1
|
Chen HL, Cheng JY, Yang YF, Li Y, Jiang XH, Yang L, Wu L, Shi M, Liu B, Duan J, Li X, Li QW. Phospholipase C inhibits apoptosis of porcine oocytes cultured in vitro. J Cell Biochem 2020; 121:3547-3559. [DOI: 10.1002/jcb.29636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Hua Li Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Jian Yong Cheng
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - You Fu Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Yuan Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Xiao Han Jiang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Li Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Lin Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Meihong Shi
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Boyang Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Jiaxin Duan
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Xiaoya Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Qing Wang Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| |
Collapse
|
2
|
|
3
|
Finley J. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1. Med Hypotheses 2016; 93:34-47. [PMID: 27372854 DOI: 10.1016/j.mehy.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 01/22/2023]
Abstract
In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular stress (e.g. increase in Ca(2+) concentration, reactive oxygen species generation, increase in AMP/ATP ratio) is essential for oocyte maturation, T cell activation, and mitochondrial function. In addition to the AMPK kinase LKB1, CaMKK2, a Ca(2+)/calmodulin-dependent kinase that also activates AMPK, is present in and activated on T cell activation and is also present in mouse oocytes and persists until the zygote and two-cell stages. It is our hypothesis that AMPK activation represents a central node linking T cell activation-induced latent HIV-1 reactivation and both physiological and artificial oocyte activation. We further propose the novel observation that various compounds that have been shown to reactivate latent HIV-1 (e.g. PMA, ionomycin, metformin, bryostatin, resveratrol, etc.) or activate oocytes (PMA, ionomycin, ethanol, puromycin, etc.) either alone or in combination likely do so via stress-induced activation of AMPK.
Collapse
|
4
|
Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res 2016; 363:169-183. [PMID: 26453398 PMCID: PMC4700098 DOI: 10.1007/s00441-015-2291-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/28/2015] [Indexed: 01/22/2023]
Abstract
Mammalian embryo development begins when the fertilizing sperm triggers a series of elevations in the oocyte's intracellular free Ca(2+) concentration. The elevations are the result of repeated release and re-uptake of Ca(2+) stored in the smooth endoplasmic reticulum. Ca(2+) release is primarily mediated by the phosphoinositide signaling system of the oocyte. The system is stimulated when the sperm causes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG); IP3 then binds its receptor on the surface of the endoplasmic reticulum that induces Ca(2+) release. The manner in which the sperm generates IP3, the Ca(2+) mobilizing second messenger, has been the subject of extensive research for a long time. The sperm factor hypothesis has eventually gained general acceptance, according to which it is a molecule from the sperm that diffuses into the ooplasm and stimulates the phosphoinositide cascade. Much evidence now indicates that the sperm-derived factor is phospholipase C-zeta (PLCζ) that cleaves PIP2 and generates IP3, eventually leading to oocyte activation. A recent addition to the candidate sperm factor list is the post-acrosomal sheath WW domain-binding protein (PAWP), whose role at fertilization is currently under debate. Ca(2+) influx across the plasma membrane is also important as, in the absence of extracellular Ca(2+), the oscillations run down prematurely. In pig oocytes, the influx that sustains the oscillations seems to be regulated by the filling status of the stores, whereas in the mouse other mechanisms might be involved. This work summarizes the current understanding of Ca(2+) signaling in mammalian oocytes.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Abstract
The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca2+ concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca2+ observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca2+ increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca2+ increase by initiating Ca2+ release from intracellular Ca2+ stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca2+ oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca2+ oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.
Collapse
Affiliation(s)
- Karl Swann
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Anthony Lai
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Identification of phospholipase activity in Rhinella arenarum sperm extract capable of inducing oocyte activation. ZYGOTE 2013; 22:483-95. [PMID: 24016596 DOI: 10.1017/s0967199413000348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Egg activation, which includes cortical granule exocytosis, resumption and completion of meiosis and pronuclear formation culminates in the first mitotic cleavage. However, the mechanism through which the fertilizing sperm induces this phenomenon is still controversial. We investigated the effect of the microinjection of homologous sperm soluble fractions obtained by fast protein liquid chromatography (FPLC) from reacted sperm (without acrosome) and non-reacted sperm on the activation of Rhinella arenarum oocytes matured in vitro. The FPLC-purified sperm fraction obtained from reacted or non-reacted sperm is able to induce oocyte activation when it is microinjected. This fraction has a 24 kDa protein and showed phospholipase C (PLC) activity in vitro, which was inhibited by D-609 but not by n-butanol or neomycin, suggesting that it is a PLC that is specific for phosphatidylcholine (PC-PLC). The assays conducted using inhibitors of inositol triphosphate (IP3) and ryanodine receptors (RyRs) indicate that the fraction with biological activity would act mainly through the cADPr (cyclic ADP ribose) pathway. Moreover, protein kinase C (PKC) inhibition blocks the activation produced by the same fraction. Immunocytochemical studies indicate that this PC-PLC can be found throughout the sperm head.
