1
|
Sargent G, van Zutphen T, Shatseva T, Zhang L, Di Giovanni V, Bandsma R, Kim PK. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J Cell Biol 2016; 214:677-90. [PMID: 27597759 PMCID: PMC5021090 DOI: 10.1083/jcb.201511034] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/01/2016] [Indexed: 12/31/2022] Open
Abstract
Sargent et al. identify the E3 ubiquitin ligase PEX2 as the causative agent of mammalian pexophagy. During amino acid starvation, PEX2 expression increases to ubiquitinate peroxisomal membrane proteins and signal peroxisome degradation by autophagy. Peroxisomes are metabolic organelles necessary for anabolic and catabolic lipid reactions whose numbers are highly dynamic based on the metabolic need of the cells. One mechanism to regulate peroxisome numbers is through an autophagic process called pexophagy. In mammalian cells, ubiquitination of peroxisomal membrane proteins signals pexophagy; however, the E3 ligase responsible for mediating ubiquitination is not known. Here, we report that the peroxisomal E3 ubiquitin ligase peroxin 2 (PEX2) is the causative agent for mammalian pexophagy. Expression of PEX2 leads to gross ubiquitination of peroxisomes and degradation of peroxisomes in an NBR1-dependent autophagic process. We identify PEX5 and PMP70 as substrates of PEX2 that are ubiquitinated during amino acid starvation. We also find that PEX2 expression is up-regulated during both amino acid starvation and rapamycin treatment, suggesting that the mTORC1 pathway regulates pexophagy by regulating PEX2 expression levels. Finally, we validate our findings in vivo using an animal model.
Collapse
Affiliation(s)
- Graeme Sargent
- Cell Biology Department, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tim van Zutphen
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, Netherlands
| | - Tatiana Shatseva
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ling Zhang
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Valeria Di Giovanni
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Robert Bandsma
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Peter Kijun Kim
- Cell Biology Department, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Honsho M, Abe Y, Fujiki Y. Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis. J Biol Chem 2015; 290:28822-33. [PMID: 26463208 DOI: 10.1074/jbc.m115.656983] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Plasmalogen biosynthesis is regulated by modulating fatty acyl-CoA reductase 1 stability in a manner dependent on cellular plasmalogen level. However, physiological significance of the regulation of plasmalogen biosynthesis remains unknown. Here we show that elevation of the cellular plasmalogen level reduces cholesterol biosynthesis without affecting the isoprenylation of proteins such as Rab and Pex19p. Analysis of intermediate metabolites in cholesterol biosynthesis suggests that the first oxidative step in cholesterol biosynthesis catalyzed by squalene monooxygenase (SQLE), an important regulator downstream HMG-CoA reductase in cholesterol synthesis, is reduced by degradation of SQLE upon elevation of cellular plasmalogen level. By contrast, the defect of plasmalogen synthesis causes elevation of SQLE expression, resulting in the reduction of 2,3-epoxysqualene required for cholesterol synthesis, hence implying a novel physiological consequence of the regulation of plasmalogen biosynthesis.
Collapse
Affiliation(s)
- Masanori Honsho
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukio Fujiki
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Honsho M, Asaoku S, Fukumoto K, Fujiki Y. Topogenesis and homeostasis of fatty acyl-CoA reductase 1. J Biol Chem 2013; 288:34588-98. [PMID: 24108123 DOI: 10.1074/jbc.m113.498345] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peroxisomal fatty acyl-CoA reductase 1 (Far1) is essential for supplying fatty alcohols required for ether bond formation in ether glycerophospholipid synthesis. The stability of Far1 is regulated by a mechanism that is dependent on cellular plasmalogen levels. However, the membrane topology of Far1 and how Far1 is targeted to membranes remain largely unknown. Here, Far1 is shown to be a peroxisomal tail-anchored protein. The hydrophobic C terminus of Far1 binds to Pex19p, a cytosolic receptor harboring a C-terminal CAAX motif, which is responsible for the targeting of Far1 to peroxisomes. Far1, but not Far2, was preferentially degraded in response to the cellular level of plasmalogens. Experiments in which regions of Far1 or Far2 were replaced with the corresponding region of the other protein showed that the region flanking the transmembrane domain of Far1 is required for plasmalogen-dependent modulation of Far1 stability. Expression of Far1 increased plasmalogen synthesis in wild-type Chinese hamster ovary cells, strongly suggesting that Far1 is a rate-limiting enzyme for plasmalogen synthesis.
