1
|
Bonente D, Bianchi L, De Salvo R, Nicoletti C, De Benedetto E, Bacci T, Bini L, Inzalaco G, Franci L, Chiariello M, Tosi GM, Bertelli E, Barone V. Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes. Int J Mol Sci 2023; 24:ijms24119728. [PMID: 37298679 DOI: 10.3390/ijms24119728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs' extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease. The bioinformatics approach we applied delineated a comprehensive overview on this fibrocellular tissue and on critical proteins that could really impact ERM physiopathology. Our interactomic analysis proposed the hyaluronic-acid-receptor cluster of differentiation 44 (CD44) as a central regulator of ERM aberrant dynamics and progression. Interestingly, the interaction between CD44 and podoplanin (PDPN) was shown to promote directional migration in epithelial cells. PDPN is a glycoprotein overexpressed in various cancers and a growing body of evidence indicates its relevant function in several fibrotic and inflammatory pathologies. The binding of PDPN to partner proteins and/or its ligand results in the modulation of signaling pathways regulating proliferation, contractility, migration, epithelial-mesenchymal transition, and extracellular matrix remodeling, all processes that are vital in ERM formation. In this context, the understanding of the PDPN role can help to modulate signaling during fibrosis, hence opening a new line of therapy.
Collapse
Affiliation(s)
- Denise Bonente
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Laura Bianchi
- Section of Functional Proteomics, Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Rossana De Salvo
- Section of Functional Proteomics, Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Claudio Nicoletti
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Elena De Benedetto
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Tommaso Bacci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Luca Bini
- Section of Functional Proteomics, Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giovanni Inzalaco
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100 Siena, Italy
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina 1, 53100 Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Lorenzo Franci
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100 Siena, Italy
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina 1, 53100 Siena, Italy
| | - Mario Chiariello
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100 Siena, Italy
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina 1, 53100 Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
2
|
Tosi GM, Regoli M, Altera A, Galvagni F, Arcuri C, Bacci T, Elia I, Realini G, Orlandini M, Bertelli E. Heat Shock Protein 90 Involvement in the Development of Idiopathic Epiretinal Membranes. Invest Ophthalmol Vis Sci 2021; 61:34. [PMID: 32716502 PMCID: PMC7425702 DOI: 10.1167/iovs.61.8.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
Purpose This work was aimed to further characterize cells of idiopathic epiretinal membranes (iERMs). We wanted to determine the contribution of 90-kDa heat shock protein (HSP90) to sustain the transforming growth factor-β (TGF-β)-mediated signal transduction pathway in iERM. Methods Immunofluorescence and confocal microscopy were carried out on deplasticized sections from 36 epiretinal membranes processed for electron microscopy and on frozen sections from five additional samples with antibodies against α-smooth muscle actin (αSMA), vimentin, glial fibrillary acidic protein (GFAP), SMAD2, HSP90α, type-II TGF-β1 receptor (TβRII), type-I collagen, and type-IV collagen. In addition, Müller MIO-M1 cells were transfected with HSP90 and challenged with TGF-β1. Results Double and triple labeling experiments showed that a variable number of TβRII+ cells were present in 94.1% of tested iERMs and they were mostly GFAP-/αSMA+/vimentin+/HSP90α+. In almost half of the cases these cells contained type-I collagen, suggesting their involvement in matrix deposition. HSP90 overexpressing MIO-M1 cells challenged with TGF-β1 showed increased levels of TβRII, SMAD2, SMAD3, and phosphor-SMAD2. Nuclear SMAD2 staining could be observed in HSP90α+ cells on frozen sections of iERMs. Conclusions Cells in iERMs that express TβRII are also HSP90α+ and show the antigenic profile of myofibroblast-like cells as they are GFAP-/αSMA+/vimentin+. HSP90α-overexpressing MIO-M1 cells challenged with TGF-β1 showed an increased activation of the SMAD pathway implying that HSP90α might play a role in sustaining the TGF-β1-induced fibrotic response of iERM cells.
Collapse
|
3
|
Roh V, Abramowski P, Hiou-Feige A, Cornils K, Rivals JP, Zougman A, Aranyossy T, Thielecke L, Truan Z, Mermod M, Monnier Y, Prassolov V, Glauche I, Nowrouzi A, Abdollahi A, Fehse B, Simon C, Tolstonog GV. Cellular Barcoding Identifies Clonal Substitution as a Hallmark of Local Recurrence in a Surgical Model of Head and Neck Squamous Cell Carcinoma. Cell Rep 2019; 25:2208-2222.e7. [PMID: 30463016 DOI: 10.1016/j.celrep.2018.10.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2017] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Local recurrence after surgery for head and neck squamous cell carcinoma (HNSCC) remains a common event associated with a dismal prognosis. Improving this outcome requires a better understanding of cancer cell populations that expand from postsurgical minimal residual disease (MRD). Therefore, we assessed clonal dynamics in a surgical model of barcoded HNSCC growing in the submental region of immunodeficient mice. Clonal substitution and massive reduction of clonal heterogeneity emerged as hallmarks of local recurrence, as the clones dominating in less heterogeneous recurrences were scarce in their matched primary tumors. These lineages were selected by their ability to persist after surgery and competitively expand from MRD. Clones enriched in recurrences exhibited both private and shared genetic features and likely originated from ancestors shared with clones dominating in primary tumors. They demonstrated high invasiveness and epithelial-to-mesenchymal transition, eventually providing an attractive target for obtaining better local control for these tumors.