Collapse
|
7
|
Swann K, Lai FA. PLC? and the initiation of Ca2+ oscillations in fertilizing mammalian eggs. Cell Calcium 2013; 53:55-62. [DOI: 10.1016/j.ceca.2012.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
|
8
|
Kinsey WH. Intersecting roles of protein tyrosine kinase and calcium signaling during fertilization. Cell Calcium 2012. [PMID: 23201334 DOI: 10.1016/j.ceca.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
9
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
10
|
Nomikos M, Swann K, Lai FA. Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development: an essential phospholipase C with implications for male infertility. Bioessays 2011; 34:126-34. [PMID: 22086556 DOI: 10.1002/bies.201100127] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have discovered that a single sperm protein, phospholipase C-zeta (PLCζ), can stimulate intracellular Ca(2+) signalling in the unfertilized oocyte ('egg') culminating in the initiation of embryonic development. Upon fertilization by a spermatozoon, the earliest observed signalling event in the dormant egg is a large, transient increase in free Ca(2+) concentration. The fertilized egg responds to the intracellular Ca(2+) rise by completing meiosis. In mammalian eggs, the Ca(2+) signal is delivered as a train of long-lasting cytoplasmic Ca(2+) oscillations that begin soon after gamete fusion and persist beyond the completion of meiosis. Sperm PLCζ effects Ca(2+) release from egg intracellular stores by hydrolyzing the membrane lipid PIP(2) and consequent stimulation of the inositol 1,4,5-trisphosphate (InsP(3) ) receptor Ca(2+) -signalling pathway, leading to egg activation and early embryogenesis. Recent advances have refined our understanding of how PLCζ induces Ca(2+) oscillations in the egg and also suggest its potential dysfunction as a cause of male infertility.
Collapse
Affiliation(s)
- Michail Nomikos
- Cell Signalling Laboratory, WHRI, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | | | | |
Collapse
|
11
|
Hasan AKMM, Fukami Y, Sato KI. Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 2011; 78:814-30. [PMID: 21688335 DOI: 10.1002/mrd.21336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/15/2011] [Indexed: 12/19/2022]
Abstract
Fertilization is the fundamental system of biological reproduction in many organisms, including animals, plants, and algae. A growing body of knowledge has emerged to explain how fertilization and activation of development are accomplished. Studies on the molecular mechanisms of fertilization are in progress for a wide variety of multicellular organisms. In this review, we summarize recent findings and debates about the long-standing questions concerning fertilization: how egg and sperm become competent for their interaction with each other, how the binding and fusion of these gamete cells are made possible, and how the fertilized eggs initiate development to a newborn. We will focus on the structure and function of the membrane microdomains (MDs) of egg and sperm that may serve as a platform or signaling center for the aforementioned cellular functions. In particular, we provide evidence that MDs of eggs from the African clawed frog, Xenopus laevis, play a pivotal role in receiving extracellular signals from fertilizing sperm and then transmitting them to the egg cytoplasm, where the tyrosine kinase Src is present and responsible for the subsequent signaling events collectively called egg activation. The presence of a new signaling axis involving uroplakin III, an MD-associated transmembrane protein, and Src in this system will be highlighted and discussed.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | |
Collapse
|
12
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
13
|
Mammadova G, Iwasaki T, Tokmakov AA, Fukami Y, Sato KI. Evidence that phosphatidylinositol 3-kinase is involved in sperm-induced tyrosine kinase signaling in Xenopus egg fertilization. BMC DEVELOPMENTAL BIOLOGY 2009; 9:68. [PMID: 20015408 PMCID: PMC2805626 DOI: 10.1186/1471-213x-9-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Studies have examined the function of PI 3-kinase in the early developmental processes that operate in oocytes or early embryos of various species. However, the roles of egg-associated PI 3-kinase and Akt, especially in signal transduction at fertilization, are not well understood. RESULTS Here we show that in Xenopus eggs, a potent inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), LY294002 inhibits sperm-induced activation of the tyrosine kinase Src and a transient increase in the intracellular concentration of Ca2+ at fertilization. LY294002 also inhibits sperm-induced dephosphorylation of mitogen-activated protein kinase, breakdown of cyclin B2 and Mos, and first embryonic cleavage, all of which are events of Ca2+-dependent egg activation. In fertilized eggs, an 85-kDa subunit of PI 3-kinase (p85) undergoes a transient translocation to the low-density, detergent-insoluble membranes (membrane microdomains) where Src tyrosine kinase signaling is operating. However, the tyrosine phosphorylation of p85 in fertilized eggs is not as evident as that in H2O2-activated eggs, arguing against the possibility that PI 3-kinase is activated by Src phosphorylation. Nevertheless, sperm-induced activation of PI 3-kinase has been demonstrated by the finding that Akt, a serine/threonine-specific protein kinase, is phosphorylated at threonine-308. The threonine-phosphorylated Akt also localizes to the membrane microdomains of fertilized eggs. Application of bp(V), an inhibitor of PTEN that dephosphorylates PIP3, the enzymatic product of PI 3-kinase, promotes parthenogenetic activation of Xenopus eggs. In vitro kinase assays demonstrate that PIP3 activates Src in a dose-dependent manner. CONCLUSIONS These results suggest that PI 3-kinase is involved in sperm-induced egg activation via production of PIP3 that would act as a positive regulator of the Src signaling pathway in Xenopus fertilization.