Collapse
|
4
|
Noguchi M, Okumoto K, Fujiki Y. System to quantify the import of peroxisomal matrix proteins by fluorescence intensity. Genes Cells 2013; 18:476-92. [PMID: 23573963 DOI: 10.1111/gtc.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/23/2013] [Indexed: 11/30/2022]
Abstract
Fourteen distinct peroxins are essential for peroxisome biogenesis in mammals, of which ten are involved in the import of matrix proteins into peroxisomes. Peroxisomal matrix protein import is regulated by various cellular factors; however, the mechanisms underlying this regulation are poorly understood. This is primarily because no quantitative detection method with high resolution is available to study the import of peroxisomal matrix proteins. Here, we developed a monitoring system that uses a fluorescent reporter that is stabilized in peroxisomes but is degraded in the cytosol. An FK506 binding protein 12 variant, termed destabilization domain (DD), is rapidly and constitutively degraded by proteasomes when expressed in mammalian cells. DD is reversibly protected by the addition of a specific synthetic ligand. In the absence of the ligand, a reporter molecule, enhanced GFP (EGFP) fused with DD and peroxisomal targeting signal 1 (DD-EGFP-PTS1), is largely degraded in the cytosol. By contrast, in the presence of the ligand, the reporter is stabilized and translocates into peroxisomes. Upon withdrawal of the ligand, the reporter in peroxisomes remains intact, whereas that in the cytosol is rapidly degraded. Thus, peroxisomal protein import can be readily quantified by measuring the fluorescence intensity of whole cells.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
5
|
Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y. Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 2011; 12:1067-83. [PMID: 21554508 DOI: 10.1111/j.1600-0854.2011.01217.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Honsho M, Hashiguchi Y, Ghaedi K, Fujiki Y. Interaction defect of the medium isoform of PTS1-receptor Pex5p with PTS2-receptor Pex7p abrogates the PTS2 protein import into peroxisomes in mammals. J Biochem 2010; 149:203-10. [DOI: 10.1093/jb/mvq130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Ghaedi K, Fujiki Y. Isolation and characterization of novel phenotype CHO cell mutants defective in peroxisome assembly, using ICR191 as a potent mutagenic agent. Cell Biochem Funct 2008; 26:684-91. [DOI: 10.1002/cbf.1493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K. Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1374-81. [PMID: 17045664 DOI: 10.1016/j.bbamcr.2006.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Cells with a genetic defect affecting a biological activity and/or a cell phenotype are generally called "cell mutants" and are a highly useful tool in genetic, biochemical, as well as cell biological research. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders, more than a dozen complementation groups of Chinese hamster ovary (CHO) cell mutants defective in peroxisome assembly have been successfully isolated and established as a model system. Moreover, successful PEX gene cloning studies by taking advantage of rapid functional complementation assay of CHO cell mutants invaluably contributed to the accomplishment of isolation of pathogenic genes responsible for peroxisome biogenesis diseases. Molecular mechanisms of peroxisome assembly are currently investigated by making use of such mammalian cell mutants.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
9
|
Fan W, Fujiki Y. A temperature-sensitive CHO pex1 mutant with a novel mutation in the AAA Walker A1 motif. Biochem Biophys Res Commun 2006; 345:1434-9. [PMID: 16723118 DOI: 10.1016/j.bbrc.2006.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
We herein isolated a peroxisome-deficient Chinese hamster ovary mutant, ZPEG252, import-defective of peroxisome targeting signal 1 (PTS1)- and PTS2-proteins at 37 degrees C. The impaired protein import was restored at 30 degrees C, indicating a temperature-sensitive phenotype, similar to that of cells derived from patients with milder peroxisome biogenesis disorders such as infantile Refsum disease. PEX1 expression complemented the mutant phenotype of ZPEG252. Reverse transcription-PCR analysis indicated one point mutation at nucleotide residue 1817 changing a codon (GGG) for Gly(606) to a codon (GAG) for Glu(606) in the sequence for the Walker A1 motif of the AAA cassettes. This novel mutant Pex1pG606E was severely affected in binding to Pex6p at 37 degrees C, but not at 30 degrees C. Pex1pG606E was localized to peroxisomes at 30 degrees C, whilst it was discernible in a cytosolic staining pattern at 37 degrees C. Together, our findings demonstrate that Walker A1 motif of Pex1p is essential for Pex1p-Pex6p interaction and Pex1p targeting to peroxisomes.
