1
|
Lagman D, Leon A, Cieminska N, Deng W, Chatzigeorgiou M, Henriet S, Chourrout D. Pax3/7 gene function in Oikopleura dioica supports a neuroepithelial-like origin for its house-making Fol territory. Dev Biol 2024; 516:207-220. [PMID: 39181419 DOI: 10.1016/j.ydbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Collapse
Affiliation(s)
- David Lagman
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway; Department of Medical Cell Biology, Uppsala University, Uppsala, SE-75123, Sweden.
| | - Anthony Leon
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Nadia Cieminska
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Wei Deng
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | | | - Simon Henriet
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Daniel Chourrout
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway.
| |
Collapse
|
2
|
Henriet S, Aasjord A, Chourrout D. Laboratory study of Fritillaria lifecycle reveals key morphogenetic events leading to genus-specific anatomy. Front Zool 2022; 19:26. [PMID: 36307829 PMCID: PMC9617304 DOI: 10.1186/s12983-022-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A fascinating variety of adult body plans can be found in the Tunicates, the closest existing relatives of vertebrates. A distinctive feature of the larvacean class of pelagic tunicates is the presence of a highly specialized surface epithelium that produces a cellulose test, the “larvacean house”. While substantial differences exist between the anatomy of larvacean families, most of the ontogeny is derived from the observations of a single genus, Oikopleura. We present the first study of Fritillaria development based on the observation of individuals reproduced in the laboratory. Like the other small epipelagic species Oikopleura dioica, the larvae of Fritillaria borealis grow rapidly in the laboratory, and they acquire the adult form within a day. We could show that major morphological differences exhibited by Fritillaria and Oikopleura adults originate from a key developmental stage during larval organogenesis. Here, the surface epithelium progressively retracts from the posterior digestive organs of Fritillaria larvae, and it establishes house-producing territories around the pharynx. Our results show that the divergence between larvacean genera was associated with a profound rearrangement of the mechanisms controlling the differentiation of the larval ectoderm.
Collapse
|
3
|
Shimizu K, Takeuchi T, Negishi L, Kurumizaka H, Kuriyama I, Endo K, Suzuki M. Evolution of EGF-like and Zona pellucida domains containing shell matrix proteins in mollusks. Mol Biol Evol 2022; 39:6633355. [PMID: 35796746 PMCID: PMC9290575 DOI: 10.1093/molbev/msac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several types of shell matrix proteins (SMPs) have been identified in molluskan shells. Their diversity is the consequence of various molecular processes, including domain shuffling and gene duplication. However, the evolutionary origin of most SMPs remains unclear. In this study, we investigated the evolutionary process EGF-like and zona pellucida (ZP) domains containing SMPs. Two types of the proteins (EGF-like protein (EGFL) and EGF-like and ZP domains containing protein (EGFZP)) were found in the pearl oyster, Pinctada fucata. In contrast, only EGFZP was identified in the gastropods. Phylogenetic analysis and genomic arrangement studies showed that EGFL and EGFZP formed a clade in bivalves, and their encoding genes were localized in tandem repeats on the same scaffold. In P. fucata, EGFL genes were expressed in the outer part of mantle epithelial cells are related to the calcitic shell formation. However, in both P. fucata and the limpet Nipponacmea fuscoviridis, EGFZP genes were expressed in the inner part of the mantle epithelial cells are related to aragonitic shell formation. Furthermore, our analysis showed that in P. fucata, the ZP domain interacts with eight SMPs that have various functions in the nacreous shell mineralization. The data suggest that the ZP domain can interact with other SMPs, and EGFL evolution in pterimorph bivalves represents an example of neo-functionalization that involves the acquisition of a novel protein through gene duplication.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie 517-0404, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Onuma TA, Nishida H. Developmental biology of the larvacean Oikopleura dioica: Genome resources, functional screening, and imaging. Dev Growth Differ 2021; 64:67-82. [PMID: 34964127 DOI: 10.1111/dgd.12769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
The larvacean Oikopleura dioica is a cosmopolitan planktonic chordate and is closely related to vertebrates. It is characterized by a tadpole-shaped morphology with notochord flanked by muscle in the tail and brain on the dorsal side, a short life cycle of five days, a compact genome of approximately 56 Mb, a simple and transparent body with a small number of cells (~4000 in functional juveniles), invariant embryonic cell lineages, and fast development that ensures complete morphogenesis and organ formation 10 h after fertilization. With these features, this marine chordate is a promising and advantageous animal model in which genetic manipulation is feasible. In this review, we introduce relevant resources and modern techniques that have been developed: (1) Genome and transcriptomes. Oikopleura dioica has the smallest genome among non-parasitic metazoans. Its genome databases have been generated using three geographically distant O. dioica populations, and several intra-species sequence differences are becoming evident; (2) Functional genetic knockdown techniques. Comprehensive screening of genes is feasible using ovarian microinjection and double-strand DNA-induced gene knockdown; and (3) Live imaging of embryos and larvae. Application of these techniques has uncovered novel aspects of development, including meiotic cell arrest, left-right patterning, epidermal cell patterning, and mouth formation involving the connection of ectoderm and endoderm sheets. Oikopleura dioca has become very useful for developmental and evolutionary studies in chordates.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Graduate School of Science and Engineering, Faculty of Science, Kagoshima University, Kagoshima, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
5
|
