1
|
Li G, Zheng B, Meszaros LB, Vella JB, Usas A, Matsumoto T, Huard J. Identification and characterization of chondrogenic progenitor cells in the fascia of postnatal skeletal muscle. J Mol Cell Biol 2011; 3:369-77. [PMID: 21729867 DOI: 10.1093/jmcb/mjr014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intramuscular injection of bone morphogenetic proteins (BMPs) has been shown to induce ectopic bone formation. A chondrogenic phase is typically observed in this process, which suggests that there may exist a chondrogenic subpopulation of cells residing in skeletal muscle. Two prospective cell populations were isolated from rat skeletal muscle: fascia-derived cells (FDCs), extracted from gluteus maximus muscle fascia (epimysium) and muscle-derived cells (MDCs) isolated from the muscle body. Both populations were investigated for their cell surface marker profiles (flowcytometry analysis), proliferation rates as well as their myogenic and chondrogenic potentials. The majority of FDCs expressed mesenchymal stromal cell markers but not endothelial cell markers. FDCs underwent chondrogenic differentiation after BMP4 treatment in vitro, but not myogenic differentiation. Although MDCs showed chondrogenic potential, they expressed the myogenic cell marker desmin and readily underwent myogenic differentiation in vitro; however, the chondrogenic potential of the MDCs is confounded by the presence of FDC-like cells residing in the muscle perimysium and endomysium. To clarify the role of the muscle-derived myogenic cells in chondrogenesis, mixed pellets with varying ratios of FDCs and L6 myoblasts were formed and studied for chondrogenic potential. Our results indicated that the chondrogenic potential of the mixed pellets decreased with the increased ratio of myogenic cells to FDCs supporting the role of FDCs in chondrogenesis. Taken together, our results suggest that non-myogenic cells residing in the fascia of skeletal muscle have a strong chondrogenic potential and may represent a novel donor cell source for cartilage regeneration and repair.
Collapse
Affiliation(s)
- Guangheng Li
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Analysis of chick (Gallus gallus) middle ear columella formation. BMC DEVELOPMENTAL BIOLOGY 2010; 10:16. [PMID: 20158901 PMCID: PMC2834582 DOI: 10.1186/1471-213x-10-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/16/2010] [Indexed: 11/10/2022]
Abstract
Background The chick middle ear bone, the columella, provides an accessible model in which to study the tissue and molecular interactions necessary for induction and patterning of the columella, as well as associated multiple aspects of endochondral ossification. These include mesenchymal condensation, chondrogenesis, ossification of the medial footplate and shaft, and joint formation between the persistent cartilage of the extracolumella and ossified columella. Middle and external ear defects are responsible for approximately 10% of congenital hearing defects. Thus, understanding the morphogenesis and the molecular mechanisms of the formation of the middle ear is important to understanding normal and abnormal development of this essential component of the hearing apparatus. Results The columella, which arises from proximal ectomesenchyme of the second pharyngeal arch, is induced and patterned in a dynamic multi-step process. From the footplate, which inserts into the inner ear oval window, the shaft spans the pneumatic middle ear cavity, and the extracolumella inserts into the tympanic membrane. Through marker gene and immunolabeling analysis, we have determined the onset of each stage in the columella's development, from condensation to ossification. Significantly, a single condensation with the putative shaft and extracolumella arms already distinguishable is observed shortly before initiation of five separate chondrogenic centers within these structures. Ossification begins later, with periosteum formation in the shaft and, unexpectedly, a separate periosteum in the footplate. Conclusions The data presented in this study document the spatiotemporal events leading to morphogenesis of the columella and middle ear structures and provide the first gene expression data for this region. These data identify candidate genes and facilitate future functional studies and elucidation of the molecular mechanisms of columella formation.
Collapse
|
3
|
Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:29-41. [PMID: 19063663 DOI: 10.1089/ten.teb.2008.0329] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cartilage is the first skeletal tissue to be formed during embryogenesis leading to the creation of all mature cartilages and bones, with the exception of the flat bones in the skull. Therefore, errors occurring during the process of chondrogenesis, the formation of cartilage, often lead to severe skeletal malformations such as dysplasias. There are hundreds of skeletal dysplasias, and the molecular genetic etiology of some remains more elusive than of others. Many efforts have aimed at understanding the morphogenetic event of chondrogenesis in normal individuals, of which the main morphogenetic and regulatory mechanisms will be reviewed here. For instance, many signaling molecules that guide chondrogenesis--for example, transforming growth factor-beta, bone morphogenetic proteins, fibroblast growth factors, and Wnts, as well as transcriptional regulators such as the Sox family--have already been identified. Moreover, extracellular matrix components also play an important role in this developmental event, as evidenced by the promotion of the chondrogenic potential of chondroprogenitor cells caused by collagen II and proteoglycans like versican. The growing evidence of the elements that control chondrogenesis and the increasing number of different sources of progenitor cells will, hopefully, help to create tissue engineering platforms that could overcome many developmental or degenerative diseases associated with cartilage defects.
