1
|
Lu W, Lakonishok M, Gelfand VI. The dynamic duo of microtubule polymerase Mini spindles/XMAP215 and cytoplasmic dynein is essential for maintaining Drosophila oocyte fate. Proc Natl Acad Sci U S A 2023; 120:e2303376120. [PMID: 37722034 PMCID: PMC10523470 DOI: 10.1073/pnas.2303376120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023] Open
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster, 16 interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for maintenance of the oocyte specification. mRNA encoding Msps is transported and concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, ensuring oocyte fate maintenance by promoting high microtubule polymerization activity in the oocyte, and enhancing dynein-dependent nurse cell-to-oocyte transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
2
|
Lu W, Lakonishok M, Gelfand VI. Drosophila oocyte specification is maintained by the dynamic duo of microtubule polymerase Mini spindles/XMAP215 and dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531953. [PMID: 36945460 PMCID: PMC10028982 DOI: 10.1101/2023.03.09.531953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster , 16-cell interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for the oocyte fate determination. mRNA encoding Msps is concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, enhancing dynein-dependent nurse cell-to-oocyte transport and transforming a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Significance statement Oocyte determination in Drosophila melanogaster provides a valuable model for studying cell fate specification. We describe the crucial role of the duo of microtubule polymerase Mini spindles (Msps) and cytoplasmic dynein in this process. We show that Msps is essential for oocyte fate determination. Msps concentration in the oocyte is achieved through dynein-dependent transport of msps mRNA along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, further enhancing nurse cell-to-oocyte transport by dynein. This creates a positive feedback loop that transforms a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Our findings provide important insights into the mechanisms of oocyte specification and have implications for understanding the development of multicellular organisms.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Budzinska M, Wicher KB, Terenzio M. Neuronal Roles of the Bicaudal D Family of Motor Adaptors. VITAMINS AND HORMONES 2016; 104:133-152. [PMID: 28215293 DOI: 10.1016/bs.vh.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
All cell types rely on active intracellular cargo transport to shuttle essential cellular components such as proteins, lipids, RNA, and even organelles from the center to the periphery and vice versa. Additionally, several signaling pathways take advantage of intracellular transport to propagate their signals by moving activated receptors and protein effectors to specific locations inside the cell. Neurons particularly, being a very polarized cell type, are highly dependent on molecular motors for the anterograde and retrograde delivery of essential cellular components and signaling molecules. For these reasons, motor adaptor proteins have been extensively investigated in regard to their role in physiology and pathology of the nervous system. In this chapter, we will concentrate on a family of motor adaptor proteins, Bicaudal D (BICD), and their function in the context of the nervous system. BicD was originally described as essential for the correct localization of maternal mRNAs in Drosophila's oocyte and a regulator of the Golgi to ER retrograde transport in mammalian cells. Both mammalian BICD1 and BICD2 are highly expressed in the nervous system during development, and their importance in neuronal homeostasis has been recently under scrutiny. Several mutations in BICD2 have been linked to the development of neuromuscular diseases, and BICD2 knockout (KO) mice display migration defects of the radial cerebellar granule cells. More in line with the overall topic of this book, BICD1 was identified as a novel regulator of neurotrophin (NT) signaling as its deletion leads to defective sorting of ligand-activated NT receptors with dramatic consequences on the NT-mediated signaling pathway.