Razghandi K, Janßen N, Le MLV, Stach T. The filter-house of the larvacean Oikopleura dioica. A complex extracellular architecture: From fiber production to rudimentary state to inflated house. J Morphol 2021; 282:1259-1273. [PMID: 34041785 DOI: 10.1002/jmor.21382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 11/06/2022]
Abstract
While cellulose is the most abundant macromolecule in the biosphere, most animals are unable to produce cellulose with the exception of tunicates. Some tunicates have evolved the ability to secrete a complex house containing cellulosic fibers, yet little is known about the early stages of the house building process. Here, we investigate the rudimentary house of Oikopleura dioica for the first time using complementary light and electron microscopic techniques. In addition, we digitally modeled the arrangement of chambers, nets, and filters of the functional, expanded house in three dimensions based on life-video-imaging. Combining 3D-reconstructions based on serial histological semithin-sections, confocal laser scanning microscopy, transmission electron microscopy, scanning electron microscopy (SEM), and focused ion beam (FIB)-SEM, we were able to elucidate the arrangement of structural components, including cellulosic fibers, of the rudimentary house with a focus on the food concentration filter. We developed a model for the arrangement of folded structures in the house rudiment and show it is a precisely preformed structure with identifiable components intricately correlated with specific cells. Moreover, we demonstrate that structural details of the apical surfaces of Nasse cells provide the exact locations and shapes to produce the fibers of the house and interact among each other, with Giant Fol cells, and with the fibers to arrange them in the precise positions necessary for expansion of the house rudiment into the functional state. The presented data and hypotheses advance our knowledge about the interrelation of structure and function on different biological levels and prompt investigations into this astonishing biological object.
Collapse
Affiliation(s)
- Khashayar Razghandi
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Cluster of Excellence "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany
| | - Nils Janßen
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Mai-Lee Van Le
- Institut für Biologie, AG Vergleichende Zoologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Stach
- Institut für Biologie, AG Vergleichende Elektronenmikroskopie, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Nishida H, Ohno N, Caicci F, Manni L. 3D reconstruction of structures of hatched larva and young juvenile of the larvacean Oikopleura dioica using SBF-SEM. Sci Rep 2021; 11:4833. [PMID: 33649401 PMCID: PMC7921577 DOI: 10.1038/s41598-021-83706-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
The larvacean Oikopleura dioica is a planktonic chordate and an emerging model organism with a short life cycle of 5 days that belongs toTunicata (Urochordata), the sister clade of vertebrates. It is characterized by the rapid development of a tadpole-shaped body. Organ formation in the trunk proceeds within 7 h after the hatching of the tailbud larvae at 3 h after fertilization (hpf) and is completed at 10 hpf, giving rise to fully functional juveniles as miniature adult form. Serial block face scanning electron microscopy was used to acquire ~ 2000 serial transverse section images of a 3 hpf larva and a 10 hpf juvenile to characterize the structures and cellular composition of the trunk and organs using 3D images and movies. Germ cells were found to fuse and establish a central syncytial cell in the gonad as early as 10 hpf. Larval development gave rise to functional organs after several rounds of cell division through trunk morphogenesis. The feature would make O. dioica ideal for analyzing cellular behaviors during morphogenetic processes using live imaging. The detailed descriptions of the larvae and juveniles provided in this study can be utilized as the start and end points of organ morphogenesis in this rapidly developing organism.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan.,Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
7
|
Cima F. Spermatogenesis as a tool for staging gonad development in the gonochoric appendicularian Oikopleura dioica Fol 1872. Dev Biol 2019; 448:247-259. [PMID: 30213537 DOI: 10.1016/j.ydbio.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Oikopleura dioica, the only gonochoric species among appendicularians, has a spematozoon with a mid-piece and a conspicuous acrosome that, during fertilisation, undergoes a reaction forming an acrosomal process. To provide more insight into the spermatogenesis of a holoplanktonic tunicate species that completes its life cycle in three to five days, changes in the testis during individual growth have been examined. Spermatogenesis has been subdivided into seven stages based on ultrastructural features during the formation and organisation of the male gonad and the relationships between its macroscopic anatomy and the events of sperm differentiation. Gametes undergo highly synchronised differentiation due to the presence of widespread syncytial structures. Both meiosis and spermiogenesis are brief, and the passage from spermatocytes to spermatids involves a progressive segregation of the germ cells from the syncytial mass with the formation of large cytoplasmic bridges and volume reduction for nucleus compacting and cytoplasmic material changing. The nucleus is small and penetrated anteriorly by a complex acrosome and posteriorly by the distal centriole and part of the flagellum. In spermatids, the single, large mitochondrion appears laterally to the nucleus, and finally, in spermatozoa, it migrates into the mid-piece, wrapping the proximal portion of the axoneme. Because this mitochondrial position is reached only in the late phases of spermatogenesis, it suggests that appendicularians have derived oligopyrenic sperms in which the small nucleus results from adaptation to the assembly of numerous spermatozoa inside the narrow space of the testis compacted in the genital cavity. The formulation of a staging system of gonad development in a model tunicate species known for having the most compacted genome in chordates led to a comparison of histological observations with recent molecular data, improving the characterisation of its biology and life cycle in light of evolutionary implications.