Collapse
Affiliation(s)
- Vincent Roh
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pierre Abramowski
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Agnès Hiou-Feige
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Kerstin Cornils
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jean-Paul Rivals
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Zougman
- Clinical and Biomedical Proteomics Group, Cancer Research UK Centre, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, UK
| | - Tim Aranyossy
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustave Carus, Technische Universität Dresden, Dresden, Germany
| | - Zinnia Truan
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Maxime Mermod
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Yan Monnier
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustave Carus, Technische Universität Dresden, Dresden, Germany
| | - Ali Nowrouzi
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Core Center Heidelberg, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and DKFZ, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Core Center Heidelberg, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and DKFZ, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Christian Simon
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Genrich V Tolstonog
- Department of Otolaryngology - Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Bendayan M. A Review of the Potential and Versatility of Colloidal Gold Cytochemical Labeling for Molecular Morphology. Biotech Histochem 2010. [DOI: 10.1080/10520290009068433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022] Open
|
5
|
Di Bella A, Regoli M, Nicoletti C, Ermini L, Fonzi L, Bertelli E. An appraisal of intermediate filament expression in adult and developing pancreas: vimentin is expressed in alpha cells of rat and mouse embryos. J Histochem Cytochem 2009; 57:577-86. [PMID: 19223297 PMCID: PMC2690409 DOI: 10.1369/jhc.2009.952861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2008] [Accepted: 01/27/2009] [Indexed: 01/27/2023] Open
Abstract
Intermediate filaments are frequently used in studies of developmental biology as markers of cell differentiation. To assess whether they can be useful to identify differentiating pancreatic endocrine cells, we examined the pattern of expression of nestin, cytokeratin 20, and vimentin on acetone-fixed cryosections of rat adult and developing pancreas. We also studied vimentin expression in mouse embryonic pancreas at E19. Cytokeratin 20 was found in all pancreatic epithelial cell lineages during the entire development of the rat gland and in the adult animals. Under our experimental conditions, therefore, cytokeratin 20 is not an exclusive marker of rat duct cells. Nestin was detected exclusively in stromal cells either in the adult or developing rat pancreas. Vimentin was observed within cells located in the primitive ducts of rat pancreas starting from E12.5. Their number rapidly increased, reaching its highest level in newborn animals. Vimentin was also spotted in alpha cells starting from E12.5 but disappeared soon after birth, likely identifying immature or recently differentiated alpha cells. In addition, vimentin was observed in duct and alpha cells of mouse developing pancreas showing that its expression in such cells is not an event restricted to the rat. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Alessandro Di Bella
- Department of Pharmacology Giorgio Segre, Section of Morphology, Via Aldo Moro 2, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Kirilyuk A, Tolstonog GV, Damert A, Held U, Hahn S, Löwer R, Buschmann C, Horn AV, Traub P, Schumann GG. Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells. Nucleic Acids Res 2007; 36:648-65. [PMID: 18073200 PMCID: PMC2241872 DOI: 10.1093/nar/gkm1045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
LINE-1 (L1) is a highly successful autonomous non-LTR retrotransposon and a major force shaping mammalian genomes. Although there are about 600 000 L1 copies covering 23% of the rat genome, full-length rat L1s (L1Rn) with intact open reading frames (ORFs) representing functional master copies for retrotransposition have not been identified yet. In conjunction with studies to elucidate the role of L1 retrotransposons in tumorigenesis, we isolated and characterized 10 different cDNAs from transcribed full-length L1Rn elements in rat chloroleukemia (RCL) cells, each encoding intact ORF1 proteins (ORF1p). We identified the first functional L1Rn retrotransposon from this pool of cDNAs, determined its activity in HeLa cells and in the RCL cell line the cDNAs originated from and demonstrate that it is mobilized in the tumor cell line in which it is expressed. Furthermore, we generated monoclonal antibodies directed against L1Rn ORF1 and ORF2-encoded recombinant proteins, analyzed the expression of L1-encoded proteins and found ORF1p predominantly in the nucleus. Our results support the hypothesis that the reported explosive amplification of genomic L1Rn sequences after their transcriptional activation in RCL cells is based on L1 retrotransposition. Therefore, L1 activity might be one cause for genomic instability observed during the progression of leukemia.
Collapse
Affiliation(s)
- Alexander Kirilyuk
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tolstonog GV, Belichenko-Weitzmann IV, Lu JP, Hartig R, Shoeman RL, Traub U, Traub P. Spontaneously Immortalized Mouse Embryo Fibroblasts: Growth Behavior of Wild-Type and Vimentin-Deficient Cells in Relation to Mitochondrial Structure and Activity. DNA Cell Biol 2005; 24:680-709. [PMID: 16274292 DOI: 10.1089/dna.2005.24.680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
Dependent on the presence or absence of vimentin, primary mouse embryo fibroblasts exhibit different growth characteristics in vitro. While most Vim(+/+) fibroblasts stop dividing and die via apoptosis, a substantial fraction of cells immortalize and proliferate almost normally. Vim(-/-) fibroblasts cease to divide earlier, immortalize in vanishingly small numbers and thereafter proliferate extremely slowly. Early after immortalization, Vim(+/+) (imm) fibroblasts appear structurally almost normal, whereas Vim(-/-) (imm) fibroblasts equal postmitotic "crisis" cells, which are characterized by increased cell size, altered cell ultrastructure, nuclear enlargement, genome destabilization, structural degeneration of mitochondria, and diminution of mitochondrial respiratory activity. The differences between immortalized Vim(+/+) (imm) and Vim(-/-) (imm) fibroblasts persist during early cell cloning but disappear during serial subcultivation. At high cell passage, cloned, immortalized vim(-) fibroblasts grow nearly as fast as their cloned vim(+) counterparts, and also resemble them in size, ultrastructure, nuclear volume, and mitochondrial complement; they very likely employ redundancy to cope with the loss of vimentin function when adjusting structure and behavior to that of immortalized vim(+) fibroblasts. Reduction in nuclear size occurs via release of large amounts of filamentous chromatin into extracellular space; because it is complexed with extracellular matrix proteins, it tends to form clusters and to tightly stick to the surface of other cells, thus providing a potential for horizontal gene transfer. On the other hand, cloned vim(+) and vim(-) fibroblasts are equal in showing contact inhibition at young age and becoming anchorage-independent during serial subcultivation, as indicated by the formation of multilayered and -faceted cell sheets and huge spheroids on top of or in soft agar. With this, immortalized vim(-) fibroblasts reduce their adhesiveness to the substratum which, in their precrisis state and early after cloning, is much higher than that of their vim(+) counterparts. In addition, the coupling between the mitochondrial respiratory chain and oxidative phosphorylation is stronger in vim(+) than vim(-) fibroblasts. It appears from these data that after explantation of fibroblasts from the mouse embryo the primary cause of cell and mitochondrial degeneration, including genomic instability, is the mitochondrial production of reactive oxygen species in a vicious circle, and that vimentin provides partial protection from oxidative damage. As a matrix protein with specific in vitro and in vivo affinities for nuclear and mitochondrial, recombinogenic DNA, it may exert this effect preferentially at the genome level via its influence on recombination and repair processes, and in this way also assist the cells in immortalizing. Additional protection of mitochondria by vimentin may occur at the level of mitochondrial fatty acid metabolism.