Collapse
Affiliation(s)
- Lluís Quintana
- Tissue Engineering Division, Department of Bioengineering, IQS-Ramon Llull University, Barcelona, Spain
| | | | | |
Collapse
|
4
|
Mello MA, Tuan RS. Effects of TGF-beta1 and triiodothyronine on cartilage maturation: in vitro analysis using long-term high-density micromass cultures of chick embryonic limb mesenchymal cells. J Orthop Res 2006; 24:2095-105. [PMID: 16955422 DOI: 10.1002/jor.20233] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endochondral ossification is initiated by differentiation of mesenchymal cells into chondrocytes, which produce a cartilaginous matrix, proliferate, mature, and undergo hypertrophy, followed by matrix calcification, and substitution of cartilage by bone. A number of hormones and growth factors have been implicated in this process. Using in vitro, long-term, high-density, micromass cultures of chick embryonic mesenchyme, that recapitulate the process of chondrogenesis, chondrocyte maturation, and hypertrophy, we have investigated the importance of a balance between proliferation and apoptosis in cartilage maturation, focusing specifically on the effects of transforming growth factor-beta1 (TGF-beta1) and the thyroid hormone, triiodothyronine (T3). Our results showed that TGF-beta1 stimulates proliferation, by week 2 of culture, and T3 inhibits proliferation by week 3. Cell size increases in cultures treated with T3. Collagen type X is expressed in all culture, and delay in matrix deposition is seen only in the cultures treated with TGF-beta1. T3 stimulates alkaline phosphatase activity, but not calcification. T3 enhances apoptosis, as seen by TUNEL staining, and internucleosomal DNA fragmentation. The results support the roles of T3 and TGF-beta in cartilage maturation, i.e., TGF-beta stimulates proliferation and suppresses hypertrophy, while T3 stimulates hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Maria A Mello
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Building 50, Room 1523, MSC 8022, Bethesda, Maryland 20892-8022, USA
| | | |
Collapse
|
5
|
Longobardi L, O'Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 2006; 21:626-36. [PMID: 16598383 DOI: 10.1359/jbmr.051213] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED A novel role for IGF-I in MSC chondrogenesis was determined. IGF-I effects were evaluated in the presence or absence of TGF-beta signaling by conditionally inactivating the TGF-beta type II receptor. We found that IGF-I had potent chondroinductive actions on MSCs. IGF-I effects were independent from and additive to TGF-beta. INTRODUCTION Mesenchymal stem cells (MSCs) can be isolated from adult bone marrow (BM), expanded, and differentiated into several cell types, including chondrocytes. The role of IGF-I in the chondrogenic potential of MSCs is poorly understood. TGF-beta induces MSC chondrogenic differentiation, although its actions are not well defined. The aim of our study was to define the biological role of IGF-I on proliferation, chondrogenic condensation, apoptosis, and differentiation of MSCs into chondrocytes, alone or in combination with TGF-beta and in the presence or absence of TGF-beta signaling. MATERIALS AND METHODS Mononuclear adherent stem cells were isolated from mouse BM. Chondrogenic differentiation was induced by culturing high-density MSC pellets in serum- and insulin-free defined medium up to 7 days, with or without IGF-I and/or TGF-beta. We measured thymidine incorporation and stained 2-day-old pellets with TUNEL, cleaved caspase-3, peanut-agglutinin, and N-cadherin. Seven-day-old pellets were measured in size, stained for proteoglycan synthesis, and analyzed for the expression of collagen II and Sox-9 by quantitative real time PCR. We obtained MSCs from mice in which green fluorescent protein (GFP) was under the Collagen2 promoter and determined GFP expression by confocal microscopy. We conditionally inactivated the TGF-beta type II receptor (TbetaRII) in MSCs using a cre-lox system, generating TbetaRII knockout MSCs (RIIKO-MSCs). RESULTS AND CONCLUSIONS IGF-I modulated MSC chondrogenesis by stimulating proliferation, regulating cell apoptosis, and inducing expression of chondrocyte markers. IGF-I chondroinductive actions were equally potent to TGF-beta1, and the two growth factors had additive effects. Using RIIKO-MSCs, we showed that IGF-I chondrogenic actions are independent from the TGF-beta signaling. We found that the extracellular signal-related kinase 1/2 mitogen-activated protein kinase (Erk1/2 MAPK) pathway mediated the TGF-beta1 mitogenic response and in part the IGF-I proliferative action. Our data, by showing the role of IGF-I and TGF-beta1 in the critical steps of MSC chondrogenesis, provide critical information to optimize the therapeutic use of MSCs in cartilage disorders.