Collapse
Affiliation(s)
- Gunay Mammadova
- The Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
14
|
Igarashi H, Knott JG, Schultz RM, Williams CJ. Alterations of PLCbeta1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev Biol 2007; 312:321-30. [PMID: 17961538 PMCID: PMC2170533 DOI: 10.1016/j.ydbio.2007.09.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/09/2007] [Accepted: 09/17/2007] [Indexed: 11/20/2022]
Abstract
Inositol 1,4,5-trisphosphate generated by the action of a phospholipase C (PLC) mediates release of intracellular Ca2+ that is essential for sperm-induced activation of mammalian eggs. Much attention currently focuses on the role of sperm-derived PLCzeta in generating changes in egg intracellular Ca2+ despite the fact that PLCzeta constitutes a very small fraction of the total amount of PLC in a fertilized egg. Eggs express several isoforms of PLC, but a role for an egg-derived PLC in sperm-induced Ca2+ oscillations has not been examined. Reducing egg PLCbeta1 by a transgenic RNAi approach resulted in a significant decrease in Ca2+ transient amplitude, but not duration or frequency, following insemination. Furthermore, overexpressing PLCbeta1 by microinjecting a Plcb1 cRNA significantly perturbed the duration and frequency of Ca2+ transients and disrupted the characteristic shape of the first transient. These results provide the first evidence for a role of an egg-derived PLC acting in conjunction with a sperm-derived PLCzeta in egg activation.
Collapse
Affiliation(s)
- Hideki Igarashi
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104
| | - Jason G. Knott
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard M. Schultz
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Carmen J. Williams
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
15
|
|
16
|
McGinnis LK, Albertini DF, Kinsey WH. Localized activation of Src-family protein kinases in the mouse egg. Dev Biol 2007; 306:241-54. [PMID: 17449027 PMCID: PMC2694733 DOI: 10.1016/j.ydbio.2007.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
Recent studies in species that fertilize externally have demonstrated that fertilization triggers localized activation of Src-family protein kinases in the egg cortex. However, the requirement for Src-family kinases in activation of the mammalian egg is different from lower species and the objective of this study was to characterize changes in the distribution and activity of Src-family protein tyrosine kinases (PTKs) during zygotic development in the mouse. Immunofluorescence analysis of mouse oocytes and zygotes with an anti-phosphotyrosine antibody revealed that fertilization stimulated accumulation of P-Tyr-containing proteins in the egg cortex and that their abundance was elevated in the region overlying the MII spindle. In addition, the poles of the MII spindle exhibited elevated P-Tyr levels. As polar body extrusion progressed, P-Tyr-containing proteins were especially concentrated in the region of cortex adjacent to the maternal chromatin and the forming polar body. In contrast, P-Tyr labeling of the spindle poles eventually disappeared as meiosis II progressed to anaphase II. In approximately 24% of cases, the fertilizing sperm nucleus was associated with increased P-Tyr labeling in the overlying cortex and oolemma. To determine whether Src-family protein tyrosine kinases could be responsible for the observed changes in the distribution of P-Tyr containing proteins, an antibody to the activated form of Src-family PTKs was used to localize activated Src, Fyn or Yes. Activated Src-family kinases were found to be strongly associated with the meiotic spindle at all stages of meiosis II; however, no concentration of labeling was evident at the egg cortex. The absence of cortical Src-family PTK activity continued until the blastocyst stage when strong cortical activity became evident. At the pronuclear stage, activated Src-family PTKs became concentrated around the pronuclei in close association with the nuclear envelope. This pattern was unique to the earliest stages of development and disappeared by the eight cell stage. Functional studies using chemical inhibitors and a dominant-negative Fyn construct demonstrated that Src-family PTKs play an essential role in completion of meiosis II following fertilization and progression from the pronuclear stage into mitosis. These data suggest that while Src-family PTKs are not required for fertilization-induced calcium oscillations, they do play a critical role in development of the zygote. Furthermore, activation of these kinases in the mouse egg is limited to distinct regions and occurs at specific times after fertilization.