Collapse
Affiliation(s)
- M Budzinska
- Molecular NeuroPathobiology Laboratory, UCL Institute of Neurology, University College London, London, United Kingdom
| | - K B Wicher
- Ossianix, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - M Terenzio
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Poly(ADP-Ribosyl)ation of hnRNP A1 Protein Controls Translational Repression in Drosophila. Mol Cell Biol 2016; 36:2476-86. [PMID: 27402862 DOI: 10.1128/mcb.00207-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/27/2016] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) regulates the posttranscriptional fate of RNA during development. Drosophila hnRNP A1, Hrp38, is required for germ line stem cell maintenance and oocyte localization. The mRNA targets regulated by Hrp38 are mostly unknown. We identified 428 Hrp38-associated gene transcripts in the fly ovary, including mRNA of the translational repressor Nanos. We found that Hrp38 binds to the 3' untranslated region (UTR) of Nanos mRNA, which contains a translation control element. We have demonstrated that translation of the luciferase reporter bearing the Nanos 3' UTR is enhanced by dsRNA-mediated Hrp38 knockdown as well as by mutating potential Hrp38-binding sites. Our data show that poly(ADP-ribosyl)ation inhibits Hrp38 binding to the Nanos 3' UTR, increasing the translation in vivo and in vitro hrp38 and Parg null mutants showed an increased ectopic Nanos translation early in the embryo. We conclude that Hrp38 represses Nanos translation, whereas its poly(ADP-ribosyl)ation relieves the repression effect, allowing restricted Nanos expression in the posterior germ plasm during oogenesis and early embryogenesis.
Collapse
|
5
|
Minakhina S, Changela N, Steward R. Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 2014; 141:259-68. [PMID: 24381196 DOI: 10.1242/dev.101410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The maintenance of stem cells is central to generating diverse cell populations in many tissues throughout the life of an animal. Elucidating the mechanisms involved in how stem cells are formed and maintained is crucial to understanding both normal developmental processes and the growth of many cancers. Previously, we showed that Zfrp8/PDCD2 is essential for the maintenance of Drosophila hematopoietic stem cells. Here, we show that Zfrp8/PDCD2 is also required in both germline and follicle stem cells in the Drosophila ovary. Expression of human PDCD2 fully rescues the Zfrp8 phenotype, underlining the functional conservation of Zfrp8/PDCD2. The piRNA pathway is essential in early oogenesis, and we find that nuclear localization of Zfrp8 in germline stem cells and their offspring is regulated by some piRNA pathway genes. We also show that Zfrp8 forms a complex with the piRNA pathway protein Maelstrom and controls the accumulation of Maelstrom in the nuage. Furthermore, Zfrp8 regulates the activity of specific transposable elements also controlled by Maelstrom and Piwi. Our results suggest that Zfrp8/PDCD2 is not an integral member of the piRNA pathway, but has an overlapping function, possibly competing with Maelstrom and Piwi.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Rutgers University, Department of Molecular Biology, Waksman Institute, Cancer Institute of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
6
|
Vandenbrouck T, Dom N, Novais S, Soetaert A, Ferreira AL, Loureiro S, Soares AM, De Coen W. Nickel response in function of temperature differences: Effects at different levels of biological organization in Daphnia magna. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:271-81. [DOI: 10.1016/j.cbd.2011.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
7
|
Vazquez-Pianzola P, Urlaub H, Suter B. Pabp binds to the osk 3'UTR and specifically contributes to osk mRNA stability and oocyte accumulation. Dev Biol 2011; 357:404-18. [PMID: 21782810 DOI: 10.1016/j.ydbio.2011.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 12/16/2022]
Abstract
RNA localization is tightly coordinated with RNA stability and translation control. Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors are part of a Drosophila transport machinery that localizes mRNAs to specific cellular regions during oogenesis and embryogenesis. We identified the Poly(A)-binding protein (Pabp) as a protein that forms an RNA-dependent complex with Bic-D in embryos and ovaries. pabp also interacts genetically with Bic-D and, similar to Bic-D, pabp is essential in the germline for oocyte growth and accumulation of osk mRNA in the oocyte. In the absence of pabp, reduced stability of osk mRNA and possibly also defects in osk mRNA transport prevent normal oocyte localization of osk mRNA. pabp also interacts genetically with osk and lack of one copy of pabp(+) causes osk to become haploinsufficient. Moreover, pointing to a poly(A)-independent role, Pabp binds to A-rich sequences (ARS) in the osk 3'UTR and these turned out to be required in vivo for osk function during early oogenesis. This effect of pabp on osk mRNA is specific for this RNA and other tested mRNAs localizing to the oocyte are less and more indirectly affected by the lack of pabp.