Collapse
|
8
|
Bannikova S, Zorov DB, Shoeman RL, Tolstonog GV, Traub P. Stability and Association with the Cytomatrix of Mitochondrial DNA in Spontaneously Immortalized Mouse Embryo Fibroblasts Containing or Lacking the Intermediate Filament Protein Vimentin. DNA Cell Biol 2005; 24:710-35. [PMID: 16274293 DOI: 10.1089/dna.2005.24.710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
To extend previous observations demonstrating differences in number, morphology, and activity of mitochondria in spontaneously immortalized vim(+) and vim(-) fibroblasts derived from wild-type and vimentin knockout mice, some structural and functional aspects of mitochondrial genome performance and integrity in both types of cells were investigated. Primary Vim(+/+) and Vim(-/-) fibroblasts, which escaped terminal differentiation by immortalization were characterized by an almost twofold lower mtDNA content in comparison to that of their primary precursor cells, whereby the average mtDNA copy number in two clones of vim(+) cells was lower by a factor of 0.6 than that in four clones of vim(-) cells. However, during serial subcultivation up to high passage numbers, the vim(+) and vim() fibroblasts increased their mtDNA copy number 1.5- and 2.5-fold, respectively. While early-passage cells of the vim(+) and vim(-) fibroblast clones differed only slightly in the ratio between mtDNA content and mitochondrial mass represented by mtHSP70 protein, after ca. 300 population doublings the average mtDNA/mtmass ratio in the vim(+) and vim() cells was increased by a factor of 2 and 4.5, respectively. During subcultivation, both types of cells acquired the fully transformed phenotype. These findings suggest that cytoskeletal vimentin filaments exert a strong influence on the mechanisms controlling mtDNA copy number during serial subcultivation of immortalized mouse embryo fibroblasts, and that vimentin deficiency causes a disproportionately enhanced mtDNA content in high-passage vim(-) fibroblasts. Such a role of vimentin filaments was supported by the stronger retention potential for mtDNA and mtDNA polymerase (gamma) detected in vim(+) fibroblasts by Triton X-100 extraction of mitochondria and agaroseembedded cells. Moreover, although the vim(+) and vim(-) fibroblasts were equally active in generating free radicals, the vim(-) cells exhibited higher levels of immunologically detectable 8-oxoG and mismatch repair proteins MSH2 and MLH1 in their mitochondria. Because in vim(-) fibroblasts only one point mutation was detected in the mtDNA D-loop control region, these cells are apparently able to efficiently remove oxidatively damaged nucleobases. On the other hand, a number of large-scale mtDNA deletions were found in high-passage vim(-) fibroblasts, but not in low-passage vim(-) cells and vim(+) cells of both low and high passage. Large mtDNA deletions were also induced in young vim(-) fibroblasts by treatment with the DNA intercalator ethidium bromide, whereas no such deletions were found after treatment of vim(+) cells. These results indicate that in immortalized vim(-) fibroblasts the mitochondrial genome is prone to large-scale rearrangements, probably due to insufficient control of mtDNA repair and recombination processes in the absence of vimentin.
Collapse
|
9
|
Shi F, Hoekstra D. Effective intracellular delivery of oligonucleotides in order to make sense of antisense. J Control Release 2005; 97:189-209. [PMID: 15196747 DOI: 10.1016/j.jconrel.2004.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2004] [Accepted: 03/12/2004] [Indexed: 01/28/2023]
Abstract
For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the targeting to and association of an ODN sequence with a specific mRNA via base-pairing, resulting in an impairment of functional and/or harmful protein expression in normal and diseased cells/tissue, respectively. Apart from ODN stability, its efficiency very much depends on intracellular delivery and release/access to the target side, issues that are still relatively poorly understood. Since free ODNs enter cells relatively poorly, appropriate carriers, often composed of polymers and cationic lipids, have been developed. Such carriers allow efficient delivery of ODNs into cells in vitro, and the mechanisms of delivery, both in terms of biophysical requirements for the carrier and cell biological features of uptake, are gradually becoming apparent. To become effective, ODNs require delivery into the nucleus, which necessitates release of internalized ODNs from endosomal compartments, an event that seems to depend on the nature of the delivery vehicle and distinct structural shape changes. Interestingly, evidence is accumulating which suggests that by modulating the surface properties of the carrier, the kinetics of such changes can be controlled, thus providing possibilities for programmable release of the carrier contents. Here, consideration will also be given to antisense design and chemistry, and the challenge of extra- and intracellular barriers to be overcome in the delivery process.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
10
|
Carapelli A, Regoli M, Nicoletti C, Ermini L, Fonzi L, Bertelli E. Rabbit tonsil-associated M-cells express cytokeratin 20 and take up particulate antigen. J Histochem Cytochem 2004; 52:1323-32. [PMID: 15385578 DOI: 10.1177/002215540405201008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
M-cells are believed to play a pivotal role in initiation of the immune response. These cells, located in the epithelia that overlie mucosal lymphoid follicles, are responsible for the active uptake of particulate antigens and for their translocation to the underlying lymphoid tissue. The identification of reliable markers for M-cells is therefore extremely important for the study of the initial steps that lead to the immune response. For this purpose, we studied cytokeratin 20 (CK20) expression in the epithelium of rabbit palatine tonsils by immunofluorescence, confocal microscopy, and Western blotting. CK20+ cells were observed in all rabbit palatine tonsils examined. By Western blotting, one CK20-immunoreactive band was identified at 46 kD on samples of proteins from the intermediate filament-enriched cytoskeletal fraction of tonsil epithelium. Double labeling of CK20+ cells with cell-specific markers confirmed that such cells were actually M-cells. Moreover, CK20+ M-cells displayed a mature phenotype (they formed pockets harboring lymphoid cells) and were functionally competent because they could take up particulate antigens from the pharyngeal lumen. We conclude that CK20 is an M-cell marker for rabbit palatine tonsils. Moreover, we can hypothesize the use of M-cells as a possible site for antigen delivery of particle-based vaccines.