Collapse
Affiliation(s)
| | | | - William H. Kinsey
- To whom correspondence should be addressed: Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160. Tel.: 913-588-2721; Fax: 913-588-2710.
| |
Collapse
|
17
|
Parrington J, Davis LC, Galione A, Wessel G. Flipping the switch: How a sperm activates the egg at fertilization. Dev Dyn 2007; 236:2027-38. [PMID: 17654712 DOI: 10.1002/dvdy.21255] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sperm interaction with an egg in animals was first documented 160 years ago in sea urchins by Alphonse Derbès (1847) when he noted the formation of an "envelope" following the sperm's "approach" to the egg. The "envelope" in sea urchins is an obvious phenotype of fertilization in this animal and over the past 35 years has served to indicate a presence of calcium released from cytoplasmic stores essential to activate the egg. The mechanism of calcium release has been intensely studied because it is a universal regulator of cellular activity, and recently several intersecting pathways of calcium release have been defined. Here we examine these various mechanisms with special emphasis on recent work in eggs of both sea urchins and mice.
Collapse
Affiliation(s)
- John Parrington
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
18
|
Malcuit C, Fissore RA. Activation of fertilized and nuclear transfer eggs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:117-31. [PMID: 17176559 DOI: 10.1007/978-0-387-37754-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In all animal species, initiation of embryonic development occurs shortly after the joining together of the gametes from each of the sexes. The first of these steps, referred to as "egg activation", is a series of molecular events that results in the syngamy of the two haploid genomes and the beginning of cellular divisions for the new diploid embryo. For many years it has been known that the incoming sperm drives this process, as an unfertilized egg will remain dormant until it can no longer sustain normal metabolic processes. Until recently, it was also believed that the sperm was the only cell capable of creating a viable embryo and offspring. Recent advances in cell biology have allowed researchers to not only understand the molecular mechanisms of egg activation, but to exploit the use of pharmacological agents to bypass sperm-induced egg activation for the creation of animals by somatic cell nuclear transfer. This chapter will focus on the molecular events of egg activation in mammals as they take place during fertilization, and will discuss how these mechanisms are successfully bypassed in processes such as somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Christopher Malcuit
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
19
|
Jungnickel MK, Sutton KA, Wang Y, Florman HM. Phosphoinositide-dependent pathways in mouse sperm are regulated by egg ZP3 and drive the acrosome reaction. Dev Biol 2006; 304:116-26. [PMID: 17258189 PMCID: PMC1892180 DOI: 10.1016/j.ydbio.2006.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/08/2006] [Accepted: 12/11/2006] [Indexed: 11/22/2022]
Abstract
Sperm of many animals must complete an exocytotic event, the acrosome reaction, in order to fuse with eggs. In mammals, acrosome reactions are triggered during sperm contact with the egg extracellular matrix, or zona pellucida, by the matrix glycoprotein ZP3. Here, we show that ZP3 stimulates production of phosphatidylinositol-(3,4,5)-triphosphate in sperm membranes. Phosphatidylinositol-3-kinase antagonists that prevent acrosome reactions and fertilization in vitro, while generation of this phosphoinositide in the absence of ZP3 triggered acrosome reactions. Downstream effectors of phosphatidylinositol-(3,4,5)-triphosphate in sperm include the protein kinases, Akt and PKCzeta. These studies outline a signal transduction pathway that plays an essential role in the early events of mammalian fertilization.
Collapse
Affiliation(s)
- Melissa K Jungnickel
- Department of Cell Biology, University of Massachusetts, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Fertilization in all species studied to date induces an increase in the intracellular concentration of free calcium ions ([Ca2+]i) within the egg. In mammals, this [Ca2+]i signal is delivered in the form of long-lasting [Ca2+]i oscillations that begin shortly after fusion of the gametes and persist beyond the time of completion of meiosis. While not fully elucidated, recent evidence supports the notion that the sperm delivers into the ooplasm a trigger of oscillations, the so-called sperm factor (SF). The recent discovery that mammalian sperm harbor a specific phospholipase C (PLC), PLCzeta has consolidated this view. The fertilizing sperm, and presumably PLCzeta promote Ca2+ release in eggs via the production of inositol 1,4,5-trisphosphate (IP3), which binds and gates its receptor, the type-1 IP3 receptor, located on the endoplasmic reticulum, the Ca2+ store of the cell. Repetitive Ca2+ release in this manner results in a positive cumulative effect on downstream signaling molecules that are responsible for the completion of all the events comprising egg activation. This review will discuss recent advances in our understanding of how [Ca2+]i oscillations are initiated and regulated in mammals, highlight areas of discrepancies, and emphasize the need to better characterize the downstream molecular cascades that are dependent on [Ca2+]i oscillations and that may impact embryo development.
Collapse
Affiliation(s)
- Christopher Malcuit
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
21
|
Abstract
It was discovered about 30 years ago that a dramatic increase in intracellular calcium ion concentration ([Ca(2+)](i)) occurs at fertilization and that this increase acts as the pivotal signal for egg activation. Later, the Ca(2+) signal at fertilization turned out to be ubiquitous among animal species. Extensive advance has been brought during these 30 years in research on spatiotemporal aspects and signaling mechanisms of the [Ca(2+)](i) increase, sperm factors that induce the Ca(2+) response, and cell cycle resumption caused by the [Ca(2+)](i) rise. I provide a historical account of these advances in mammals, sea urchins, and a few other models.