Collapse
Affiliation(s)
- Wei Fan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
10
|
Miyata N, Fujiki Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 2006; 25:10822-32. [PMID: 16314507 PMCID: PMC1316942 DOI: 10.1128/mcb.25.24.10822-10832.2005] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomal matrix proteins are posttranslationally imported into peroxisomes with the peroxisome-targeting signal 1 receptor, Pex5. The longer isoform of Pex5, Pex5L, also transports Pex7-PTS2 protein complexes. After unloading the cargoes, Pex5 returns to the cytosol. To address molecular mechanisms underlying Pex5 functions, we constructed a cell-free Pex5 translocation system with a postnuclear supernatant fraction from CHO cell lines. In assays using the wild-type CHO-K1 cell fraction, (35)S-labeled Pex5 was specifically imported into and exported from peroxisomes with multiple rounds. (35)S-Pex5 import was also evident using peroxisomes isolated from rat liver. ATP was not required for (35)S-Pex5 import but was indispensable for export. (35)S-Pex5 was imported neither to peroxisome remnants from RING peroxin-deficient cell mutants nor to those from pex14 cells lacking a Pex5-docking site. In contrast, (35)S-Pex5 was imported into the peroxisome remnants of PEX1-, PEX6-, and PEX26-defective cell mutants, including those from patients with peroxisome biogenesis disorders, from which, however, (35)S-Pex5 was not exported, thereby indicating that Pex1 and Pex6 of the AAA ATPase family and their recruiter, Pex26, were essential for Pex5 export. Moreover, we analyzed the (35)S-Pex5-associated complexes on peroxisomal membranes by blue-native polyacrylamide gel electrophoresis. (35)S-Pex5 was in two distinct, 500- and 800-kDa complexes comprising different sets of peroxins, such as Pex14 and Pex2, implying that Pex5 transited between the subcomplexes. Together, results indicated that Pex5 most likely enters peroxisomes, changes its interacting partners, and then exits using ATP energy.
Collapse
Affiliation(s)
- Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
11
|
Abstract
Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.
Collapse
Affiliation(s)
- J H Eckert
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
12
|
Eckert JH, Johnsson N. Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J Cell Sci 2003; 116:3623-34. [PMID: 12876220 DOI: 10.1242/jcs.00678] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein import machinery of the peroxisome consists of many proteins, collectively called the peroxins. By applying the split-ubiquitin technique we systematically tested the pair-wise interactions between the Nub- and Cub-labeled peroxins for the first time in the living cells of the yeast Saccharomyces cerevisiae. We found that Pex10p plays a central role in the protein interaction network by connecting the ubiquitin conjugation enzyme Pex4p to the other members of the protein import machinery. A yeast strain harboring a deletion of PEX3 enabled us to estimate the influence of the peroxisomal membrane on the formation of a subset of the investigated protein-protein interactions.
Collapse
Affiliation(s)
- Jörg H Eckert
- Ruhr-Universität Bochum, Institut für Physiologische Chemie, Medizinische Fakultät, 44780 Bochum, Germany
| | | |
Collapse
|
13
|
Honsho M, Hiroshige T, Fujiki Y. The membrane biogenesis peroxin Pex16p. Topogenesis and functional roles in peroxisomal membrane assembly. J Biol Chem 2002; 277:44513-24. [PMID: 12223482 DOI: 10.1074/jbc.m206139200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we isolated human PEX16 encoding 336-amino acid-long peroxin Pex16p and showed that its dysfunction was responsible for Zellweger syndrome of complementation group D (group 9). Here we have determined the membrane topology of Pex16p by differential permeabilization method: both N- and C-terminal parts are exposed to the cytosol. In the search for Pex16p topogenic sequence, basic amino acids clustered sequence, RKELRKKLPVSLSQQK, at positions 66-81 and the first transmembrane segment locating far downstream, nearly by 40 amino acids, of this basic region were defined to be essential for integration into peroxisome membranes. Localization to peroxisomes of membrane proteins such as Pex14p, Pex13p, and PMP70 was interfered with in CHO-K1 cells by a higher level expression of the pex16 patient-derived dysfunctional but topogenically active Pex16pR176ter comprising resides 1-176 or of the C-terminal cytoplasmic part starting from residues at 244 to the C terminus. Furthermore, Pex16p C-terminal cytoplasmic part severely abrogated peroxisome restoration in pex mutants such as matrix protein import-defective pex12 and membrane assembly impaired pex3 by respective PEX12 and PEX3 expression, whereas the N-terminal cytosolic region did not affect restoration. These results imply that Pex16p functions in peroxisome membrane assembly, more likely upstream of Pex3p.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
14
|
Akiyama N, Ghaedi K, Fujiki Y. A novel pex2 mutant: catalase-deficient but temperature-sensitive PTS1 and PTS2 import. Biochem Biophys Res Commun 2002; 293:1523-9. [PMID: 12054689 DOI: 10.1016/s0006-291x(02)00419-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We searched for Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1-40)-fused enhanced green fluorescent protein (EGFP). From mutagenized wild-type CHO-K1 cells stably expressing rat Pex2p and Pex3p(1-40)-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of peroxisomal proteins, including EGFP chimera, catalase, and matrix proteins with PTS types 1 and 2. One clone, ZPEG309, showed a distinct phenotype: import defect of catalase, but normal transport of PTS1 and PTS2 proteins at 37 degrees C. PTS1 and PTS2 import was abrogated when ZPEG309 was cultured at 39 degrees C. Genetic defect of ZPEG309 was a nonsense point mutation in a codon for Arg50 in CHO PEX2 and a mutation resulting in a C-terminal truncation of the introduced rat Pex2p. Therefore, ZPEG309 is a novel pex2, catalase-deficient mutant with temperature-sensitive PTS1 and PTS2 import.