Collapse
Affiliation(s)
- Francesca Cima
- Laboratory of Ascidian Biology, Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| |
Collapse
|
8
|
Ferrández-Roldán A, Martí-Solans J, Cañestro C, Albalat R. Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. Results Probl Cell Differ 2019; 68:63-105. [PMID: 31598853 DOI: 10.1007/978-3-030-23459-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The urochordate Oikopleura dioica is emerging as a nonclassical animal model in the field of evolutionary developmental biology (a.k.a. evo-devo) especially attractive for investigating the impact of gene loss on the evolution of mechanisms of development. This is because this organism fulfills the requirements of an animal model (i.e., has a simple and accessible morphology, a short generation time and life span, and affordable culture in the laboratory and amenable experimental manipulation), but also because O. dioica occupies a key phylogenetic position to understand the diversification and origin of our own phylum, the chordates. During its evolution, O. dioica genome has suffered a drastic process of compaction, becoming the smallest known chordate genome, a process that has been accompanied by exacerbating amount of gene losses. Interestingly, however, despite the extensive gene losses, including entire regulatory pathways essential for the embryonic development of other chordates, O. dioica retains the typical chordate body plan. This unexpected situation led to the formulation of the so-called inverse paradox of evo-devo, that is, when a genetic diversity is able to maintain a phenotypic unity. This chapter reviews the biological features of O. dioica as a model animal, along with the current data on the evolution of its genes and genome. We pay special attention to the numerous examples of gene losses that have taken place during the evolution of this unique animal model, which is helping us to understand to which the limits of evo-devo can be pushed off.
Collapse
Affiliation(s)
- Alfonso Ferrández-Roldán
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Cañestro
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Kishi K, Hayashi M, Onuma TA, Nishida H. Patterning and morphogenesis of the intricate but stereotyped oikoplastic epidermis of the appendicularian, Oikopleura dioica. Dev Biol 2017; 428:245-257. [DOI: 10.1016/j.ydbio.2017.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022]
|
10
|
Danks G, Campsteijn C, Parida M, Butcher S, Doddapaneni H, Fu B, Petrin R, Metpally R, Lenhard B, Wincker P, Chourrout D, Thompson EM, Manak JR. OikoBase: a genomics and developmental transcriptomics resource for the urochordate Oikopleura dioica. Nucleic Acids Res 2012. [PMID: 23185044 PMCID: PMC3531137 DOI: 10.1093/nar/gks1159] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the development of OikoBase (http://oikoarrays.biology.uiowa.edu/Oiko/), a tiling array-based genome browser resource for Oikopleura dioica, a metazoan belonging to the urochordates, the closest extant group to vertebrates. OikoBase facilitates retrieval and mining of a variety of useful genomics information. First, it includes a genome browser which interrogates 1260 genomic sequence scaffolds and features gene, transcript and CDS annotation tracks. Second, we annotated gene models with gene ontology (GO) terms and InterPro domains which are directly accessible in the browser with links to their entries in the GO (http://www.geneontology.org/) and InterPro (http://www.ebi.ac.uk/interpro/) databases, and we provide transcript and peptide links for sequence downloads. Third, we introduce the transcriptomics of a comprehensive set of developmental stages of O. dioica at high resolution and provide downloadable gene expression data for all developmental stages. Fourth, we incorporate a BLAST tool to identify homologs of genes and proteins. Finally, we include a tutorial that describes how to use OikoBase as well as a link to detailed methods, explaining the data generation and analysis pipeline. OikoBase will provide a valuable resource for research in chordate development, genome evolution and plasticity and the molecular ecology of this important marine planktonic organism.