Collapse
Affiliation(s)
- Shunichi Miyazaki
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan.
| |
Collapse
|
22
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
23
|
Abstract
Mammalian eggs arrest at metaphase of the second meiotic division (MetII). Sperm break this arrest by inducing a series of Ca2+spikes that last for several hours. During this time cell cycle resumption is induced, sister chromatids undergo anaphase and the second polar body is extruded. This is followed by decondensation of the chromatin and the formation of pronuclei. Ca2+spiking is both the necessary and solely sufficient sperm signal to induce full egg activation. How MetII arrest is established, how the Ca2+spiking is induced and how the signal is transduced into cell cycle resumption are the topics of this review. Although the roles of most components of the signal transduction pathway remain to be fully investigated, here I present a model in which a sperm-specific phospholipase C (PLCζ) generates Ca2+spikes to activate calmodulin-dependent protein kinase II and so switch on the Anaphase-Promoting Complex/Cyclosome (APC/C). APC/C activation leads to securin and cyclin B1 degradation and in so doing allows sister chromatids to be segregated and to decondense.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle, Newcastle, NE2 4HH, UK.
| |
Collapse
|
24
|
Geraci F, Giudice G. Mechanisms of Ca2+ liberation at fertilization. Biochem Biophys Res Commun 2005; 335:265-9. [PMID: 16023615 DOI: 10.1016/j.bbrc.2005.06.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Accepted: 06/21/2005] [Indexed: 11/25/2022]
Abstract
The mechanisms underlying the Ca2+ release at fertilization of several animal organisms are reported. Four main classical theories are described, i.e., that of Ca2+ release following simple sperm contact and a G protein stimulation; that of simple sperm contact followed by a tyrosine kinase receptor activation; that of the necessity of introduction by sperm into the egg of molecules for Ca2+ release; and that the molecule introduced into the marine eggs for Ca2+ release is the same Ca2+. Two other mechanisms for Ca2+ release are also illustrated: that of ryanodine receptor stimulation and that of NAADP formation.
Collapse
Affiliation(s)
- Fabiana Geraci
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Italy
| | | |
Collapse
|
25
|
Nomikos M, Blayney LM, Larman MG, Campbell K, Rossbach A, Saunders CM, Swann K, Lai FA. Role of phospholipase C-zeta domains in Ca2+-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic Ca2+ oscillations. J Biol Chem 2005; 280:31011-8. [PMID: 16000311 DOI: 10.1074/jbc.m500629200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The sperm-specific phospholipase C-zeta (PLCzeta) elicits fertilization-like Ca2+ oscillations and activation of embryo development when microinjected into mammalian eggs (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development (Camb.) 129, 3533-3544; Cox, L. J., Larman, M. G., Saunders, C. M., Hashimoto, K., Swann, K., and Lai, F. A. (2002) Reproduction 124, 611-623). PLCzeta may represent the physiological stimulus for egg activation and development at mammalian fertilization. PLCzeta is the smallest known mammalian PLC isozyme, comprising two EF hand domains, a C2 domain, and the catalytic X and Y core domains. To gain insight into PLCzeta structure-function, we assessed the ability of PLCzeta and a series of domain-deletion constructs to cause phosphatidylinositol 4,5-bisphosphate hydrolysis in vitro and also to generate cytoplasmic Ca2+ changes in intact mouse eggs. PLCzeta and the closely related PLCdelta1 had similar K(m) values for phosphatidylinositol 4,5-bisphosphate, but PLCzeta was around 100 times more sensitive to Ca2+ than was PLCdelta1. Notably, specific phosphatidylinositol 4,5-bisphosphate hydrolysis activity was retained in PLCzeta constructs that had either EF hand domains or the C2 domain removed, or both. In contrast, Ca2+ sensitivity was greatly reduced when either one, or both, of the EF hand domains were absent, and the Hill coefficient was reduced upon deletion of the C2 domain. Microinjection into intact mouse eggs revealed that all domain-deletion constructs were ineffective at initiating Ca2+ oscillations. These data suggest that the exquisite Ca2+-dependent features of PLCzeta regulation are essential for it to generate inositol 1,4,5-trisphosphate and Ca2+ oscillations in intact mouse eggs.