Collapse
Affiliation(s)
- Alessandro Carapelli
- Dept. of Pharmacology "Giorgio Segre," Section of Morphology, Via Aldo Moro 4, University of Siena, Siena, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE We assessed the effect of the vimentin amino terminal polypeptide (NT1) on barrier function of rabbit bladder epithelium. MATERIALS AND METHODS The effect of NT1 on the properties of rabbit bladder epithelium were studied using Ussing chambers and electrophysiological methods. RESULTS NT1 increased transepithelial conductance (Gt) in a voltage dependent manner. At a transepithelial voltage (Vt) of -70 mV (serosal solution ground) the addition of NT1 to mucosal solution did not result in a change in Gt. When Vt was clamped to 0 mV, there was a time dependent increase in Gt. The increase in Gt was reversed by clamping Vt back to -70 mV or by removing NT1 from the mucosal bath at 0 mV. The polypeptide acts primarily at the apical membrane with a conductance increase that is concentration dependent. Induced conductance is nonselective for small monovalent cations and anions. The ability of NT1 to increase membrane conductance was decreased in the presence of bath calcium. CONCLUSIONS The data suggest that the amino terminus of vimentin can interact with the plasma membrane of bladder epithelium and increase ion permeability in a voltage dependent manner.
Collapse
Affiliation(s)
- Simon A Lewis
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0641, USA.
| | | | | |
Collapse
|
12
|
Li G, Tolstonog GV, Sabasch M, Traub P. Type III intermediate filament proteins interact with four-way junction DNA and facilitate its cleavage by the junction-resolving enzyme T7 endonuclease I. DNA Cell Biol 2003; 22:261-91. [PMID: 12823903 DOI: 10.1089/104454903321908656] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
The isolation from proliferating mouse and human embryo fibroblasts of SDS-stable crosslinkage products of vimentin with DNA fragments containing inverted repeats capable of cruciform formation under superhelical stress and the competitive effect of a synthetic Holliday junction on the binding of cytoplasmic intermediate filament (cIF) proteins to supercoiled DNA prompted a detailed investigation of the proteins' capacity to associate with four-way junction DNA and to influence its processing by junction-resolving endonucleases. Electrophoretic mobility shift analysis of reaction products obtained from vimentin and Holliday junctions under varying ionic conditions revealed efficient complex formation of the filament protein not only with the unstacked, square-planar configuration of the junctions but also with their coaxially stacked X-conformation. Glial fibrillary acidic protein (GFAP) was less efficient and desmin virtually inactive in complex formation. Electron microscopy showed binding of vimentin tetramers or octamers almost exclusively to the branchpoint of the Holliday junctions under physiological ionic conditions. Even at several hundredfold molar excess, sequence-related single- and double-stranded DNAs were unable to chase Holliday junctions from their complexes with vimentin. Vimentin also stimulated bacteriophage T7 endonuclease I in introducing single-strand cuts diametrically across the branchpoint and thus in the resolution of the Holliday junctions. This effect is very likely due to vimentin-induced structural distortion of the branchpoint, as suggested by the results of hydroxyl radical footprinting of Holliday junctions in the absence and the presence of vimentin. Moreover, vimentin, and to a lesser extent GFAP and desmin, interacted with the cruciform structures of inverted repeats inserted into a supercoiled vector plasmid, thereby changing their configuration via branch migration and sensibilizing them to processing by T7 endonuclease I. This refers to both plasmid relaxation caused by unilateral scission and, particularly, linearization via bilateral scission at primary and cIF protein-induced secondary cruciform branchpoints that were identified by T7 endonuclease I footprinting. cIF proteins share these activities with a variety of other architectural proteins interacting with and structurally modulating four-way DNA junctions. In view of the known and hypothetical functions of four-way DNA junctions and associated protein factors in DNA metabolism, cIF proteins as complementary nuclear matrix proteins may play important roles in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription, with special emphasis on both the preservation and evolution of the genome.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | | | |
Collapse
|
13
|
Shoeman RL, Hartig R, Berthel M, Traub P. Deletion Mutagenesis of the Amino-Terminal Head Domain of Vimentin Reveals Dispensability of Large Internal Regions for Intermediate Filament Assembly and Stability. Exp Cell Res 2002; 279:344-53. [PMID: 12243759 DOI: 10.1006/excr.2002.5618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that the non-alpha-helical head domain of vimentin is required for polymerization of intermediate filaments (IFs) and, furthermore, a nonapeptide highly conserved among type III IF subunit proteins at their extreme amino-terminus is essential for this process. Recombinant DNA technology was employed to produce specific vimentin deletion mutant proteins (for in vitro studies) or vimentin protein expression plasmids (for in vivo studies), which were used to identify other regions of the vimentin head domain important for polymerization. Various vimentin proteins lacking either residues 25-38, 44-95, or 40-95 polymerized into wild-type or largely normal IFs, both in vitro and in vivo. Vimentin proteins lacking residues 44-69 or 25-63 failed to form IFs in vitro, but assembled into IFs in vivo. Vimentin proteins lacking residues 25-68, 44-103, or 88-103 failed to form IFs in vitro or in vivo. Taken together with previous results, these data demonstrate that the middle of the vimentin non-alpha-helical head domain, which is known to be the site of nucleic acid binding, is completely dispensable for IF formation, whereas both ends of the vimentin non-alpha-helical head domain are required for IF formation. The simplest explanation for these results is that the middle of the vimentin non-alpha-helical head domain loops out, thereby permitting the juxtaposition of the ends of the head domain and their productive interaction with other protein domains (probably the C-terminus of the rod domain) during IF polymerization. The ability of some of the mutant proteins to form IFs in vivo, but not in vitro, suggests that as-yet-unknown cellular proteins may interact with and, in some cases, enable polymerization of IFs, even though they are not absolutely required for IF formation by wild-type vimentin.