Collapse
Affiliation(s)
- Gemma Danks
- Computational Biology Unit, University of Bergen, Bergen, N-5008, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hosp J, Sagane Y, Danks G, Thompson EM. The evolving proteome of a complex extracellular matrix, the Oikopleura house. PLoS One 2012; 7:e40172. [PMID: 22792236 PMCID: PMC3390340 DOI: 10.1371/journal.pone.0040172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022] Open
Abstract
Extracellular matrices regulate biological processes at the level of cells, tissues, and in some cases, entire multicellular organisms. The subphylum Urochordata exemplifies the latter case, where animals are partially or completely enclosed in “houses” or “tunics”. Despite this common strategy, we show that the house proteome of the appendicularian, Oikopleura, has very little in common with the proteome of the sister class, ascidian, Ciona. Of 80 identified house proteins (oikosins), ∼half lack domain modules or similarity to known proteins, suggesting de novo appearance in appendicularians. Gene duplication has been important in generating almost 1/3 of the current oikosin complement, with serial duplications up to 8 paralogs in one family. Expression pattern analyses revealed that individual oikosins are produced from specific fields of cells within the secretory epithelium, but in some cases, migrate up to at least 20 cell diameters in extracellular space to combine in defined house structures. Interestingly, peroxidasin and secretory phospholipase A2 domains, implicated in innate immune defence are secreted from the anlage associated with the food-concentrating filter, suggesting that this extra-organismal structure may play, in part, such a role in Oikopleura. We also show that sulfation of proteoglycans is required for the hydration and inflation of pre-house rudiments into functional houses. Though correct proportioning in the production of oikosins would seem important in repetitive assembly of the complex house structure, the genomic organization of oikosin loci appears incompatible with common enhancers or locus control regions exerting such a coordinate regulatory role. Thus, though all tunicates employ extracellular matrices based on a cellulose scaffold as a defining feature of the subphylum, they have evolved radically different protein compositions associated with this common underlying structural theme.
Collapse
Affiliation(s)
- Julia Hosp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Yoshimasa Sagane
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gemma Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
12
|
Yadetie F, Butcher S, Førde HE, Campsteijn C, Bouquet JM, Karlsen OA, Denoeud F, Metpally R, Thompson EM, Manak JR, Goksøyr A, Chourrout D. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics. BMC Genomics 2012; 13:55. [PMID: 22300585 PMCID: PMC3292500 DOI: 10.1186/1471-2164-13-55] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022] Open
Abstract
Background Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo). Results Oikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. Conclusions Oikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Denoeud F, Henriet S, Mungpakdee S, Aury JM, Da Silva C, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, Cañestro C, Bouquet JM, Danks G, Poulain J, Campsteijn C, Adamski M, Cross I, Yadetie F, Muffato M, Louis A, Butcher S, Tsagkogeorga G, Konrad A, Singh S, Jensen MF, Cong EH, Eikeseth-Otteraa H, Noel B, Anthouard V, Porcel BM, Kachouri-Lafond R, Nishino A, Ugolini M, Chourrout P, Nishida H, Aasland R, Huzurbazar S, Westhof E, Delsuc F, Lehrach H, Reinhardt R, Weissenbach J, Roy SW, Artiguenave F, Postlethwait JH, Manak JR, Thompson EM, Jaillon O, Pasquier LD, Boudinot P, Liberles DA, Volff JN, Philippe H, Lenhard B, Crollius HR, Wincker P, Chourrout D. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 2010; 330:1381-5. [PMID: 21097902 PMCID: PMC3760481 DOI: 10.1126/science.1194167] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.
Collapse
Affiliation(s)
- France Denoeud
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Simon Henriet
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sutada Mungpakdee
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Jean-Marc Aury
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Corinne Da Silva
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Henner Brinkmann
- Département de Biochimie, Université de Montréal, Montréal, Canada
| | - Jana Mikhaleva
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Lisbeth Charlotte Olsen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Claire Jubin
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Cristian Cañestro
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
- Departament de Genètica, Universitat de Barcelona, Spain
| | - Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gemma Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Bergen Center for Computational Science, University of Bergen, Bergen, Norway
| | - Julie Poulain
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Coen Campsteijn
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Marcin Adamski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Ismael Cross
- Laboratorio de Genética, Universidad de Cádiz, Cádiz, Spain
| | - Fekadu Yadetie
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Matthieu Muffato
- Dyogen Lab, Institut de Biologie de l’ENS (IBENS), CNRS-UMR8197, Ecole Normale Supérieure,Paris,France
| | - Alexandra Louis
- Dyogen Lab, Institut de Biologie de l’ENS (IBENS), CNRS-UMR8197, Ecole Normale Supérieure,Paris,France
| | - Stephen Butcher
- Department of Biology, University of Iowa, Iowa City, IA 52242–1324, USA
| | - Georgia Tsagkogeorga
- Laboratoire de Paléontologie, Phylogénie et Paléobiologie, Institut des Sciences de l’Evolution, UMR 5554–CNRS, Université Montpellier II, Montpellier, France
| | - Anke Konrad
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Sarabdeep Singh
- Department of Statistics, University of Wyoming, Laramie, WY 82071, USA
| | - Marit Flo Jensen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Evelyne Huynh Cong
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Helen Eikeseth-Otteraa
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Benjamin Noel
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Véronique Anthouard
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Betina M. Porcel
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Rym Kachouri-Lafond
