1
|
Dias FDA, dos Santos ALS, Lery LMS, Alves e Silva TL, Oliveira MM, Bisch PM, Saraiva EM, Souto-Padrón TC, Lopes AH. Evidence that a laminin-like insect protein mediates early events in the interaction of a Phytoparasite with its vector's salivary gland. PLoS One 2012; 7:e48170. [PMID: 23118944 PMCID: PMC3485148 DOI: 10.1371/journal.pone.0048170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022] Open
Abstract
Phytomonas species are plant parasites of the family Trypanosomatidae, which are transmitted by phytophagous insects. Some Phytomonas species cause major agricultural damages. The hemipteran Oncopeltus fasciatus is natural and experimental host for several species of trypanosomatids, including Phytomonas spp. The invasion of the insect vectors' salivary glands is one of the most important events for the life cycle of Phytomonas species. In the present study, we show the binding of Phytomonas serpens at the external face of O. fasciatus salivary glands by means of scanning electron microscopy and the in vitro interaction of living parasites with total proteins from the salivary glands in ligand blotting assays. This binding occurs primarily through an interaction with a 130 kDa salivary gland protein. The mass spectrometry of the trypsin-digest of this protein matched 23% of human laminin-5 β3 chain precursor sequence by 16 digested peptides. A protein sequence search through the transcriptome of O. fasciatus embryo showed a partial sequence with 51% similarity to human laminin β3 subunit. Anti-human laminin-5 β3 chain polyclonal antibodies recognized the 130 kDa protein by immunoblotting. The association of parasites with the salivary glands was strongly inhibited by human laminin-5, by the purified 130 kDa insect protein, and by polyclonal antibodies raised against the human laminin-5 β3 chain. This is the first report demonstrating that a laminin-like molecule from the salivary gland of O. fasciatus acts as a receptor for Phytomonas binding. The results presented in this investigation are important findings that will support further studies that aim at developing new approaches to prevent the transmission of Phytomonas species from insects to plants and vice-versa.
Collapse
Affiliation(s)
- Felipe de Almeida Dias
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquimica Medica, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Thiago Luiz Alves e Silva
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Martins Oliveira
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Mascarello Bisch
- Instituto de Biofisica Carlos Chagas Filho, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angela Hampshire Lopes
- Instituto de Microbiologia Paulo de Goes, UFRJ, Ilha do Fundao, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Boyan GS, Williams JLD. Embryonic development of a peripheral nervous system: nerve tract associated cells and pioneer neurons in the antenna of the grasshopper Schistocerca gregaria. ARTHROPOD STRUCTURE & DEVELOPMENT 2007; 36:336-350. [PMID: 18089112 DOI: 10.1016/j.asd.2007.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 01/12/2007] [Accepted: 01/31/2007] [Indexed: 05/25/2023]
Abstract
The grasshopper antenna is an articulated appendage associated with the deutocerebral segment of the head. In the early embryo, the meristal annuli of the antenna represent segment borders and are also the site of differentiation of pioneer cells which found the dorsal and ventral peripheral nerve tracts to the brain. We report here on another set of cells which appear earlier than the pioneers during development and are later found arrayed along these tracts at the border of epithelium and lumen. These so-called nerve tract associated cells differ morphologically from pioneers in that they are bipolar, have shorter processes, and are not segmentally organized in the antenna. Nerve tract associated cells do not express horseradish peroxidase and so are not classical neurons. They do not express antigens such as repo and annulin which are associated with glia cells in the nervous system. Nerve tract associated cells do, however, express the mesodermal/mesectodermal cell surface marker Mes-3 and putatively derive from the antennal coelom and then migrate to the epithelium/lumen border. Intracellular recordings show that such nerve tract associated cells have resting potentials similar to those of pioneer cells and can be dye coupled to the pioneers. Similar cell types are present in the maxilla, a serially homologous appendage on the head. The nerve tract associated cells are organized into a cellular scaffold which we speculate may be relevant to the navigation of pioneer and sensory axons in the early embryonic antennal nervous system.
Collapse
Affiliation(s)
- G S Boyan
- Developmental Neurobiology Group, Department of Biology II, Section of Neurobiology, Biozentrum, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
3
|
Bonner J, Gerrow KA, O'Connor TP. The tibial-1 pioneer pathway: an in vivo model for neuronal outgrowth and guidance. Methods Cell Biol 2004; 71:171-93. [PMID: 12884692 DOI: 10.1016/s0091-679x(03)01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
As neurons extend axons to their targets during development, growth cones must reorient their direction of migration in response to extracellular guidance cues. A variety of model systems have been employed in order to dissect the cellular and molecular mechanisms that underlie this complex process. One preparation, the developing grasshopper limb bud, has proved to offer a number of advantages in which to examine mechanisms of growth cone guidance and motility in vivo. First, the relatively large size of the embryonic nervous system allows for straightforward imaging of both fixed and live neurons in vivo. Second, the peripheral nerves generated in the limb bud are highly stereotyped. Third, intact embryos can be cultured for a period of days, allowing for fairly easy perturbations at precise developmental stages. Fourth, due to the ease of dissection, numerous cell biological and molecular techniques can be utilized in the limb bud. Finally, axon guidance molecules and mechanisms are conserved between grasshoppers and other organism, including vertebrates.
Collapse
Affiliation(s)
- Jennifer Bonner
- Program in Neuroscience, Department of Anatomy, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|