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2579, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Song L, Chau L, Sakamoto Y, Nakashima J, Koide M, Tuan RS. Electric field-induced molecular vibration for noninvasive, high-efficiency DNA transfection. Mol Ther 2004; 9:607-16. [PMID: 15093191 DOI: 10.1016/j.ymthe.2004.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 01/23/2004] [Indexed: 01/09/2023] Open
Abstract
Gene delivery is an essential research tool for elucidating gene structure, regulation, and function in biomedical research and is the technological basis for gene therapy. However, the application of nonviral vectors in mammalian cell transfection and gene therapy is limited in that current methods require large amounts of exogenous DNA and/or exhibit high cytotoxicity and low transfection efficiency in primary cells. Here we describe the development of a novel, noninvasive gene delivery protocol using plasmid DNA vectors, based on the principle of electric field-induced molecular vibration. This method enables foreign DNA molecules to penetrate the plasma membrane and enter the cytoplasm of both primary mesenchymal progenitor cells and established cell lines of various species, at high efficiency and with low cell mortality. This procedure requires no special reagents, allows stable expression of transduced DNA, and does not interfere with the normal cellular differentiation activities of human and chick mesenchymal progenitors.
Collapse
Affiliation(s)
- Lin Song
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-8022, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Embryonic skeletal development involves the recruitment, commitment, differentiation, and maturation of mesenchymal cells into those in the skeletal tissue lineage, specifically cartilage and bone along the intramembranous and endochondral ossification pathways. The exquisite control of skeletal development is regulated at the level of gene transcription, cellular signaling, cell-cell and cell-matrix interactions, as well as systemic modulation. Mediators include transcription factors, growth factors, cytokines, metabolites, hormones, and environmentally derived influences. Understanding the mechanisms underlying developmental skeletogenesis is crucial to harnessing the inherent regenerative potential of skeletal tissues for wound healing and repair, as well as for functional skeletal tissue engineering. In this review, a number of key issues are discussed concerning the current and future challenges of the scientific investigation of developmental skeletogenesis in the embryo, specifically limb cartilage development, and how these challenges relate to regenerative or reparative skeletogenesis in the adult. Specifically, a more complete understanding the biology of skeletogenic progenitor cells and the cellular and molecular mechanisms governing tissue patterning and morphogenesis should greatly facilitate the development of regenerative approaches to cartilage repair.
Collapse
Affiliation(s)
- Rocky S Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 2003; 120:823-36. [PMID: 12915232 DOI: 10.1016/s0925-4773(03)00067-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Growth/Differentiation Factor 5 (GDF5) plays an important role in limb mesenchymal cell condensation and chondrogenesis. Here we demonstrate, using high density cultures of chick embryonic limb mesenchyme, that GDF5 misexpression increased condensation of chondroprogenitor cells and enhanced chondrogenic differentiation. These effects were observed in the absence of altered cellular viability or biosynthetic activity, suggesting that GDF5 action might be directed at the level of cellular adhesion or cell-cell communication. GDF5- enhanced condensation occurred independent of cell density or N-cadherin mediated adhesion and signaling, but was inhibited upon interference of gap junction mediated communication. p38 MAP kinase signaling was required for the GDF5 effect on chondrocyte differentiation, but not for mesenchymal condensation. These findings suggest gap junction involvement in the action of GDF5 in developmental chondrogenesis.