Collapse
|
8
|
Bicaudal D1-dependent trafficking of human cytomegalovirus tegument protein pp150 in virus-infected cells. J Virol 2010; 84:3162-77. [PMID: 20089649 DOI: 10.1128/jvi.01776-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) virion assembly takes place in the nucleus and cytoplasm of infected cells. The HCMV virion tegument protein pp150 (ppUL32) is an essential protein of HCMV and has been suggested to play a role in the cytoplasmic phase of HCMV assembly. To further define its role in viral assembly and to identify host cell proteins that interact with pp150 during viral assembly, we utilized yeast two-hybrid analyses to detect an interaction between pp150 and Bicaudal D1 (BicD1), a protein thought to play a role in trafficking within the secretory pathway. BicD1 is known to interact with the dynein motor complex and the Rab6 GTPase. The interaction between pp150 and BicD1 was confirmed by coimmunoprecipitation and fluorescence resonance energy transfer. Depletion of BicD1 with short hairpin RNA (shRNA) caused decreased virus yield and a defect in trafficking of pp150 to the cytoplasmic viral assembly compartment (AC), without altering trafficking to the AC of another essential tegument protein, pp28, or the viral glycoprotein complex gM/gN. The C terminus of BicD1 has been previously shown to interact with the GTPase Rab6, suggesting a potential role for Rab6-mediated vesicular trafficking in HCMV assembly. Finally, overexpression of the N terminus of truncated BicD1 acts in a dominant-negative manner and leads to disruption of the AC and a decrease in the assembly of infectious virus. This phenotype was similar to that observed following overexpression of dynamitin (p50) and provided additional evidence that morphogenesis of the AC and virus assembly were dynein dependent.
Collapse
|
9
|
Abstract
Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.
Collapse
|
10
|
Abstract
Many cytoplasmic cargoes are transported along microtubules using dynein or kinesin molecular motors. As the sorting machinery of the cell needs to be tightly controlled, associated factors are employed to either recruit cargoes to motors or to regulate their activities. In the present review, we concentrate on the BicD (Bicaudal-D) protein, which has recently emerged as an essential element for transport of several important cargoes by the minus-end-directed motor cytoplasmic dynein. BicD was proposed to be a linker bridging cargo and dynein, although recent studies suggest that it may also have roles in the regulation of cargo motility. Here we summarize the current knowledge of the role that BicD plays in the transport of diverse cellular constituents. We catalogue the molecular interactions that underpin these functions and also highlight important questions to be addressed in the future.