Collapse
Affiliation(s)
- Michail Nomikos
- Cell Signalling Laboratory, Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mehlmann LM, Jaffe LA. SH2 domain-mediated activation of an SRC family kinase is not required to initiate Ca2+ release at fertilization in mouse eggs. Reproduction 2005; 129:557-64. [PMID: 15855619 DOI: 10.1530/rep.1.00638] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SRC family kinases (SFKs) function in initiating Ca2+release at fertilization in several species in the vertebrate evolutionary line, but whether they play a similar role in mammalian fertilization has been uncertain. We investigated this question by first determining which SFK proteins are expressed in mouse eggs, and then measuring Ca2+release at fertilization in the presence of dominant negative inhibitors. FYN and YES proteins were found in mouse eggs, but other SFKs were not detected; based on this, we injected mouse eggs with a mixture of FYN and YES Src homology 2 (SH2) domains. These SH2 domains were effective inhibitors of Ca2+release at fertilization in starfish eggs, but did not inhibit Ca2+release at fertilization in mouse eggs. Thus the mechanism by which sperm initiate Ca2+release in mouse eggs does not depend on SH2 domain-mediated activation of an SFK. We also tested the small molecule SFK inhibitor SU6656, and found that it became compartmentalized in the egg cytoplasm, thus suggesting caution in the use of this inhibitor. Our findings indicate that although the initiation of Ca2+release at fertilization of mammalian eggs occurs by a pathway that has many similarities to that in evolutionarily earlier animal groups, the requirement for SH2 domain-mediated activation of an SFK is not conserved.
Collapse
Affiliation(s)
- Lisa M Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA.
| | | |
Collapse
|
27
|
Fujimoto S, Yoshida N, Fukui T, Amanai M, Isobe T, Itagaki C, Izumi T, Perry ACF. Mammalian phospholipase Czeta induces oocyte activation from the sperm perinuclear matrix. Dev Biol 2004; 274:370-83. [PMID: 15385165 DOI: 10.1016/j.ydbio.2004.07.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Mammalian sperm-borne oocyte activating factor (SOAF) induces oocyte activation from a compartment that engages the oocyte cytoplasm, but it is not known how. A SOAF-containing extract (SE) was solubilized from the submembrane perinuclear matrix, a domain that enters the egg. SE initiated activation sufficient for full development. Microinjection coupled to tandem mass spectrometry enabled functional correlation profiling of fractionated SE without a priori assumptions about its chemical nature. Phospholipase C-zeta (PLCzeta) correlated absolutely with activating ability. Immunoblotting confirmed this and showed that the perinuclear matrix is the major site of 72-kDa PLCzeta. Oocyte activation was efficiently induced by 1.25 fg of sperm PLCzeta, corresponding to a fraction of one sperm equivalent (approximately 0.03). Immunofluorescence microscopy localized sperm head PLCzeta to a post-acrosomal region that becomes rapidly exposed to the ooplasm following gamete fusion. This multifaceted approach suggests a mechanism by which PLCzeta originates from an oocyte-penetrating assembly--the sperm perinuclear matrix--to induce mammalian oocyte activation at fertilization.
Collapse
Affiliation(s)
- Satoko Fujimoto
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Carroll J, FitzHarris G, Marangos P, Halet G. Ca2+ signalling and cortical re-organisation during the transition from meiosis to mitosis in mammalian oocytes. Eur J Obstet Gynecol Reprod Biol 2004; 115 Suppl 1:S61-7. [PMID: 15196718 DOI: 10.1016/j.ejogrb.2004.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mammals, the mature ovulated egg is arrested in metaphase II of the first meiotic division. The signal that triggers the transition from meiosis to mitosis is provided by the fertilising sperm and takes the form of a series of Ca(2+) oscillations. The pattern of Ca(2+) oscillations is imposed by maternal control mechanisms that ensure Ca(2+) transients occur during M-phase of meiosis II and during the first mitotic division. The transition from meiosis to mitosis involves a major re-organisation. The unfertilised egg is polarised with the meiotic spindle located in the cortex of the animal pole and clusters of endoplasmic reticulum in the vegetal hemisphere. By the time of the first mitotic division some 20h later the spindle has formed in the centre of the embryo and is surrounded by endoplasmic reticulum. These changes in organisation have implications for the inheritance of ER in meiotic and mitotic cell divisions and may reflect different roles and requirements for Ca(2+) in meiosis and mitosis.
Collapse
Affiliation(s)
- John Carroll
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
29
|
Swann K, Larman MG, Saunders CM, Lai FA. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCzeta. Reproduction 2004; 127:431-9. [PMID: 15047934 DOI: 10.1530/rep.1.00169] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When sperm activate eggs at fertilization the signal for activation involves increases in the intracellular free Ca2+ concentration. In mammals the Ca2+ changes at fertilization consist of intracellular Ca2+ oscillations that are driven by the generation of inositol 1,4,5-trisphosphate (InsP3). It is not established how sperm trigger the increases in InsP3 and Ca2+ at fertilization. One theory suggests that sperm initiate signals to activate the egg by introducing a specific factor into the egg cytoplasm after membrane fusion. This theory has been mainly based upon the observation that injecting a cytosolic sperm protein factor into eggs can trigger the same pattern of Ca2+ oscillations induced by the sperm. We have recently shown that this soluble sperm factor protein is a novel form of phospholipase C (PLC), and it is referred to as PLCzeta(zeta). We describe the evidence that led to the identification of PLCzeta and discuss the issues relating to its potential role in fertilization.