Collapse
Affiliation(s)
- Robert L Shoeman
- Max-Planck-Institut für Zellbiologie, Schriesheimerstrasse 101, Rosenhof, 68526, Ladenburg, Germany
| | | | | | | |
Collapse
|
14
|
Tolstonog GV, Sabasch M, Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 2002; 21:213-39. [PMID: 12015898 DOI: 10.1089/10445490252925459] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
The tight association of cytoplasmic intermediate filaments (cIFs) with the nucleus and the isolation of crosslinkage products of vimentin with genomic DNA fragments, including nuclear matrix attachment regions (MARs) from proliferating fibroblasts, point to a participation of cIFs in nuclear activities. To test the possibility that cIFs are complementary nuclear matrix elements, the nuclei of a series of cultured cells were subjected to the Li-diiodosalicylate (LIS) extraction protocol developed for the preparation of nuclear matrices and analyzed by immunofluorescence microscopy and immunoblotting with antibodies directed against lamin B and cIF proteins. When nuclei released from hypotonically swollen L929 suspension cells in the presence of digitonin or Triton X-100 were exposed to such strong shearing forces that a considerable number were totally disrupted, a thin, discontinuous layer of vimentin IFs remained tenaciously adhering to still intact nuclei, in apparent coalignment with the nuclear lamina. Even in broken nuclei, the distribution of vimentin followed that of lamin B in areas where the lamina still appeared intact. The same retention of vimentin together with desmin and glial IFs was observed on the nuclei isolated from differentiating C2C12 myoblast and U333 glioma cells, respectively. Nuclei from epithelial cells shed their residual perinuclear IF layers as coherent cytoskeletal ghosts, except for small fractions of vimentin and cytokeratin IFs, which remained in a dot-to cap-like arrangement on the nuclear surface, in apparent codistribution with lamin B. LIS extraction did not bring about a reduction in the cIF protein contents of such nuclei upon their transformation into nuclear matrices. Moreover, in whole mount preparations of mouse embryo fibroblasts, DNA/chromatin emerging from nuclei during LIS extraction mechanically and chemically cleaned the nuclear surface and perinuclear area from loosely anchored cytoplasmic material with the production of broad, IF-free annular spaces, but left substantial fractions of the vimentin IFs in tight association with the nuclear surface. Accordingly, double-immunogold electron microscopy of fixed and permeabilized fibroblasts disclosed a close neighborhood of vimentin IFs and lamin B, with a minimal distance between the nanogold particles of ca. 30 nm. These data indicate an extremely solid interconnection of cIFs with structural elements of the nuclear matrix, and make them, together with their susceptibility to crosslinkage to MARs and other genomic DNA sequences under native conditions, complementary or even integral constituents of the karyoskeleton.
Collapse
|
15
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with triplex DNA. DNA Cell Biol 2002; 21:163-88. [PMID: 12015895 DOI: 10.1089/10445490252925422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
As previously shown, type III intermediate filaments (IFs) select from a mixture of linear mouse genomic DNA fragments mobile and repetitive, recombinogenic sequences that have also been identified in SDS-stable crosslinkage products of vimentin and DNA isolated from intact fibroblasts. Because these sequences also included homopurine.homopyrimidine (Pu.Py) tracts known to adopt triple-helical conformation under superhelical tension, and because IF proteins are single-stranded (ss) and supercoiled DNA-binding proteins, it was of interest whether they have a particular affinity for triplex DNA. To substantiate this, IF-selected DNA fragments harboring a (Pu.Py) segment and synthetic d(GA)(n) microsatellites were inserted into a vector plasmid and the constructs analyzed for their capacity to interact with IF proteins. Band shift assays revealed a substantially higher affinity of the IF proteins for the insert-containing plasmids than for the empty vector, with an activity decreasing in the order of vimentin > glial fibrillary acidic protein > desmin. In addition, footprint analyses performed with S1 nuclease, KMnO(4), and OsO(4)/bipyridine showed that the (Pu.Py) inserts had adopted triplex conformation under the superhelical strain of the plasmids, and that the IF proteins protected the triple-helical insert sequences from nucleolytic cleavage and chemical modification. All these activities were largely reduced in extent when analyzed on linearized plasmid DNAs. Because intramolecular triplexes (H-DNA) expose single-stranded loops, and the prokaryotic ssDNA-binding proteins g5p and g32p also protected at least the Pu-strand of the (Pu.Py) inserts from nucleolytic degradation, it seemed likely that the IF proteins take advantage of their ssDNA-binding activity in interacting with H-DNA. However, in contrast to g5p and E. coli SSB, they produced no clear band shifts with single-stranded d(GA)(20) and d(TC)(20), so that the interactions rather appear to occur via the duplex-triplex and triplex-loop junctions of H-DNA. On the other hand, the IF proteins, and also g32p, promoted the formation of intermolecular triplexes from the duplex d[A(GA)(20).(TC)(20)T] and d(GA)(20) and d(TC)(20) single strands, with preference of the Py (Pu.Py) triplex motif, substantiating an affinity of the proteins for the triplex structure as such. This triplex-stabilizing effect of IF proteins also applies to the H-DNA of (Pu.Py) insert-containing plasmids, as demonstrated by the preservation of intramolecular triplex-vimentin complexes upon linearization of their constituent supercoiled DNAs, in contrast to poor complex formation from free, linearized plasmid DNA and vimentin. Considering that (Pu.Py) sequences are found near MAR/replication origins, in upstream enhancer and promoter regions of genes, and in recombination hot spots, these results might point to roles of IF proteins in DNA replication, transcription, recombination, and repair.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
16
|
Tolstonog GV, Shoeman RL, Traub U, Traub P. Role of the intermediate filament protein vimentin in delaying senescence and in the spontaneous immortalization of mouse embryo fibroblasts. DNA Cell Biol 2001; 20:509-29. [PMID: 11747604 DOI: 10.1089/104454901317094945] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Because knockout of the vimentin gene in mice did not produce an immediately obvious, overt, or lethal specific phenotype, the conjecture was made that the mutation affects some subtle cellular functions whose loss manifests itself only when the mutant animals are exposed to stress. In order to substantiate this idea in a tractable in vitro system, primary embryo fibroblasts from wildtype (V(+/+)) and vimentin-knockout (V(-/-)) mice were compared with regard to their growth behavior under the pseudophysiologic conditions of conventional cell culture. Whereas in the course of serial transfer, the V(+/+) fibroblasts progressively reduced their growth potential, passed through a growth minimum around passage 12 (crisis), and, as immortalized cells, resumed faster growth, the V(-/-) fibroblasts also cut down their growth rate but much earlier, and they either did not immortalize or did so at an almost undetectable rate. Cells withdrawing from the cell cycle showed increased concentrations of reactive oxygen species and signs of oxidative damage: enlarged and flattened morphology, large nuclear volume, reinforced stress fiber system as a result of increased contents of actin and associated proteins, prominent extracellular matrix, and perinuclear masses of pathological forms of mitochondria with low membrane potential. The differences in the cell cycle behavior of the V(+/+) and V(-/-) cells in conjunction with the morphologic changes observed in mitotically arrested cells suggests a protective function of vimentin against oxidative cell damage. Because vimentin exhibits affinity for and forms crosslinkage products with recombinogenic nuclear as well as mitochondrial DNA in intact cells, it is credible to postulate that vimentin plays a role in the recombinogenic repair of oxidative damage inflicted on the nuclear and mitochondrial genome throughout the cells' replicative lifespan. Recombinational events mediated by vimentin also appear to take place when the cells pass through the genetically unstable state of crisis to attain immortality. The residual immortalization potential of V(-/-) fibroblasts might be attributable to their capacity to synthesize, in place of vimentin, the tetrameric form of a lacZ fusion protein carrying, in addition to a nuclear localization signal, the N-terminal 59 amino acids of vimentin and thus its DNA-binding site. On the basis of these results and considerations, a major biologic role of vimentin may be to protect animals during development and postnatal life against genetic damage and, because of its contribution to the plasticity of the genome, to allow them to respond to environmental challenges.