Collapse
|
11
|
Olesnicky EC, Desplan C. Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia. Dev Biol 2007; 306:134-42. [PMID: 17434472 PMCID: PMC1973164 DOI: 10.1016/j.ydbio.2007.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the posterior pole, whereas giant mRNA is localized to the anterior pole of the oocyte; orthodenticle1 (otd1) is localized to both the anterior and posterior poles. The abundance of differentially localized mRNAs during Nasonia oogenesis provided a unique opportunity to study the different mechanisms involved in mRNA localization. Through pharmacological disruption of the microtubule network, we found that both anterior otd1 and giant, as well as posterior caudal mRNA localization was microtubule-dependent. Conversely, posterior otd1 and nanos mRNA localized correctly to the posterior upon microtubule disruption. However, actin is important in anchoring these two posteriorly localized mRNAs to the oosome, the structure containing the pole plasm. Moreover, we find that knocking down the functions of the genes tudor and Bicaudal-D mimics disruption of microtubules, suggesting that tudor's function in Nasonia is different from flies, where it is involved in formation of the pole plasm.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | | |
Collapse
|
12
|
Coutelis JB, Ephrussi A. Rab6 mediates membrane organization and determinant localization during Drosophila oogenesis. Development 2007; 134:1419-30. [PMID: 17329360 DOI: 10.1242/dev.02821] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Drosophila melanogaster body axes are defined by the precise localization and the restriction of molecular determinants in the oocyte. Polarization of the oocyte during oogenesis is vital for this process. The directed traffic of membranes and proteins is a crucial component of polarity establishment in various cell types and organisms. Here, we investigate the role of the small GTPase Rab6 in the organization of the egg chamber and in asymmetric determinant localization during oogenesis. We show that exocytosis is affected in rab6-null egg chambers, which display a loss of nurse cell plasma membranes. Rab6 is also required for the polarization of the oocyte microtubule cytoskeleton and for the posterior localization of oskar mRNA. We show that, in vivo, Rab6 is found in a complex with Bicaudal-D, and that Rab6 and Bicaudal-D cooperate in oskar mRNA localization. Thus, during Drosophila oogenesis, Rab6-dependent membrane trafficking is doubly required; first, for the general organization and growth of the egg chamber, and second, more specifically, for the polarization of the microtubule cytoskeleton and localization of oskar mRNA. These findings highlight the central role of vesicular trafficking in the establishment of polarity and in determinant localization in Drosophila.
Collapse
Affiliation(s)
- Jean-Baptiste Coutelis
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
13
|
O'Reilly AM, Ballew AC, Miyazawa B, Stocker H, Hafen E, Simon MA. Csk differentially regulates Src64 during distinct morphological events in Drosophila germ cells. Development 2006; 133:2627-38. [PMID: 16775001 DOI: 10.1242/dev.02423] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Src family protein tyrosine kinases (SFKs) are crucial regulators of cellular morphology. In Drosophila, Src64 controls complex morphological events that occur during oogenesis. Recent studies have identified key Src64-dependent mechanisms that regulate actin cytoskeletal dynamics during the growth of actin-rich ring canals, which act as intercellular bridges between germ cells. By contrast, the molecular mechanisms that regulate Src64 activity levels and potential roles for Src64 in additional morphological events in the ovary have not been defined. In this report, we demonstrate that regulation of Src64 by Drosophila C-terminal-Src Kinase (Csk) contributes to the packaging of germline cysts by overlying somatic follicle cells during egg chamber formation. These results uncover novel roles for both Csk and Src64 in a dynamic event that involves adhesion, communication between cell types and control of cell motility. Strikingly, Src64 and Csk function in the germline to control packaging, not in migrating follicle cells, suggesting novel functions for this signaling cassette in regulating dynamic adhesion. In contrast to the role played by Csk in the regulation of Src64 activity during packaging, Csk is dispensable for ring canal growth control, indicating that distinct mechanisms control Src64 activity during different morphological events.
Collapse
Affiliation(s)
- Alana M O'Reilly
- Department of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bao X, Zhang W, Krencik R, Deng H, Wang Y, Girton J, Johansen J, Johansen KM. The JIL-1 kinase interacts with lamin Dm0 and regulates nuclear lamina morphology of Drosophila nurse cells. J Cell Sci 2005; 118:5079-87. [PMID: 16254246 DOI: 10.1242/jcs.02611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a yeast two-hybrid screen to identify lamin Dm0 as an interaction partner for the nuclear JIL-1 kinase. This molecular interaction was confirmed by GST-fusion protein pull-down assays and by co-immunoprecipitation experiments. Using deletion construct analysis we show that a predicted globular domain of the basic region of the COOH-terminal domain of JIL-1 was sufficient for mediating the molecular interactions with lamin Dm0. A reciprocal analysis with truncated lamin Dm0 constructs showed that the interaction with JIL-1 required sequences in the tail domain of lamin Dm0 that include the Ig-like fold. Further support for a molecular interaction between JIL-1 and lamin Dm0 in vivo was provided by genetic interaction assays. We show that nuclear positioning and lamina morphology were abnormal in JIL-1 mutant egg chambers. The most common phenotypes observed were abnormal nurse cell nuclear lamina protrusions through the ring canals near the oocyte, as well as dispersed and mislocalized lamin throughout the egg chamber. These phenotypes were completely rescued by a full-length JIL-1 transgenic construct. Thus, our results suggest that the JIL-1 kinase is required to maintain nuclear morphology and integrity of nurse cells during oogenesis and that this function may be linked to molecular interactions with lamin Dm0.
