1
|
Li H, Chen Z, Li J, Liu R, Zhao F, Liu R. Indium oxide nanoparticles induce lung intercellular toxicity between bronchial epithelial cells and macrophages. J Appl Toxicol 2020; 40:1636-1646. [PMID: 32608070 DOI: 10.1002/jat.4023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Concerns have been raised over the safety and health of industrial workers exposed to indium oxide nanoparticles (IO-NPs) when working. IO-NPs were previously shown in vitro and in vivo to be cytotoxic, but the mechanism of pathogenesis was unclear. In this study, the effects of IO-NPs on lung cells associated with respiratory and immune barriers and the toxic effects of intercellular cascades were studied. Here IO-NPs had acute toxicity to Wistar rats over a time course (5 days post-intratracheal instillation). Following treatment epithelial cells (16HBE) or macrophages (RAW264.7) with IO-NPs or IO fine particles (IO-FPs), the damage of 16HBE cells caused by IO-NPs was serious, mainly in the mitochondrial and rough endoplasmic reticulum. The lactate dehydrogenase level also showed that cytotoxicity in vitro was more serious for IO-NPs compared with IO-FPs. The level of In3+ (examined by inductively coupled plasma mass spectrometry) in 16HBE cells was 10 times higher than that in RAW cells. In3+ , releasing from IO-NPs absorbed by 16HBE cells, could not only significantly inhibit the phagocytosis and migration of macrophages (P < .0001), but also stimulate RAW cells to secrete high levels of inflammatory cytokines. IO-NPs can directly damage pulmonary epithelial cells. The In3+ released by epithelial cells affect the phagocytosis and migration of macrophages, which may be a new point for the decrease in the clearance of alveolar surfactants and the development of IO-related pulmonary alveolar proteinosis.
Collapse
Affiliation(s)
- Huilin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Zhaofang Chen
- Shool of the Environment, Nanjing University, Nanjing, China
| | - Jinxia Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Ru Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Feng Zhao
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Jiang W, Wang X, Osborne OJ, Du Y, Chang CH, Liao YP, Sun B, Jiang J, Ji Z, Li R, liu X, Lu J, Lin S, Meng H, Xia T, Nel AE. Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS NANO 2017; 11:1869-1883. [PMID: 28177603 PMCID: PMC5543990 DOI: 10.1021/acsnano.6b07895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have recently shown that the toxicological potential of GaAs and InAs particulates in cells is size- and dissolution-dependent, tending to be more pronounced for nano- vs micron-sized particles. Whether the size-dependent dissolution and shedding of ionic III-V materials also apply to pulmonary exposure is unclear. While it has been demonstrated that micron-sized III-V particles, such as GaAs and InAs, are capable of inducing hazardous pulmonary effects in an occupational setting as well as in animal studies, the effect of submicron particles (e.g., the removal of asperities during processing of semiconductor wafers) is unclear. We used cytokine profiling to compare the pro-inflammatory effects of micron- and nanoscale GaAs and InAs particulates in cells as well as the murine lung 40 h and 21 days after oropharyngeal aspiration. Use of cytokine array technology in macrophage and epithelial cell cultures demonstrated a proportionally higher increase in the levels of matrix metalloproteinase inducer (EMMPRIN), macrophage migration inhibitory factor (MIF), and interleukin 1β (IL-1β) by nanosized (n) GaAs and n-InAs as well as As(III). n-GaAs and n-InAs also triggered higher neutrophil counts in the bronchoalveolar lavage fluid (BALF) of mice than micronscale particles 40 h post-aspiration, along with increased production of EMMPRIN and MIF. In contrast, in animals sacrificed 21 days after exposure, only n-InAs induced fibrotic lung changes as determined by increased lung collagen as well as increased levels of TGF-β1 and PDGF-AA in the BALF. A similar trend was seen for EMMPRIN and matrix metallopeptidase (MMP-9) levels in the BALF. Nano- and micron-GaAs had negligible subacute effects. Importantly, the difference between the 40 h and 21 days data appears to be biopersistence of n-InAs, as demonstrated by ICP-OES analysis of lung tissue. Interestingly, an ionic form of In, InCl3, also showed pro-fibrogenic effects due to the formation of insoluble In(OH)3 nanostructures. All considered, these data indicate that while nanoscale particles exhibit increased pro-inflammatory effects in the lung, most effects are transient, except for n-InAs and insoluble InCl3 species that are biopersistent and trigger pro-fibrotic effects. These results are of potential importance for the understanding the occupational health effects of III-V particulates.
Collapse
Affiliation(s)
- Wen Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Olivia J. Osborne
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Yingjie Du
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Bingbing Sun
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Jinhong Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Ruibin Li
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangsheng liu
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Jianqin Lu
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Sijie Lin
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China, 200092
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - André E. Nel
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
- Address correspondence to: André E. Nel, M.D./Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680, USA, Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|
3
|
Hines CJ, Roberts JL, Andrews RN, Jackson MV, Deddens JA. Use of and occupational exposure to indium in the United States. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2013; 10:723-733. [PMID: 24195539 PMCID: PMC4476525 DOI: 10.1080/15459624.2013.836279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH REL. Given recent findings of adverse health effects in workers, research is needed to determine if the current REL sufficiently protects workers against indium-related diseases.