- Institut de Biologie Cellulaire et Moléculaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Atsuo Nishino
- Department of Biological Sciences, Osaka University, Osaka, Japan
| | - Matteo Ugolini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Hiroki Nishida
- Department of Biological Sciences, Osaka University, Osaka, Japan
| | - Rein Aasland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Eric Westhof
- Institut de Biologie Cellulaire et Moléculaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Frédéric Delsuc
- Laboratoire de Paléontologie, Phylogénie et Paléobiologie, Institut des Sciences de l’Evolution, UMR 5554–CNRS, Université Montpellier II, Montpellier, France
| | - Hans Lehrach
- Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Richard Reinhardt
- Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jean Weissenbach
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Scott W. Roy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - François Artiguenave
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | | | - J. Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA 52242–1324, USA
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Olivier Jaillon
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Louis Du Pasquier
- Institute of Zoology and Evolutionary Biology, University of Basel, Basel, Switzerland
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique (INRA), Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - David A. Liberles
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242–CNRS/INRA/Université Claude Bernard Lyon 1/Ecole Normale Supérieure, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hervé Philippe
- Département de Biochimie, Université de Montréal, Montréal, Canada
| | - Boris Lenhard
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Bergen Center for Computational Science, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Hugues Roest Crollius
- Dyogen Lab, Institut de Biologie de l’ENS (IBENS), CNRS-UMR8197, Ecole Normale Supérieure,Paris,France
| | - Patrick Wincker
- Commissariat à l’Énergie Atomique, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d’Evry, Evry, France
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Cytoskeleton-mediated templating of complex cellulose-scaffolded extracellular structure and its association with oikosins in the urochordate Oikopleura. Cell Mol Life Sci 2010; 68:1611-22. [PMID: 20953655 PMCID: PMC3071929 DOI: 10.1007/s00018-010-0547-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/31/2010] [Accepted: 09/15/2010] [Indexed: 12/23/2022]
Abstract
Oriented cellulose deposition is critical to plant patterning and models suggest microtubules constrain cellulose synthase movements through the plasma membrane. Though widespread in plants, urochordates are the only animals that synthesize cellulose. We characterized the distinctive cellulose microfibril scaffold of the larvacean house and its interaction with house structural proteins (oikosins). Targeted disruption of cytoskeletal elements, secretory pathways, and plasma membrane organization, suggested a working model for templating extracellular cellulose microfibrils from animal cells that shows both convergence and differences to plant models. Specialized cortical F-actin arrays template microfibril orientation and glycosylphosphatidylinositol-anchored proteins in lipid rafts may act as scaffolding proteins in microfibril elongation. Microtubules deliver and maintain cellulose synthase complexes to specific cell membrane sites rather than orienting their movement through the membrane. Oikosins are incorporated into house compartments directly above their corresponding cellular field of expression and interact with the cellulose scaffold to a variable extent.
Collapse
|
15
|
Sagane Y, Zech K, Bouquet JM, Schmid M, Bal U, Thompson EM. Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans. Development 2010; 137:1483-92. [PMID: 20335363 DOI: 10.1242/dev.044503] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.
Collapse
Affiliation(s)
- Yoshimasa Sagane
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Karin Zech
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Martina Schmid
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Ugur Bal
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- Department of Biology, University of Bergen, PO Box 7800, N-5020 Bergen, Norway
| |
Collapse
|
16
|
Bouquet JM, Spriet E, Troedsson C, Otterå H, Chourrout D, Thompson EM. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. JOURNAL OF PLANKTON RESEARCH 2009; 31:359-370. [PMID: 19461862 PMCID: PMC2651036 DOI: 10.1093/plankt/fbn132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/09/2008] [Indexed: 05/16/2023]
Abstract
The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. At 70 Mb, the compact, sequenced genome ranks among the smallest known metazoan genomes, with both gene regulatory and intronic regions highly reduced in size. The organism occupies an important trophic role in marine ecosystems and is a significant contributor to global vertical carbon flux. Among the short list of bona fide biological model organisms, all share the property that they are amenable to long-term maintenance in laboratory cultures. Here, we tested diet regimes, spawn densities and dilutions and seawater treatment, leading to optimization of a detailed culture protocol that permits sustainable long-term maintenance of O. dioica, allowing continuous, uninterrupted production of source material for experimentation. The culture protocol can be quickly adapted in both coastal and inland laboratories and should promote rapid development of the many original research perspectives the animal offers.
Collapse
Affiliation(s)
- Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Endy Spriet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| | - Christofer Troedsson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- Department of Biology, University of Bergen, N-5020 Bergen, Norway
| | - Helen Otterå
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| |
Collapse
|
17
|
Bassham S, Cañestro C, Postlethwait JH. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. BMC Biol 2008; 6:35. [PMID: 18721460 PMCID: PMC2532684 DOI: 10.1186/1741-7007-6-35] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/22/2008] [Indexed: 12/02/2022] Open
Abstract
Background Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. Results To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor. Conclusion Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings.