Collapse
Affiliation(s)
- K Swann
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
30
|
Runft LL, Carroll DJ, Gillett J, Giusti AF, O'Neill FJ, Foltz KR. Identification of a starfish egg PLC-gamma that regulates Ca2+ release at fertilization. Dev Biol 2004; 269:220-36. [PMID: 15081369 DOI: 10.1016/j.ydbio.2004.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/23/2004] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
At fertilization, eggs undergo a cytoplasmic free Ca2+ rise, which is necessary for stimulating embryogenesis. In starfish eggs, studies using inhibitors designed against vertebrate proteins have shown that this Ca2+ rise requires an egg Src family kinase (SFK) that directly or indirectly activates phospholipase C-gamma (PLC-gamma) to produce IP3, which triggers Ca2+ release from the egg's endoplasmic reticulum (ER) [reviewed in Semin. Cell Dev. Biol. 12 (2001) 45]. To examine in more detail the endogenous factors in starfish eggs that are required for Ca2+ release at fertilization, an oocyte cDNA encoding PLC-gamma was isolated from the starfish Asterina miniata. This cDNA, designated AmPLC-gamma, encodes a protein with 49% identity to mammalian PLC-gamma1. A 58-kDa Src family kinase interacted with recombinant AmPLC-gamma Src homology 2 (SH2) domains in a specific, fertilization-responsive manner. Immunoprecipitations of sea urchin egg PLC-gamma using an affinity-purified antibody directed against AmPLC-gamma revealed fertilization-dependent phosphorylation of PLC-gamma. Injecting starfish eggs with the tandem SH2 domains of AmPLC-gamma (which inhibits PLC-gamma activation) specifically inhibited Ca2+ release at fertilization. These results indicate that an endogenous starfish egg PLC-gamma interacts with an egg SFK and mediates Ca2+ release at fertilization via a PLC-gamma SH2 domain-mediated mechanism.
Collapse
Affiliation(s)
- Linda L Runft
- Department of Molecular, Cellular & Developmental Biology and the Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yoda A, Oda S, Shikano T, Kouchi Z, Awaji T, Shirakawa H, Kinoshita K, Miyazaki S. Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev Biol 2004; 268:245-57. [PMID: 15063165 DOI: 10.1016/j.ydbio.2003.12.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 12/22/2003] [Accepted: 12/22/2003] [Indexed: 11/23/2022]
Abstract
Sperm-specific phospholipase C zeta (PLC zeta) is known to induce intracellular Ca(2+) oscillations and egg activation when expressed in mouse eggs by injection of RNA encoding PLC zeta. We investigated the expression level and spatial distribution of PLC zeta in the egg in real time and in relation to the initiation and termination of Ca(2+) oscillations by monitoring fluorescence of a yellow fluorescent protein 'Venus' fused with PLC zeta. Ca(2+) oscillations similar to those at fertilization were induced at 40-50 min after RNA injection, when expressed PLC zeta reached 10-40 x 10(-15) g in the egg. PLC zeta-Venus increased up to 3 h and attained a steady level at 4-5 h. Interestingly, PLC zeta-Venus is accumulated to the pronucleus (PN) formed at 5-6 h and continuously increased there. Ca(2+) oscillations stopped in most eggs before initiation of the accumulation. A variant of PLC zeta that lacks three EF hand domains was much less effective in induction of Ca(2+) oscillations and little accumulated in the pronucleus, indicating a critical role of those domains. The ability of the accumulation to the pronucleus qualifies PLC zeta for a strong candidate of the Ca(2+) oscillation-inducing sperm factor, which is introduced into the ooplasm upon sperm-egg fusion and concentrated to the pronucleus after inducing egg activation.
Collapse
Affiliation(s)
- Ayako Yoda
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kalinowski RR, Berlot CH, Jones TLZ, Ross LF, Jaffe LA, Mehlmann LM. Maintenance of meiotic prophase arrest in vertebrate oocytes by a G s protein-mediated pathway. Dev Biol 2004; 267:1-13. [PMID: 14975713 DOI: 10.1016/j.ydbio.2003.11.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 11/10/2003] [Accepted: 11/12/2003] [Indexed: 11/30/2022]
Abstract
Maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on an elevated level of cAMP in the oocyte. To investigate how the cAMP level is regulated, we examined whether the activity of an oocyte G protein of the family that stimulates adenylyl cyclase, Gs, is required to maintain meiotic arrest. Microinjection of a dominant negative form of Gs into Xenopus and mouse oocytes, or microinjection of an antibody that inhibits the Gs G protein into zebrafish oocytes, caused meiosis to resume. Together with previous studies, these results support the conclusion that Gs-regulated generation of cAMP by the oocyte is a common mechanism for maintaining meiotic prophase arrest in vertebrate oocytes.