Collapse
Affiliation(s)
- G V Tolstonog
- Max-Planck-Institut für Zellbiologie, Ladenburg/Heidelberg, Germany
| | | | | | | |
Collapse
|
17
|
Tolstonog GV, Mothes E, Shoeman RL, Traub P. Isolation of SDS-stable complexes of the intermediate filament protein vimentin with repetitive, mobile, nuclear matrix attachment region, and mitochondrial DNA sequence elements from cultured mouse and human fibroblasts. DNA Cell Biol 2001; 20:531-54. [PMID: 11747605 DOI: 10.1089/104454901317094954] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
Abstract
Crosslinkage of vimentin to DNA in mouse L929 cells by formaldehyde and isolation of SDS-stable DNA-vimentin complexes from normal L929 cells and mouse and human embryo fibroblasts indicated close spatial relations between these components in the intact cell. The adducts, obtained by immunoprecipitation with anti-vimentin antibody, contained substantial quantities, not only of repetitive and mobile sequence elements such as centromeric satellite DNA, telomere DNA, microsatellites and minisatellites, long and short interspersed nucleotide elements, and retroposons, but also of mitochondrial (mt) DNA. Because the SDS-stable complexes could be isolated with distinctly higher yields from oxidatively stressed, senescent fibroblasts and were dissociated by boiling, they possibly arose from accidental condensation reactions mediated by unsaturated and dialdehydes, products of free radical-induced lipid peroxidation. They can therefore be considered vestiges of a general interaction of vimentin with cellular DNA. The sequence patterns of their DNA fragments were similar to those of extrachromosomal circular and linear DNA, including retroviral elements, markers and enhancers of genomic instability that also occur in the cytoplasm and are able to transport vimentin into the nucleus. Many of the fragments were also remarkably similar to AT-rich nuclear matrix attachment regions (MARs) in that they contained, in addition to various mobile elements, a palette of typical MAR motifs. With its tendency to multimerize and to interact with single-stranded and supercoiled DNA, vimentin thus behaves like a nuclear matrix protein and may as such participate in a variety of nuclear matrix-associated processes such as replication, recombination, repair, and transcription of DNA. These activities seem to be extendible to the mitochondrial compartment, as vimentin was also crosslinked to mtDNA, preferentially to its D-loop and hypervariable main control region. These sites are prone to point and deletion mutations and, like nuclear MARs, are associated with the cyto-karyomatrix. Moreover, as a developmentally regulated and tissue-specific cyto-karyomatrix protein, vimentin may contribute to the organization of chromatin, including centromeric and telomeric heterochromatin at the nuclear periphery, with all its consequences for genomic activities during embryogenesis and in adulthood of vertebrates. However, because of its high affinity for hypervariable, recombinogenic DNA sequences, vimentin is proposed to play a major role in both the preservation and the evolution of the nuclear and mitochondrial genome.
Collapse
Affiliation(s)
- G V Tolstonog
- Max-Planck-Institut für Zellbiologie, Ladenburg/Heidelberg, Germany
| | | | | | | |
Collapse
|
18
|
Wang Q, Tolstonog GV, Shoeman R, Traub P. Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins. Biochemistry 2001; 40:10342-9. [PMID: 11513613 DOI: 10.1021/bi0108305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
A combination of enzymatic and chemical ladder sequencing of photo-cross-linked protein-single-stranded oligodeoxyribonucleotide complexes and analysis by MALDI-TOF mass spectrometry was employed to identify the amino acid residues responsible for the stable binding of nucleic acids in several intermediate filament (IF) subunit proteins. The IF proteins studied included the type I and type II cytokeratins K8, K18, and K19; the type III proteins desmin, glial fibrillary acidic protein (GFAP), peripherin, and vimentin; and the type IV neurofilament triplet protein L (NF-L). The site of nucleic acid binding was localized to the non-alpha-helical, amino-terminal head domain of all of the IF proteins tested. GFAP, which has the shortest head domain of the proteins tested, cross-linked via only two amino acid residues. One of these residues was located within a conserved nonapeptide domain that has been shown to be required for filament formation. One or more cross-linked residues were found in a similar location in the other proteins studied. The major binding site for nucleic acids for most of the proteins appears to be localized within the middle of the head domain. The two exceptions to this generalization are GFAP, which lacks these residues, and NF-L, in which a large number of cross-linked residues were found scattered throughout the first half of the head domain. Control experiments were also done with two bacteriophage ssDNA-binding proteins, as well as actin and tubulin. The single sites of cross-linkage observed with the bacteriophage proteins, Phe(183) for the T4 gene 32 protein and Phe(73) for the M13 gene 5 protein, were in good agreement with literature data. Actin and tubulin could not be cross-linked to the oligonucleotide. Aside from the insight into the biological activity of IF proteins that these data provide, they also demonstrate that this analytical method can be employed to study a variety of protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Q Wang
- Max-Planck-Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | | | |
Collapse
|
19
|
Shoeman RL, Hüttermann C, Hartig R, Traub P. Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells. Mol Biol Cell 2001; 12:143-54. [PMID: 11160829 PMCID: PMC30574 DOI: 10.1091/mbc.12.1.143] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2000] [Revised: 10/18/2000] [Accepted: 10/23/2000] [Indexed: 11/11/2022] Open
Abstract
Electron microscopy of human skin fibroblasts syringe-loaded with human immunodeficiency virus type 1 protease (HIV-1 PR) revealed several effects on nuclear architecture. The most dramatic is a change from a spherical nuclear morphology to one with multiple lobes or deep invaginations. The nuclear matrix collapses or remains only as a peripheral rudiment, with individual elements thicker than in control cells. Chromatin organization and distribution is also perturbed. Attempts to identify a major nuclear protein whose cleavage by the protease might be responsible for these alterations were unsuccessful. Similar changes were observed in SW 13 T3 M [vimentin(+)] cells, whereas no changes were observed in SW 13 [vimentin(-)] cells after microinjection of protease. Treatment of SW 13 [vimentin(-)] cells, preinjected with vimentin to establish an intermediate filament network, with HIV-1 PR resulted in alterations in chromatin staining and distribution, but not in nuclear shape. These same changes were produced in SW 13 [vimentin(-)] cells after the injection of a mixture of vimentin peptides, produced by the cleavage of vimentin to completion by HIV-1 PR in vitro. Similar experiments with 16 purified peptides derived from wild-type or mutant vimentin proteins and five synthetic peptides demonstrated that exclusively N-terminal peptides were capable of altering chromatin distribution. Furthermore, two separate regions of the N-terminal head domain are primarily responsible for perturbing nuclear architecture. The ability of HIV-1 to affect nuclear organization via the liberation of vimentin peptides may play an important role in HIV-1-associated cytopathogenesis and carcinogenesis.