Collapse
Affiliation(s)
- Xiaomin Bao
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In many animals, normal development depends on the asymmetric distribution of maternal determinants, including various coding and noncoding RNAs, within the oocyte. The temporal and spatial distribution of localized RNAs is determined by intricate mechanisms that regulate their movement and anchoring. These mechanisms involve cis-acting sequences within the RNA molecules and a multitude of trans-acting factors, as well as a polarized cytoskeleton, molecular motors and specific transporting organelles. The latest studies show that the fates of localized RNAs within the oocyte cytoplasm are predetermined in the nucleus and that nuclear proteins, some of them deposited on RNAs during splicing, together with the components of the RNA-silencing pathway, dictate the proper movement, targeting, anchoring and translatability of localized RNAs.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Department of Molecular Genetics, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
16
|
Houalla T, Hien Vuong D, Ruan W, Suter B, Rao Y. The Ste20-like kinase misshapen functions together with Bicaudal-D and dynein in driving nuclear migration in the developing drosophila eye. Mech Dev 2005; 122:97-108. [PMID: 15582780 DOI: 10.1016/j.mod.2004.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/13/2004] [Accepted: 08/18/2004] [Indexed: 10/26/2022]
Abstract
Nuclear translocation, driven by the motility apparatus consisting of the cytoplasmic dynein motor and microtubules, is essential for cell migration during embryonic development. Bicaudal-D (Bic-D), an evolutionarily conserved dynein-interacting protein, is required for developmental control of nuclear migration in Drosophila. Nothing is known about the signaling events that coordinate the function of Bic-D and dynein during development. Here, we show that Misshapen (Msn), the fly homolog of the vertebrate Nck-interacting kinase is a component of a novel signaling pathway that regulates photoreceptor (R-cell) nuclear migration in the developing Drosophila compound eye. Msn, like Bic-D, is required for the apical migration of differentiating R-cell precursor nuclei. msn displays strong genetic interaction with Bic-D. Biochemical studies demonstrate that Msn increases the phosphorylation of Bic-D, which appears to be necessary for the apical accumulation of both Bic-D and dynein in developing R-cell precursor cells. We propose that Msn functions together with Bic-D to regulate the apical localization of dynein in generating directed nuclear migration within differentiating R-cell precursor cells.
Collapse
Affiliation(s)
- Tarek Houalla
- McGill Centre for Research in Neuroscience, and Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Que., Canada
| | | | | | | | | |
Collapse
|
17
|
Röper K, Brown NH. A Spectraplakin Is Enriched on the Fusome and Organizes Microtubules during Oocyte Specification in Drosophila. Curr Biol 2004. [DOI: 10.1016/j.cub.2003.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Murthy M, Schwarz TL. The exocyst component Sec5 is required for membrane traffic and polarity in the Drosophila ovary. Development 2003; 131:377-88. [PMID: 14681190 DOI: 10.1242/dev.00931] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The directed traffic of membrane proteins to the cell surface is crucial for many developmental events. We describe the role of Sec5, a member of the exocyst complex, in directed membrane traffic in the Drosophila oocyte. During oogenesis, we find that Sec5 localization undergoes dynamic changes, correlating with the sites at which it is required for the traffic of membrane proteins. Germline clones of sec5 possess defects in membrane addition and the posterior positioning of the oocyte. Additionally, the impaired membrane trafficking of Gurken, the secreted ligand for the EGF receptor, and Yolkless, the vitellogenin receptor, results in defects in dorsal patterning and egg size. However, we find the cytoskeleton to be correctly oriented. We conclude that Sec5 is required for directed membrane traffic, and consequently for the establishment of polarity within the developing oocyte.