Collapse
Affiliation(s)
- Susan Bassham
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | |
Collapse
|
18
|
Nishida H. Development of the appendicularian Oikopleura dioica: Culture, genome, and cell lineages. Dev Growth Differ 2008; 50 Suppl 1:S239-56. [PMID: 18494706 DOI: 10.1111/j.1440-169x.2008.01035.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
19
|
Fu X, Adamski M, Thompson EM. Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 2008; 25:1067-80. [PMID: 18339653 DOI: 10.1093/molbev/msn060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies reveal correlation between microRNA (miRNA) innovation and increased developmental complexity. This is exemplified by dramatic expansion of the miRNA inventory in vertebrates, a lineage where genome duplication has played a significant evolutionary role. Urochordates, the closest extant group to the vertebrates, exhibit an opposite trend to genome and morphological simplification. We show that the urochordate, larvacean, Oikopleura dioica, possesses the requisite miRNA biogenic machinery. The miRNAs isolated by small RNA cloning were expressed throughout the short life cycle, a number of which were stocked as maternal determinants prior to rapid embryonic development. We identify sex-specific miRNAs that appeared as male/female gonad differentiation became apparent and were maintained throughout spermatogenesis. Whereas 80% of mammalian miRNAs are hosted in introns of protein-coding genes, the majority of O. dioica miRNA loci were located in antisense orientations to such genes. Including sister group ascidians in analysis of the urochordate miRNA repertoire, we find that 11 highly conserved bilaterian miRNA families have been lost or derived to the point they are not recognizable in urochordates and a further 4 of these families are absent in larvaceans. Subsequent to this loss/derivation, at least 29 novel miRNA families have been acquired in larvaceans. This suggests a profound reorganization of the miRNA repertoire integral to evolution in the urochordate lineage.
Collapse
Affiliation(s)
- Xianghui Fu
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
20
|
Fujii S, Nishio T, Nishida H. Cleavage pattern, gastrulation, and neurulation in the appendicularian, Oikopleura dioica. Dev Genes Evol 2008; 218:69-79. [PMID: 18236068 DOI: 10.1007/s00427-008-0205-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
|
21
|
Spada F, Koch J, Sadoni N, Mitchell N, Ganot P, De Boni U, Zink D, Thompson EM. Conserved patterns of nuclear compartmentalization are not observed in the chordate Oikopleura. Biol Cell 2007; 99:273-87. [PMID: 17288541 DOI: 10.1042/bc20060124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND INFORMATION Recent results from a limited number of eukaryotic model organisms suggest that major principles governing spatial organization of the genome in functionally distinct nuclear compartments are conserved through evolution. RESULTS We examined the in situ spatial organization of major nuclear components and nuclear patterns of gene loci with strictly defined expression patterns in endocycling cells of the transparent urochordate Oikopleura dioica, a complex metazoan with a very compact genome. Endocycling cells with different functions and similar DNA content displayed distinct topologies of nuclear components. However, the generation of the diverse nuclear architectures did not involve specific local organization of active genes or their preferential amplification. Interestingly, endocycling cells lacked nuclear-envelope-associated heterochromatin and prominent splicing-factor domains, which in mammalian cells associate with transcriptionally silent and active loci respectively. In addition, no correlation was found between transcriptional activity of a locus and its association with chromatin domains rich in specific histone modifications. CONCLUSIONS Together, these findings and the absence of typical eukaryotic replication patterns reveal a surprisingly limited functional compartmentalization of O. dioica endocycling nuclei. This indicates that robust cell-type-specific gene expression does not necessarily require high levels of spatial genome organization.
Collapse
Affiliation(s)
- Fabio Spada
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgt 55, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tröße C, Ravneberg H, Stern B, Pryme IF. Vectors Encoding Seven Oikosin Signal Peptides Transfected into CHO Cells Differ Greatly in Mediating Gaussia luciferase and Human Endostatin Production although mRNA Levels are Largely Unaffected. GENE REGULATION AND SYSTEMS BIOLOGY 2007. [DOI: 10.1177/117762500700100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The signal peptide of the luciferase secreted by the marine copepod Gaussia princeps has been shown to promote high-level protein synthesis/secretion of recombinant proteins, being far superior to mammalian counterparts. The main aim of the present study was to investigate the effects of seven selected signal peptides derived from oikosins, house proteins of the marine organism Oikopleura dioica, on synthesis/secretion of recombinant proteins. Vector constructs were made in which the coding regions of two naturally secreted proteins, Gaussia luciferase and human endostatin (hEndostatin), were “seamlessly” fused to the signal peptide coding sequences of interest. CHO cells were transfected with the plasmids and populations of stably transfected cells established. The amounts of reporter proteins in cell extract and medium samples were determined and the results compared to those obtained from cells stably transfected with a reference vector construct. In addition, the amounts of luciferase or hEndostatin encoding mRNAs in the cells were determined and related to the protein levels obtained. The levels of reporter protein produced varied greatly among the seven oikosin signal peptides tested. Whereas the oikosin 1 signal peptide resulted in about 40% production of Gaussia luciferase compared to the reference construct, oikosins 2–7 were extremely ineffective (<1%). mRNA levels were not dramatically affected such that inadequate availability of transcript for translation was not the underlying reason for the observations. The oikosin 1 signal peptide was also the most effective regarding synthesis/secretion of hEndostatin. No secreted product was observed using the oikosin 3 signal peptide. Interestingly, the molecular weight of hEndostatin in cell extracts prepared from cells transfected with oikosin 2 and 3 constructs was higher than that using the oikosin 1 signal peptide. The overall findings indicate that the signal peptide affects the efficiency of protein synthesis and secretion through a mechanism operating at the post-transcriptional level. The results described here provide substantial support to our previous observations which suggested that the choice of the signal peptide is imperative when aiming to achieve optimal synthesis and secretion of a recombinant protein using transfected mammalian cells.