Collapse
Affiliation(s)
- R L Shoeman
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany.
| | | | | | | |
Collapse
|
20
|
Tolstonog GV, Wang X, Shoeman R, Traub P. Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments. DNA Cell Biol 2000; 19:647-77. [PMID: 11098216 DOI: 10.1089/10445490050199054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Employing the whole-genome PCR technique, intermediate filaments (IFs) reconstituted from vimentin, desmin, and glial fibrillary acidic protein were shown to select repetitive and mobile DNA sequence elements from a mixture of mouse genomic DNA fragments. The bound fragments included major and minor satellite DNA, telomere DNA, minisatellites, microsatellites, short and long interspersed nucleotide elements (SINEs and LINEs), A-type particle elements, members of the mammalian retrotransposon-like (MaLR) family, and a series of repeats not assignable to major repetitive DNA families. The latter sequences were either similar to flanking regions of genes; possessed recombinogenic elements such as polypurine/polypyrimidine stretches, GT-rich arrays, or GGNNGG signals; or were characterized by the distribution of oligopurine and pyrimidine motifs whose sequential and vertical alignment resulted in patterns indicative of high recombination potentials of the respective sequences. The different IF species exhibited distinct quantitative differences in DNA selectivities. Complexes consisting of vimentin IFs and DNA fragments containing LINE, (GT)(n) microsatellite, and major satellite DNA sequences were saturable and dynamic and were formed with high efficiency only when the DNAs were partially denatured. The major-groove binder methyl green exerted a stronger inhibitory effect on the binding reaction than did the minor-groove binder distamycin A; the effects of the two compounds were additive. In addition, DNA footprinting studies revealed significant configurational changes in the DNA fragments on interaction with vimentin IFs. In the case of major satellite DNA, vimentin IFs provided protection of the T-rich strand from cleavage by DNase I, whereas the A-rich strand was totally degraded. Taken together, these observations suggest that IF protein(s) bind to double-stranded DNAs at existing single-stranded sites and, taking advantage of their helix-destabilizing potential, further unwind them via a cooperative effort of their N-terminal DNA-binding regions. A comparison of the present results with literature data, as well as a search in the NCBI database, showed that IF proteins are related to nuclear matrix attachment region (MAR)-binding proteins, and the DNA sequences they interact with are very similar or even identical to those involved in a plethora of DNA recombination and related repair events. On the basis of these comparisons, IF proteins are proposed to contribute in a global fashion, not only to genetic diversity, but also to genomic integrity, in addition to their role in gene expression.
Collapse
Affiliation(s)
- G V Tolstonog
- Max-Planck-Institut für Zellbiologie, 68526 Ladenburg, Germany
| | | | | | | |
Collapse
|
21
|
Shoeman RL, Hartig R, Traub P. Characterization of the nucleic acid binding region of the intermediate filament protein vimentin by fluorescence polarization. Biochemistry 1999; 38:16802-9. [PMID: 10606512 DOI: 10.1021/bi991654r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Employing deletion mutant proteins and fluorescein-labeled oligodeoxyribonucleotides in a fluorescence polarization assay, the nucleic acid binding site of the intermediate filament (IF) subunit protein vimentin was localized to the middle of the arginine-rich, non-alpha-helical, N-terminal head domain. While deletion of the first few N-terminal residues (up to amino acid 17) had almost no effect, deletions of residues 25-64 or 25-68 essentially abolished the binding of nucleic acids by the respective proteins. Proteins with smaller deletions, of residues 25-39 or 43-68, were still able to bind nucleic acids quite well at low ionic strength, but only the proteins containing the first DNA-binding wing (residues 27-39) retained the ability to stably bind nucleic acids at physiological ionic strength. These results were confirmed by data obtained with two synthetic peptides whose sequences correspond to the smaller deletions. Nitration experiments showed that one or more of the tyrosines in the head domain are responsible for the stable binding by intercalation. Interestingly, the residues responsible for binding nucleic acids can be deleted without major influence on the in vivo polymerization properties of the mutant proteins. Only the protein with the largest internal deletion, of residues 25-68, failed to form filaments in vivo. Since the N-terminal head domains of IF proteins are largely exposed on the filament surface, but nevertheless essential for filament assembly, these results support the model that the middle of the head domain of vimentin may loop out from the filament surface and thus be available for interactions with other cellular structures or molecules.
Collapse
Affiliation(s)
- R L Shoeman
- Max-Planck-Institute for Cell Biology, Ladenburg, Germany.
| | | | | |
Collapse
|
22
|
Waseem A, Dogan B, Tidman N, Alam Y, Purkis P, Jackson S, Lalli A, Machesney M, Leigh IM. Keratin 15 expression in stratified epithelia: downregulation in activated keratinocytes. J Invest Dermatol 1999; 112:362-9. [PMID: 10084315 DOI: 10.1046/j.1523-1747.1999.00535.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Keratin 15 (K15) is a type I keratin without a defined type II partner whose expression in epidermal diseases has not been investigated. In this study we have used LHK15, a monoclonal antibody raised against the last 17 amino acids of the K15 polypeptide, to show that K15 is expressed primarily in the basal keratinocytes of stratified tissues, including the fetal epidermis and fetal nail. Although K15 in normal hair follicles was virtually absent from hair bulbs, it was expressed by a subset of keratinocytes in the outer root sheath. By comparison, K14 expression was found throughout the outer root sheath of hair follicles; however, when both K14 alleles were naturally ablated, the expression of K15 was also observed throughout the outer root sheath of the follicles. Expression of K15 mRNA was assessed by in situ hybridization and corroborated the data from immunostaining. An increase in K15 mRNA and protein expression in hair follicles from the K14 ablated epidermis suggested an upregulation of the K15 gene in the absence of the K14 protein. In organotypical cultures where differentiating keratinocytes expressed markers of activated phenotype, i.e., K6 and K16, expression of K15 was undetectable. The expression of K15 mRNA and protein was also downregulated in two hyperproliferating situations, psoriasis and hypertrophic scars. Because keratinocytes in psoriasis and hypertrophic scars are activated, we conclude that K15 expression is not compatible with keratinocyte activation and the K15 gene is downregulated to maintain the activated phenotype.