Collapse
Affiliation(s)
- Mala Murthy
- Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Morris JZ, Navarro C, Lehmann R. Identification and analysis of mutations in bob, Doa and eight new genes required for oocyte specification and development in Drosophila melanogaster. Genetics 2003; 164:1435-46. [PMID: 12930750 PMCID: PMC1462657 DOI: 10.1093/genetics/164.4.1435] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila oocyte develops from a cluster of 16 interconnected cells that derive from a common progenitor. One of these cells, the oocyte, arrests in meiosis. The other cells endoreplicate their DNA and produce mRNAs and proteins that they traffic to the oocyte along a polarized microtubule cytoskeleton shared by the entire cyst. Therefore, Drosophila oogenesis is an attractive system for the study of cell cycle control and cell polarity. We carried out a clonal screen on the right arm of chromosome 3 for female sterile mutations using the FLP-FRT-ovo(D) system to identify new genes required for early oogenesis. We identified alleles of oo18 RNA binding protein (orb) and Darkener of apricot (Doa), which had previously been shown to exhibit oogenesis defects. We also identified several lethal alleles of the male sterile mutant, bobble (bob). In addition, we identified eight new lethal complementation groups that exhibit early oogenesis phenotypes. We analyzed mutant clones to determine the aspects of oogenesis disrupted by each complementation group. We assayed for the production and development of egg chambers, localization of ORB to and within the oocyte, and proper execution of the nurse cell cycle (endoreplication of DNA) and the oocyte cell cycle (karyosome formation). Here we discuss the identification, mapping, and phenotypic characterization of these new genes: omelet, soft boiled, hard boiled, poached, fried, over easy, sunny side up, and benedict.
Collapse
Affiliation(s)
- Jason Z Morris
- Developmental Genetics Program, The Skirball Institute and Howard Hughes Medical Institute, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
20
|
Bullock SL, Zicha D, Ish-Horowicz D. The Drosophila hairy RNA localization signal modulates the kinetics of cytoplasmic mRNA transport. EMBO J 2003; 22:2484-94. [PMID: 12743042 PMCID: PMC155988 DOI: 10.1093/emboj/cdg230] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several Drosophila cell types, mRNA transport depends on microtubules, the molecular motor dynein and trans-acting factors including Egalitarian and Bicaudal-D. However, the molecular basis of transcript recognition by the localization machinery is poorly understood. Here, we characterize the features of hairy pair-rule RNA transcripts that mediate their apical localization, using in vivo injection of fluorescently labelled mRNAs into syncytial blastoderm embryos. We show that a 121-nucleotide element within the 3'-untranslated region is necessary and sufficient to mediate apical transport. The signal comprises two essential stem-loop structures, in which double-stranded stems are crucial for localization. Base-pair identities within the stems are not essential, but can contribute to the efficiency of localization, suggesting that specificity is mediated by higher-order structure. Using time-lapse microscopy, we measure the kinetics of localization and show that impaired localization of mutant signals is due to delayed formation of active motor complexes and, unexpectedly, to slower movement. These findings, and those from co-injecting wild-type and mutant RNAs, suggest that the efficiency of molecular motors is modulated by the character of their cargoes.
