIP1 is essential for neural induction. Furthermore, loss-of-function experiments showed that SoxD is essential for XSIP1 transcription and for neural differentiation. However, inhibition of XSIP1 translation prevented neural differentiation induced by SoxD; thus, SoxD was not sufficient to mediate neural differentiation. Expression of XSIP1 was also required for inhibition of BMP signaling. Together, these results suggest that XSIP1 and SoxD interdependently function to maintain neural differentiation.
Collapse
Affiliation(s)
- Kazuhiro R Nitta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | | | | | | |
Collapse
|
17
|
Hartman D, Haldin CE, Stott D, Jones EA. Xbra3 elicits the production of neural tissue by a non-BMP-dependent mechanism in Xenopus sp. Mech Dev 2002; 118:65-75. [PMID: 12351171 DOI: 10.1016/s0925-4773(02)00195-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ectoderm cells in animal caps from Xenopus embryos develop to form either epidermis or neural tissue depending upon their receipt of intercellular signals. To date, several secreted neural inducers have been identified which act through the local inhibition of bone morphogenetic protein (BMP) signaling, preventing differentiation to epidermis and resulting in adoption of neural fate. In this work, we have exploited an interspecies animal cap assay, which enables detection of the effects of signaling molecules produced by cells of one animal cap and influencing development in a second cap cultured in close apposition in a Holtfreter combination. We show that expression of the T-box protein, Xbra3, in one cap causes the production of a factor, which causes adoption of neural fate by cells of the other animal cap. The action of this factor is not inhibited by the over-expression of BMP in cells of the responding animal cap, or by the inhibition of Wnt signaling. These findings suggest the existence of a secreted signaling molecule that is able to induce ectodermal cells to adopt neural fate by a mechanism independent of the inhibition of the BMP or Wnt signaling pathways.
Collapse
Affiliation(s)
- D Hartman
- Developmental Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
18
|
Abu-Issa R, Smyth G, Smoak I, Yamamura KI, Meyers EN. Fgf8is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002; 129:4613-25. [PMID: 12223417 DOI: 10.1242/dev.129.19.4613] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here an analysis of cardiovascular and pharyngeal arch development in mouse embryos hypomorphic for Fgf8. Previously, we have described the generation of Fgf8 compound heterozygous (Fgf8neo/–) embryos. Although early analysis demonstrated that some of these embryos have abnormal left-right (LR) axis specification and cardiac looping reversals, the number and type of cardiac defects present at term suggested an additional role for Fgf8 in cardiovascular development. Most Fgf8neo/– mutant embryos survive to term with abnormal cardiovascular patterning, including outflow tract, arch artery and intracardiac defects. In addition, these mutants have hypoplastic pharyngeal arches, small or absent thymus and abnormal craniofacial development. Neural crest cells (NCCs) populate the pharyngeal arches and contribute to many structures of the face, neck and cardiovascular system, suggesting that Fgf8 may be required for NCC development. Fgf8 is expressed within the developing pharyngeal arch ectoderm and endoderm during NCC migration through the arches. Analysis of NCC development in Fgf8neo/– mutant embryos demonstrates that NCCs are specified and migrate, but undergo cell death in areas both adjacent and distal to where Fgf8 is normally expressed. This study defines the cardiovascular defects present in Fgf8 mutants and supports a role for Fgf8 in development of all the pharyngeal arches and in NCC survival.
Collapse
Affiliation(s)
- Radwan Abu-Issa
- Department of Pediatrics, Neonatal Perinatal Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
19
|
Ninomiya H, Zhang Q, Elinson RP. Mesoderm formation in Eleutherodactylus coqui: body patterning in a frog with a large egg. Dev Biol 2001; 236:109-23. [PMID: 11456448 DOI: 10.1006/dbio.2001.0310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The direct developing frog, Eleutherodactylus coqui, develops from a large egg (diameter 3.5 mm). To investigate the effect of egg size on germ-layer formation, we studied mesoderm formation in E. coqui and compared it to that of Xenopus laevis (diameter 1.3 mm). First, we identified the position of prospective mesoderm in the 16-cell E. coqui embryo by cell-lineage tracing. Although the animal blastomeres are small, they form most of the blastocoel roof and make extensive contributions to some mesodermal tissues. Second, we performed recombinant analysis with X. laevis animal caps to define the distribution of mesoderm-inducing activity. Mesoderm-inducing activity in E. coqui was restricted around the marginal zone with strong activity in the superficial cells. Neither the vegetal pole nor the blastocoel floor had activity, although these same regions from X. laevis induced mesoderm. Third, we cloned Ecbra, a homologue of Xbra, an early mesoderm marker in X. laevis. Ecbra was expressed in the marginal ring close to the surface, similar to X. laevis, but E. coqui had weaker expression on the dorsal side. Our results suggest that mesoderm formation is shifted more animally and superficially in E. coqui compared to X. laevis.
Collapse
Affiliation(s)
- H Ninomiya
- Department of Zoology, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
20
|
Abstract
The T-box gene family was uncovered less than a decade ago but has been recognized as important in controlling many and varied aspects of development in metazoans from hydra to humans. Extensive screening and database searching has revealed several subfamilies of genes with orthologs in species as diverse as Caenorhabditis elegans and humans. The defining feature of the family is a conserved sequence coding for a DNA-binding motif known as the T-box, named after the first-discovered T-box gene, T or Brachyury. Although several T-box proteins have been shown to function as transcriptional regulators, to date only a handful of downstream target genes have been discovered. Similarly, little is known about regulation of the T-box genes themselves. Although not limited to the embryo, expression of T-box genes is characteristically seen in dynamic and highly specific patterns in many tissues and organs during embryogenesis and organogenesis. The essential role of several T-box genes has been demonstrated by the developmental phenotypes of mutant animals.
Collapse
Affiliation(s)
- V E Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| |
Collapse
|