Collapse
Affiliation(s)
- Cynthia M Coleman
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
White DG, Hershey HP, Moss JJ, Daniels H, Tuan RS, Bennett VD. Functional analysis of fibronectin isoforms in chondrogenesis: Full-length recombinant mesenchymal fibronectin reduces spreading and promotes condensation and chondrogenesis of limb mesenchymal cells. Differentiation 2003; 71:251-61. [PMID: 12823226 DOI: 10.1046/j.1432-0436.2003.7104502.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fibronectin (FN), a large dimeric glycoprotein, functions primarily as a connecting molecule in the extracellular matrices of tissues by mediating both cell-matrix and matrix-matrix interactions. All members of the FN family are products of a single FN gene; heterogeneity arises from the alternative splicing of at least three regions (IIIB, IIIA, and V) during processing of a common primary transcript. During chick embryonic limb chondrogenesis, FN structure changes from B+A+ in precartilage mesenchyme to B+A- in differentiated cartilage, and exon IIIA has been shown to be necessary for the process of mesenchymal cellular condensation, a requisite event that precedes overt expression of chondrocyte phenotype. This study aims to investigate the mechanistic action of the FN isoforms in mesenchymal chondrogenesis and, in particular, to identify the specific cellular function in mesenchymal condensation mediated by the mesenchymal (B+A+) FN isoform. Full-length cDNAs corresponding to four splice variants (B+A+, B+A-, B-A+, B-A-) of FN were constructed, and expressed the corresponding proteins using a baculovirus expression vector system. Cell adhesion assays with purified proteins showed that, although the relative levels of cell attachment were approximately the same, chick limb-bud mesenchymal cells spread up to 40 % less on mesenchymal (B+A+) FN than on cartilage (B+A-) FN, (B-A+) FN, or plasma (B-A-) FN. Cellular condensation and chondrogenic differentiation were also promoted in high-density micromass cultures of limb mesenchymal cells plated onto B+A+ FN. These observations suggest that the process of mesenchymal condensation is mediated at least in part by the enhanced ability of chondrogenic mesenchymal cells to migrate and aggregate as a consequence of residing in and interacting with mesenchymal FN. Our findings are consistent with and provide a mechanistic basis for previous observations that rounding of limb mesenchymal cells precedes the onset of chondrogenesis.
Collapse
Affiliation(s)
- Denise G White
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
10
|
Tufan AC, Daumer KM, Tuan RS. Frizzled-7 and limb mesenchymal chondrogenesis: effect of misexpression and involvement of N-cadherin. Dev Dyn 2002; 223:241-53. [PMID: 11836788 DOI: 10.1002/dvdy.10046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Products of the Frizzled family of tissue polarity genes have been identified as putative receptors for the Wnt family of signaling molecules. Wnt-signaling is implicated in the regulation of limb mesenchymal chondrogenesis, and our recent study indicates that N-cadherin and related activities are functionally involved in Wnt-7a-mediated inhibition of chondrogenesis. By using an in vitro high-density micromass culture system of chick limb mesenchymal cells, we have analyzed the spatiotemporal expression patterns and the effects on chondrogenesis of RCAS retroviral-mediated misexpression of Chfz-1 and Chfz-7, two Frizzled genes implicated in chondrogenic regulation. Chfz-1 expression was localized at areas surrounding the cartilaginous nodules at all time points examined, whereas Chfz-7 expression was limited to cellular aggregates during initial mesenchymal condensation, and subsequently was down-regulated from the centers toward the periphery of cartilage nodules at the time of chondrogenic differentiation, resembling the pattern of N-cadherin expression. Chondrogenesis in vitro was inhibited and limited to a smaller area of the culture upon misexpression of Chfz-7, but not affected by Chfz-1 misexpression. Analyses of cellular condensation and chondrogenic differentiation showed that the inhibitory action of Chfz-7 is unlikely to be at the chondrogenic differentiation step, but instead affects the earlier precartilage aggregate formation event. At 24 hr, expression of N-cadherin, a key component of the cellular condensation phase of chondrogenesis, was delayed/suppressed in Chfz-7 misexpressing cultures, and was limited to a significantly smaller cellular condensation area within the entire culture at 48 hr, when compared with control cultures. Chfz-1 misexpressing cultures appeared similar to control cultures at all time points. However, neither Chfz-1 nor Chfz-7 misexpression affected mesenchymal cell proliferation in vitro. These results suggest that Chfz-7 is active in regulating N-cadherin expression during the process of limb mesenchymal chondrogenesis and that Chfz-1 and Chfz-7 are involved in different Wnt-signaling pathways.