Collapse
Affiliation(s)
- Simon L Bullock
- Developmental Genetics and Light Microscopy Laboratories, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
21
|
Abstract
Patterning of the Drosophila egg requires the establishment of several distinct types of somatic follicle cells, as well as interactions between these follicle cells and the oocyte. The polar cells occupy the termini of the follicle and are specified by the activation of Notch. We have investigated their role in follicle patterning by creating clones of cells mutant for the Notch modulator fringe. This genetic ablation of polar cells results in cell fate defects within surrounding follicle cells. At the anterior, the border cells, the immediately adjacent follicle cell fate, are absent, as are the more distant stretched and centripetal follicle cells. Conversely, increasing the number of polar cells by expressing an activated form of the Notch receptor increases the number of border cells. At the posterior, elimination of polar cells results in abnormal oocyte localization. Moreover, when polar cells are mislocalized laterally, the surrounding follicle cells adopt a posterior fate, the oocyte is located adjacent to them,and the anteroposterior axis of the oocyte is re-oriented with respect to the ectopic polar cells. Our observations demonstrate that the polar cells act as an organizer that patterns surrounding follicle cells and establishes the anteroposterior axis of the oocyte. The origin of asymmetry duringDrosophila development can thus be traced back to the specification of the polar cells during early oogenesis.
Collapse
Affiliation(s)
- Muriel Grammont
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854, USA
| | | |
Collapse
|
22
|
Bullock SL, Ish-Horowicz D. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 2001; 414:611-6. [PMID: 11740552 DOI: 10.1038/414611a] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Localization of cytoplasmic messenger RNA transcripts is widely used to target proteins within cells. For many transcripts, localization depends on cis-acting elements within the transcripts and on microtubule-based motors; however, little is known about other components of the transport machinery or how these components recognize specific RNA cargoes. Here, we show that in Drosophila the same machinery and RNA signals drive specific accumulation of maternal RNAs in the early oocyte and apical transcript localization in blastoderm embryos. We demonstrate in vivo that Egalitarian (Egl) and Bicaudal D (BicD), maternal proteins required for oocyte determination, are selectively recruited by, and co-transported with, localizing transcripts in blastoderm embryos, and that interfering with the activities of Egl and BicD blocks apical localization. We propose that Egl and BicD are core components of a selective dynein motor complex that drives transcript localization in a variety of tissues.
Collapse
Affiliation(s)
- S L Bullock
- Developmental Genetics Laboratory, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
23
|
Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R, Visser P, Grosveld F, Galjart N. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J 2001; 20:4041-54. [PMID: 11483508 PMCID: PMC149157 DOI: 10.1093/emboj/20.15.4041] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic analysis in Drosophila suggests that Bicaudal-D functions in an essential microtubule-based transport pathway, together with cytoplasmic dynein and dynactin. However, the molecular mechanism underlying interactions of these proteins has remained elusive. We show here that a mammalian homologue of Bicaudal-D, BICD2, binds to the dynamitin subunit of dynactin. This interaction is confirmed by mass spectrometry, immunoprecipitation studies and in vitro binding assays. In interphase cells, BICD2 mainly localizes to the Golgi complex and has properties of a peripheral coat protein, yet it also co-localizes with dynactin at microtubule plus ends. Overexpression studies using green fluorescent protein-tagged forms of BICD2 verify its intracellular distribution and co-localization with dynactin, and indicate that the C-terminus of BICD2 is responsible for Golgi targeting. Overexpression of the N-terminal domain of BICD2 disrupts minus-end-directed organelle distribution and this portion of BICD2 co-precipitates with cytoplasmic dynein. Nocodazole treatment of cells results in an extensive BICD2-dynactin-dynein co-localization. Taken together, these data suggest that mammalian BICD2 plays a role in the dynein- dynactin interaction on the surface of membranous organelles, by associating with these complexes.
Collapse
Affiliation(s)
- Casper C. Hoogenraad
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Anna Akhmanova
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Steven A. Howell
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Bjorn R. Dortland
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Chris I. De Zeeuw
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Rob Willemsen
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Pim Visser
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Frank Grosveld
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| | - Niels Galjart
- MGC Departments of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands and Laboratory of Protein Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK Corresponding author e-mail:
C.C.Hoogenraad and A.Akhmanova contributed equally to this work
| |
Collapse
|