Collapse
Affiliation(s)
- A Waseem
- Head and Neck Cancer Research Programme, Division of Dentistry, UMDS, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hartig R, Shoeman RL, Janetzko A, Tolstonog G, Traub P. DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. J Cell Sci 1998; 111 ( Pt 24):3573-84. [PMID: 9819349 DOI: 10.1242/jcs.111.24.3573] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
A number of characteristic properties of intermediate filament (IF) proteins, such as nucleic acid-binding activity, affinity for histones and structural relatedness to transcription factors and nuclear matrix proteins, in conjunction with the tight association of IFs with the nucleus, suggest that these proteins might also fulfill nuclear functions in addition to their structure-organizing and -stabilizing activities in the cytoplasm. Yet, cytoplasmic IF proteins do not possess nuclear localization signals. In a search for carriers capable of transporting the IF protein vimentin into the nucleus, complexes of FITC-vimentin with various DNAs were microinjected into the cytoplasm of cultured cells and the intracellular distribution of the protein was followed by confocal laser scanning microscopy. The single-stranded oligodeoxyribonucleotides oligo(dG)25, oligo[d(GT)12G] and oligo[d(G3T2A)4G] proved to be excellent nuclear carriers for vimentin. However, in fibroblasts, fluorescence-labeled vimentin taken up by the nuclei remained undetectable with affinity-purified, polyclonal anti-vimentin antibody, whereas it was readily identifiable in the nuclei of microinjected epithelial cells in this way. Moreover, when FITC-vimentin was preinjected into fibroblasts and allowed to assemble into the endogenous vimentin filament system, it was still transferred into the nucleus by post-injected oligo(dG)25, although to a lesser extent. Superhelical circular DNAs, like pBR322, SV40 and mitochondrial DNA, were also characterized by considerable capacities for nuclear vimentin transport; these transport potentials were totally destroyed by relaxation or linearization of the DNA molecules. Nevertheless, certain linear double-stranded DNA molecules with a high affinity for vimentin IFs, such as repetitive telomere and centromere or mobile long interspersed repeat (LINE) DNA, could carry FITC-vimentin into the nucleus. This was also true for a 375 bp extrachromosomal linear DNA fragment which occurs in the cytoplasm of mouse tumor cells and which is capable of immortalizing human lymphocytes. On the basis of these results, it appears very likely that cellular and viral products of reverse transcription as well as other extrachromosomal DNAs, which are circular, superhelical and apparently shuttling between the cytoplasm and the nucleus (eccDNA), are constantly loaded with vimentin in vimentin-positive cells. Since such DNAs are considered as markers of genomic instability, it is conceivable that vimentin directly participates as an architectural, chromatin-modifying protein in recombinatorial processes set off by these DNAs in the nucleus.
Collapse
Affiliation(s)
- R Hartig
- Max-Planck-Institut für Zellbiologie, D-68526 Ladenburg/Heidelberg, Germany
| | | | | | | | | |
Collapse
|
24
|
Shoeman RL, Hartig R, Huang Y, Grüb S, Traub P. Fluorescence microscopic comparison of the binding of phosphodiester and phosphorothioate (antisense) oligodeoxyribonucleotides to subcellular structures, including intermediate filaments, the endoplasmic reticulum, and the nuclear interior. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:291-308. [PMID: 9303181 DOI: 10.1089/oli.1.1997.7.291] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
To detect potential intracellular binding sites for antisense oligodeoxyribonucleotides (ODN), 3'-fluorescence-tagged phosphodiester (P) and phosphorothioate (S) analogs of a series of model and vimentin and actin antisense ODN were applied to digitonin-permeabilized fibroblast and epithelial PtK2 cells. Fluorescence microscopy revealed binding of the ODN to intermediate filaments (IFs) with a preference for cytokeratin IFs, cytoplasmic membranes (endoplasmic reticulum), and, above all, the nuclear interior. The affinity of the ODN for these cellular substructures was dependent on their base composition, and the S-ODN were by far superior to the corresponding P-ODN in binding activity. Fluorescence polarization measurements of the interaction of ODN with purified IF proteins in vitro confirmed the differential, high-affinity binding of S-ODN to IFs. In permeabilized cells, the ODN readily migrated into the nucleus where, at ambient temperature, preferentially the S-ODN gave rise to a multitude of large, irregular aggregates. Nuclear uptake of the ODN was considerably and differentially inhibited by wheat germ agglutinin. High-affinity S-ODN, but not P-ODN, additionally reacted with a structure presumably identical with the nuclear lamina. Simultaneously, they cause decompaction of chromatin, whereby the S-ODN aggregates appeared as compact inclusions in homogeneously dispersed chromatin. After microinjection of S-ODN into intact cells, these effects were not observed, although the nucleic acids rapidly moved into the nucleus and condensed into a large number of well-defined, spherical speckles or longitudinal rodlets. The methylphosphonate analogs of some of the ODN used exhibited only extremely low affinities for intracellular constituents. These results show that excess amounts of S-ODN saturate a host of both low-affinity and high-affinity binding sites on cellular substructures, whereas limited quantities as used for microinjection recognize only the high-affinity binding sites. The results support the notion that the nonsequence-specific, often toxic effects of antisense S-ODN result from their strong binding to cellular components and substructures involved in replicational, transcriptional, and translational processes. On the other hand, the association of the ODN with membranes and cytoskeletal and karyoskeletal elements may serve to optimize their sequence-specific interaction with their intended target sites and also increase their cellular retention potential. These cellular structures would thus fulfill a depot function.
Collapse
Affiliation(s)
- R L Shoeman
- Max-Planck-Institut für Zellbiologie, Ladenburg/Heidelberg, Germany
| | | | | | | | | |
Collapse
|