Collapse
Affiliation(s)
- Cynthia J. Hines
- National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | | | - Ronnee N. Andrews
- National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | | | - James A. Deddens
- National Institute for Occupational Safety and Health, Cincinnati, Ohio
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
4
|
Asakura K, Satoh H, Chiba M, Okamoto M, Serizawa K, Nakano M, Omae K. Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. J Occup Health 2009; 51:498-512. [PMID: 19851040 DOI: 10.1539/joh.l9080] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Many kinds of heavy metals are used in industry; thus, it is important for us to clarify their toxicity. For example, lead, which is a component of solder, is notorious for its neurotoxicity, and substitute materials have been sought for many years. Therefore, we examined the genotoxicity of lead and also those of metallic bismuth, indium, silver and antimony which are possible substitutes for lead in solder. METHODS Bacterial reverse mutation tests and chromosomal aberration tests in cultured mammalian cells were performed according to standard procedures. RESULTS Antimony showed genotoxicity in both tests, and bismuth also showed positive results in the chromosomal aberration test. In contrast, lead, indium, and silver were considered to be inactive by the criteria of the present study. CONCLUSIONS Although further studies are needed because of the difficulty of genotoxicity evaluation using an in vitro system, sufficient precautions should be made when antimony and bismuth are used.
Collapse
Affiliation(s)
- Keiko Asakura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Nakano M, Omae K, Tanaka A, Hirata M, Michikawa T, Kikuchi Y, Yoshioka N, Nishiwaki Y, Chonan T. Causal relationship between indium compound inhalation and effects on the lungs. J Occup Health 2009; 51:513-21. [PMID: 19834281 DOI: 10.1539/joh.l9077] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Recent case reports and epidemiological studies suggest that inhalation of indium dust induces lung damage. OBJECTIVES To elucidate the dose-dependent effects of indium on the lungs and to prove a causal relationship more clearly. METHODS A baseline observation was conducted on 465 workers currently exposed to indium, 127 workers formerly exposed to indium and 169 workers without indium exposure in 12 factories and 1 research laboratory from 2003 to 2006. Indium in serum (In-S) was determined as an exposure parameter, and its effects on the lungs were examined. RESULTS The means of In-S in the current, former and no exposure workers were 8.35, 9.63 and 0.56 ng/ml, respectively. The current and former exposure workers had significantly higher levels of KL-6, and showed significant dose-dependent increases in KL-6, SP-D, and SP-A. Current exposure workers with In-S of 3 ng/ml or above demonstrated a significant increase of KL-6 in both GM and prevalence exceeding the reference value. Approximately a quarter of the former exposure workers had interstitial changes as seen on chest HRCT. In-S of exposed workers who had been working before improvements of the working environment (Group Bef) and those who started working after improvements (Group Aft) were 12.29 and 0.81 ng/ml, respectively. Adjusted odds ratios indicated 87%, 71% and 44% reductions among Group Aft workers who exceeded the reference values of KL-6, SP-D and SP-A, respectively. CONCLUSION Dose-dependent lung effects due to indium exposure were shown, and a decrease of indium exposure reduced the lung effects. An In-S value of 3 ng/ml may be a cut-off value which could be used to prevent early effects on the lungs.
Collapse
Affiliation(s)
- Makiko Nakano
- Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
This study was designed to investigate the in vivo effect of nickel sulfate on the pulmonary non-specific immune defences. Groups of four male Wistar rats were treated with a single intratracheal instillation of NiSO(4) at different doses: 1, 2, 4 and 8 micromol of NiSO(4) per rat. Control rats received a corresponding instillation of the saline vehicle. The effect of NiSO(4) on the cytotoxic activity of the pulmonary natural killer (NK) cells and alveolar macrophages (AM), as well as the pulmonary production of cytokines such as alpha-tumor necrosis factor (TNF-alpha) and gamma-interferon (IFN-gamma), were examined 1, 2 and 7 days later. Spontaneous NK-cytotoxicity towards mouse-derived tumor cell line, Yac-1 was suppressed 1 day after treatment at doses of 2 micromol/rat and above with only one result significant (P<0.05); 2 days after treatment the suppression was increased with all results significant at the same doses; 1 week after treatment NK activity restoration was observed except for the highest dose, 8 micromol/rat. AM-mediated cytotoxicity towards mouse-derived tumor cell line, 3T12, did not show any significant difference in treated and untreated animals. In contrast, whereas moderate levels of TNF-alpha were detected in the broncho-alveolar lavage (BAL) fluid supernatants of controls, the NiSO(4) treatment highly suppressed TNF-alpha production with a maximum observed after 2 days. TNF-alpha suppression was found to be transient, at least with the lowest NiSO(4) dose, with levels returning to normal after 7 days. A non-significant increase in IFN-gamma was observed in the BAL fluids of treated animals at each time of examination. Taken together, these results indicate that NK cell activity and TNF-alpha secretion are sensitive targets for instilled NiSO(4) in Wistar rats.
Collapse
Affiliation(s)
- M Goutet
- National Institute for Research and Safety, Avenue de Bourgogne, B.P. No. 27, 54501, Vandoeuvre, France
| | | | | |
Collapse
|