Collapse
Affiliation(s)
- Christiane Tröße
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
| | - Hanne Ravneberg
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
| | - Beate Stern
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Ian F. Pryme
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| |
Collapse
|
23
|
Abstract
Many eukaryotic proteins share a sequence designated as the zona pellucida (ZP) domain. This structural element, present in extracellular proteins from a wide variety of organisms, from nematodes to mammals, consists of approximately 260 amino acids with eight conserved cysteine (Cys) residues and is located close to the C terminus of the polypeptide. ZP domain proteins are often glycosylated, modular structures consisting of multiple types of domains. Predictions can be made about some of the structural features of the ZP domain and ZP domain proteins. The functions of ZP domain proteins vary tremendously, from serving as structural components of egg coats, appendicularian mucous houses, and nematode dauer larvae, to serving as mechanotransducers in flies and receptors in mammals and nonmammals. Generally, ZP domain proteins are present in filaments and/or matrices, which is consistent with the role of the domain in protein polymerization. A general mechanism for assembly of ZP domain proteins has been presented. It is likely that the ZP domain plays a common role despite its presence in proteins of widely diverse functions.
Collapse
Affiliation(s)
- Luca Jovine
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | |
Collapse
|
24
|
Spada F, Vincent M, Thompson EM. Plasticity of histone modifications across the invertebrate to vertebrate transition: histone H3 lysine 4 trimethylation in heterochromatin. Chromosome Res 2005; 13:57-72. [PMID: 15791412 DOI: 10.1007/s10577-005-6845-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 11/28/2022]
Abstract
Histone posttranslational modifications mediate establishment of structurally and functionally distinct chromatin compartments of eukaryotic nuclei. The association of different histone modifications with euchromatic and heterochromatic compartments is relatively conserved in highly divergent model organisms such as Drosophila and mammals. However, some differences between these model systems have been uncovered while limited data are available from organisms nearer the invertebrate-vertebrate transition. We identified a chromatin compartment in both diploid and endocycling cells of the urochordate, Oikopleura dioica, enriched in heterochromatic histone modifications and DNA methylation. Surprisingly, this compartment also contained high levels of histone H3 trimethylated at lysine 4 (H3 Me(3)K4), a modification thus far associated with actively transcribed sequences. Although in Drosophila and mouse cells, H3 Me(3)K4 was prevalently associated with euchromatin, we also detected it in their pericentromeric heterochromatin. We further showed that H3 Me(3)K4 abundance was not necessarily proportional to local levels of transcriptional activity in either euchromatin or heterochromatin. Our data indicate greater plasticity across evolution in the association of histone lysine methylation with functionally distinct chromatin domains than previously thought and suggest that H3 Me(3)K4 participates in additional processes beyond marking transcriptionally active chromatin.
Collapse
Affiliation(s)
- Fabio Spada
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt, 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
25
|
Meinertzhagen IA. Eutely, cell lineage, and fate within the ascidian larval nervous system: determinacy or to be determined? CAN J ZOOL 2005. [DOI: 10.1139/z04-159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The larval central nervous system (CNS) of the ascidian Ciona intestinalis (L., 1767) arises from an embryonic neural plate and contains sufficiently few cells, about 330, to enable definitive counts. On the basis of such counts, there is evidence both for cell constancy (eutely) in the larval CNS and for small variations in the overall numbers of cells and among defined cell types within this total. However, evidence for the range of such deviations and the existence of a true phenotypic wild type are lacking. The record of cell lineage, i.e., the mitotic ancestry of each cell, and the fates of some of these cells have recently received increased documentation in both the genus Ciona and Halocynthia roretzi (von Drasche, 1884). Relatively few generations of cells, between 10 and 14, form the entire CNS in C. intestinalis, and cell death does not occur prior to larval hatching. The tiny complement of larval CNS cells can therefore be seen as the product of a small fixed number of determinate cleavages, and variations in cell number as the product of minor deviations in this mitotic ancestry. Within these lineage records, some cell fates have already been identified, but knowledge of most is lacking because the cells lack markers or other identifying features. Nevertheless, this tiny nervous system offers the prospect that all its cells can one day be identified, and their developmental histories and larval functions analyzed, cell by cell.