Collapse
Affiliation(s)
- Rebecca R Kalinowski
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Sato KI, Iwasaki T, Hirahara S, Nishihira Y, Fukami Y. Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:103-21. [PMID: 15023354 DOI: 10.1016/j.bbapap.2003.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 11/12/2003] [Indexed: 11/28/2022]
Abstract
Fertilization is triggered by sperm-egg interaction and fusion that initiate a transient rise(s) in the free intracellular calcium ([Ca(2+)](i)) that is responsible for a series of biochemical and cell biological events, so-called "egg activation". Calcium-dependent egg activation leads to the initiation of developmental program that culminates in the birth of individuals. A growing body of knowledge has uncovered the molecular mechanisms underlying sperm-induced transient [Ca(2+)](i) increase(s) to some extent; namely, in most animals so far studied, a second messenger inositol 1,4,5-trisphosphate (IP(3)) seems to play a pivotal role in inducing [Ca(2+)](i) transient(s) at fertilization. However, signaling mechanisms used by sperm to initiate IP(3)-[Ca(2+)](i) transient pathway have not been elucidated. To approach this problem, we have employed African clawed frog, Xenopus laevis, as a model animal and conducted experiments designed specifically to determine the role of the Src family protein-tyrosine kinases (SFKs or Src family PTKs) in the sperm-induced egg activation. This review compiles information about the use of PTK-specific inhibitors and activators for analyzing signal transduction events in egg fertilization. Specifically, we focus on molecular identification of Xenopus Src and the signaling mechanism of the Src-dependent egg activation that has been established recently. We also summarize recent advances in understanding the role of the Src family kinases in egg fertilization of other model organisms, and discuss future directions of the field.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
During the past 25 years, the characterization of sperm-triggered calcium signals in eggs has progressed from the discovery of a single calcium increase at fertilization in the medaka fish to the observation of repetitive calcium waves initiated by multiple meiotic calcium wave pacemakers in the ascidian. In eggs of all animal species, sperm-triggered inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] production regulates the vast array of calcium wave patterns observed in the different species. The spatial organization of calcium waves is driven either by the intracellular distribution of the calcium release machinery or by the localized and dynamic production of calcium-releasing second messengers. In the highly polarized egg cell, cortical endoplasmic reticulum (ER)-rich clusters act as pacemaker sites dedicated to the initiation of global calcium waves. The extensive ER network made of interconnected ER-rich domains supports calcium wave propagation throughout the egg. Fertilization triggers two types of calcium wave pacemakers depending on the species: in mice, the pacemaker site in the vegetal cortex of the egg is probably a site that has enhanced sensitivity to Ins(1,4,5)P(3); in ascidians, the calcium wave pacemaker may rely on a local source of Ins(1,4,5)P(3) production apposed to a cluster of ER in the vegetal cortex.
Collapse
Affiliation(s)
- Rémi Dumollard
- Bio Mar Cell, Unité de Biologie du Développement UMR 7009 CNRS/Paris VI, Observatoire, Station Zoologique, Villefranche sur Mer, 06230 France.
| | | | | | | |
Collapse
|
36
|
Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA. PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 2002; 129:3533-44. [PMID: 12117804 DOI: 10.1242/dev.129.15.3533] [Citation(s) in RCA: 644] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Upon fertilisation by sperm, mammalian eggs are activated by a series of intracellular Ca2+ oscillations that are essential for embryo development. The mechanism by which sperm induces this complex signalling phenomenon is unknown. One proposal is that the sperm introduces an exclusive cytosolic factor into the egg that elicits serial Ca2+ release. The ‘sperm factor’ hypothesis has not been ratified because a sperm-specific protein that generates repetitive Ca2+ transients and egg activation has not been found. We identify a novel, sperm-specific phospholipase C, PLCζ, that triggers Ca2+ oscillations in mouse eggs indistinguishable from those at fertilisation. PLCζ removal from sperm extracts abolishes Ca2+ release in eggs. Moreover, the PLCζ content of a single sperm was sufficient to produce Ca2+ oscillations as well as normal embryo development to blastocyst. Our results are consistent with sperm PLCζ as the molecular trigger for development of a fertilised egg into an embryo.
Collapse
Affiliation(s)
- Christopher M Saunders
- Cell Signalling Laboratory, Wales Heart Research Institute, University of Wales College of Medicine, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
A centrally important factor in initiating egg activation at fertilization is a rise in free Ca(2+) in the egg cytosol. In echinoderm, ascidian, and vertebrate eggs, the Ca(2+) rise occurs as a result of inositol trisphosphate-mediated release of Ca(2+) from the endoplasmic reticulum. The release of Ca(2+) at fertilization in echinoderm and ascidian eggs requires SH2 domain-mediated activation of a Src family kinase (SFK) and phospholipase C (PLC)gamma. Though some evidence indicates that a SFK and PLC may also function at fertilization in vertebrate eggs, SH2 domain-mediated activation of PLC gamma appears not to be required. Much work has focused on identifying factors from sperm that initiate egg activation at fertilization, either as a result of sperm-egg contact or sperm-egg fusion. Current evidence from studies of ascidian and mammalian fertilization favors a fusion-mediated mechanism; this is supported by experiments indicating that injection of sperm extracts into eggs causes Ca(2+) release by the same pathway as fertilization.
Collapse
Affiliation(s)
- Linda L Runft
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|