Collapse
MESH Headings
- Animals
- Avian Proteins
- Cadherins/biosynthesis
- Cadherins/genetics
- Cadherins/physiology
- Cell Division
- Cells, Cultured/metabolism
- Chick Embryo
- Chondrocytes/cytology
- Chondrocytes/metabolism
- Chondrogenesis/genetics
- Chondrogenesis/physiology
- Collagen Type II/biosynthesis
- Extremities/embryology
- Frizzled Receptors
- Gene Expression Regulation, Developmental
- Mesoderm/metabolism
- Organ Culture Techniques
- Proteins/physiology
- Proto-Oncogene Proteins
- RNA, Messenger/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled
- Receptors, Neurotransmitter/biosynthesis
- Receptors, Neurotransmitter/genetics
- Receptors, Neurotransmitter/physiology
- Recombinant Fusion Proteins/physiology
- Transfection
- Wnt Proteins
Collapse
Affiliation(s)
- A Cevik Tufan
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
11
|
Tufan AC, Tuan RS. Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin-related functions. FASEB J 2001; 15:1436-8. [PMID: 11387249 DOI: 10.1096/fj.00-0784fje] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- A C Tufan
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
12
|
Abstract
The long bones of the developing skeleton, such as those of the limb, arise from the process of endochondral ossification, where cartilage serves as the initial anlage element and is later replaced by bone. One of the earliest events of embryonic limb development is cellular condensation, whereby pre-cartilage mesenchymal cells aggregate as a result of specific cell-cell interactions, a requisite step in the chondrogenic pathway. In this review an extensive examination of historical and recent literature pertaining to limb development and mesenchymal condensation has been undertaken. Topics reviewed include limb initiation and axial induction, mesenchymal condensation and its regulation by various adhesion molecules, and regulation of chondrocyte differentiation and limb patterning. The complexity of limb development is exemplified by the involvement of multiple growth factors and morphogens such as Wnts, transforming growth factor-beta and fibroblast growth factors, as well as condensation events mediated by both cell-cell (neural cadherin and neural cell adhesion molecule) and cell-matrix adhesion (fibronectin, proteoglycans and collagens), as well as numerous intracellular signaling pathways transduced by integrins, mitogen activated protein kinases, protein kinase C, lipid metabolites and cyclic adenosine monophosphate. Furthermore, information pertaining to limb patterning and the functional importance of Hox genes and various other signaling molecules such as radical fringe, engrailed, Sox-9, and the Hedgehog family is reviewed. The exquisite three-dimensional structure of the vertebrate limb represents the culmination of these highly orchestrated and strictly regulated events. Understanding the development of cartilage should provide insights into mechanisms underlying the biology of both normal and pathologic (e.g. osteoarthritis) adult cartilage.
Collapse
Affiliation(s)
- A M DeLise
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
13
|
Polito P, Dal Cin P, Sciot R, Brock P, Van Eyken P, Van den Berghe H. Embryonal rhabdomyosarcoma with only numerical chromosome changes. Case report and review of the literature. CANCER GENETICS AND CYTOGENETICS 1999; 109:161-5. [PMID: 10087953 DOI: 10.1016/s0165-4608(98)00168-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An embryonal rhabdomyosarcoma, presenting as a retroperitoneal mass in a 15-year-old girl, is reported. The histological and immunohistochemical picture was typical, except for the presence of focal chondroid differentiation. Interestingly, expression of the "muscle markers" desmin and alpha-sarcomeric actin was present in the latter areas. Cytogenetic analysis showed a hyperdiploid karyotype without structural chromosome changes. The pertinent literature on the subject is reviewed. Hyperdiploidy of the clonal type seems to occur frequently, but no characteristic karyotype is so far emerging.
Collapse
Affiliation(s)
- P Polito
- Center of Human Genetics, University of Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Skeletal muscle development requires the formation of myoblasts that can fuse with each other to form multinucleate myofibers. Distinct primary and secondary, slow and fast, populations of myofibers form by the time of birth. At embryonic, fetal, and perinatal stages of development, temporally distinct lineages of myogenic cells arise and contribute to the formation of these multiple types of myofibers. In addition, spatially distinct lineages of myogenic cells arise and form the anterior head muscles, limb (hypaxial) muscles, and dorsal (epaxial) muscles. There is strong evidence that myoblasts are produced from muscle stem cells, which are self-renewing cells that do not themselves terminally differentiate but produce progeny that are capable of becoming myoblasts and myofibers. Muscle stem cells, which may be multipotent, appear to be distinguishable from myoblasts by a number of indirect and direct criteria. Muscle stem cells arise either in unsegmented paraxial mesoderm (anterior head muscle progenitors) or in segmented mesoderm of the somites (epaxial and hypaxial muscle progenitors). These initial stages of myogenesis are regulated by positive and negative signals, including Wnt, BMP, and Shh family members, from nearby notochord, neural tube, ectoderm, and lateral mesoderm tissues. The formation of skeletal muscles, therefore, depends on the generation of spatially and temporally distinct lineages of myogenic cells. Myogenic cell lineages begin with muscle stem cells which produce the myoblasts that fuse to form myofibers.
Collapse
Affiliation(s)
- J B Miller
- Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | |
Collapse
|
15
|
Affiliation(s)
- N J Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|