Collapse
|
26
|
MILLER RICHARDL. Gamete interactions and fertilization behavior in the larvacean,Oikopleura dioica. INVERTEBR REPROD DEV 2005. [DOI: 10.1080/07924259.2005.9652148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Chioda M, Spada F, Eskeland R, Thompson EM. Histone mRNAs do not accumulate during S phase of either mitotic or endoreduplicative cycles in the chordate Oikopleura dioica. Mol Cell Biol 2004; 24:5391-403. [PMID: 15169902 PMCID: PMC419869 DOI: 10.1128/mcb.24.12.5391-5403.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan histones are generally classified as replication-dependent or replacement variants. Replication-dependent histone genes contain cell cycle-responsive promoter elements, their transcripts terminate in an unpolyadenylated conserved stem-loop, and their mRNAs accumulate sharply during S phase. Replacement variant genes lack cell cycle-responsive promoter elements, their polyadenylated transcripts lack the stem-loop, and they are expressed at low levels throughout the cell cycle. During early development of some organisms with rapid cleavage cycles, replication-dependent mRNAs are not fully S phase restricted until complete cell cycle regulation is achieved. The accumulation of polyadenylated transcripts during this period has been considered incompatible with metazoan development. We show here that histone metabolism in the urochordate Oikopleura dioica does not accord with some key tenets of the replication-dependent/replacement variant paradigm. During the premetamorphic mitotic phase of development, expressed variants shared characteristics of replication-dependent histones, including the 3' stem-loop, but, in contrast, were extensively polyadenylated. After metamorphosis, when cells in many tissues enter endocycles, there was a global downregulation of histone transcript levels, with most variant transcripts processed at the stem-loop. Contrary to the 30-fold S-phase upregulation of histone transcripts described in common metazoan model organisms, we observed essentially constant histone transcript levels throughout both mitotic and endoreduplicative cell cycles.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, N-5008 Bergen, Norway
| | | | | | | |
Collapse
|
28
|
Ganot P, Thompson EM. Patterning through differential endoreduplication in epithelial organogenesis of the chordate, Oikopleura dioica. Dev Biol 2002; 252:59-71. [PMID: 12453460 DOI: 10.1006/dbio.2002.0834] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contributions that control of cell proliferation and cell growth make to developmental regulation of organ and body size remain poorly explored, particularly with respect to endocycles in polyploid tissues. The epithelium of the marine chordate Oikopleura dioica is composed of a fixed number of cells grouped in territories according to gene-specific expression and nuclear sizes and shapes. As the animal grows 10-fold during the life cycle, epithelial cells increase in size differentially as a function of their spatial position. We show that this cellular pattern reflected differences in ploidy levels ranging from 34 to 1,300 C. The diverse ploidy levels in defined cellular fields resulted both from different timing of entry into endocycles and from cell-specific regulation of endocycle lengths. Throughout the life cycle, differential cell size and ploidy increases were accompanied by field-specific profiles of progressive reductions in G-phase duration. Endocycles were asynchronous among cells of a given epithelial territory, but at the resolution of individual cells, both DNA replication timing and ploidy levels were bilaterally symmetric. The transparent, accessible, oikoplastic epithelium is a model of choice for the study of endoreduplication in the context of pattern formation and growth.
Collapse
Affiliation(s)
- Philippe Ganot
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|
29
|
Chioda M, Eskeland R, Thompson EM. Histone gene complement, variant expression, and mRNA processing in a urochordate Oikopleura dioica that undergoes extensive polyploidization. Mol Biol Evol 2002; 19:2247-60. [PMID: 12446815 DOI: 10.1093/oxfordjournals.molbev.a004048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Considerable data exist on coding sequences of histones in a wide variety of organisms. Much more restricted information is available on total histone gene complement, gene organization, transcriptional regulation, and histone mRNA processing. In particular, there is a significant phylogenetic gap in information for the urochordates, a subphylum near the invertebrate-vertebrate transition. In this study, we show that the appendicularian Oikopleura dioica has a histone gene complement that is similar to that of humans, though its genome size is 40- to 50-fold smaller. At a total length of 3.5 kb, the H3, H4, H1, H2A, and H2B quintet cluster is the most compact described thus far, but despite very rapid early developmental cleavage cycles, no extensive tandem repeats of the cluster were present. The high degree of variation within each of the complements of O. dioica H2A and H2B subtypes resembled that found in plants as opposed to more closely related vertebrate and invertebrate species, and developmental stage-specific expression of different subtypes was observed. The linker histone H1 was present in relatively few copies per haploid genome and contained short N- and C-terminal tails, a feature similar to that of copepods but different from many standard model organisms. The 3'UTRs of the histone genes contained both the consensus stem-loop sequence and the polyadenylation signals but lacked the consensus histone downstream element that is involved in the processing of histone mRNAs in echinoderms and vertebrates. Two types of transcripts were found, i.e., those containing both the stem-loop and a polyA tail as well as those cleaved at the normal site just 3' of the stem-loop. The O. dioica data are an important addition to the limited number of eukaryotes for which sufficiently extensive information on histone gene complements is available. Increasingly, it appears that understanding the evolution of histone gene organization, transcriptional regulation, and mRNA processing will depend at least as much on comparative analysis of constraints imposed by certain life history features and cell biological characteristics as on projections based on simple phylogenetic relationships.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|