Collapse
Affiliation(s)
- Noriko Akiyama
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
15
|
Yanago E, Hiromasa T, Matsumura T, Kinoshita N, Fujiki Y. Isolation of Chinese hamster ovary cell pex mutants: two PEX7-defective mutants. Biochem Biophys Res Commun 2002; 293:225-30. [PMID: 12054588 DOI: 10.1016/s0006-291x(02)00219-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting signal 2 (PTS2)-tagged enhanced green fluorescent protein (EGFP). From mutagenized TKaEG2 cells, the wild-type CHO-K1 stably expressing rat Pex2p and PTS2-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of PTS2-EGFP. Of six mutant cell clones two, ZPEG227 and ZPEG231, showed cytosolic PTS2-EGFP, indicative of impaired PTS2 import, and numerous PTS1-positive particles. PEX7 expression restored the impaired PTS2 import in both mutants. Cell fusion with fibroblasts from a patient with PEX7-defective rhizomelic chondrodysplasia punctata did not complement PTS2 import defect of ZPEG227 and ZPEG231, confirming that these two are pex7 mutants. Mutation analysis of PEX7 by reverse transriptase (RT)-PCR indicated that ZPEG227-allele carried an inactivating nonsense mutation, Trp158Ter. Therefore, ZPEG227 is a pex7 mutant possessing a newly identified mutation in mammalian pex7 cell lines.
Collapse
Affiliation(s)
- Eiko Yanago
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
16
|
Okumoto K, Abe I, Fujiki Y. Molecular anatomy of the peroxin Pex12p: ring finger domain is essential for Pex12p function and interacts with the peroxisome-targeting signal type 1-receptor Pex5p and a ring peroxin, Pex10p. J Biol Chem 2000; 275:25700-10. [PMID: 10837480 DOI: 10.1074/jbc.m003303200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three peroxin genes, PEX12, PEX2, and PEX10, encode peroxisomal integral membrane proteins with RING finger at the C-terminal part and are responsible for human peroxisome biogenesis disorders. Mutation analysis in PEX12 of Chinese hamster ovary cell mutants revealed a homozygous nonsense mutation at residue Trp263Ter in ZP104 cells and a pair of heterozygous nonsense mutations, Trp170Ter and Trp114Ter, in ZP109. This result and domain mapping of Pex12p showed that RING finger is essential for peroxisome-restoring activity of Pex12p but not necessary for targeting to peroxisomes. The N-terminal region of Pex12p, including amino acid residues at positions 17-76, was required for localization to peroxisomes, while the sequence 17-76 was not sufficient for peroxisomal targeting. Peroxins interacting with RING finger of Pex2p, Pex10p, and Pex12p were investigated by yeast two-hybrid as well as in vitro binding assays. The RING finger of Pex12p bound to Pex10p and the PTS1-receptor Pex5p. Pex10p also interacted with Pex2p and Pex5p in vitro. Moreover, Pex12p was co-immunoprecipitated with Pex10p from CHO-K1 cells, where Pex5p was not associated with the Pex12p-Pex10p complex. This observation suggested that Pex5p does not bind to, or only transiently interacts with, Pex10p and Pex12p when Pex10p and Pex12p are in the oligomeric complex in peroxisome membranes. Hence, the RING finger peroxins are most likely to be involved in Pex5p-mediated matrix protein import into peroxisomes.
Collapse
Affiliation(s)
- K Okumoto
- Department of Biology, Kyushu University Graduate School of Science, Fukuoka, Japan
| | | | | |
Collapse
|
17
|
Matsumura T, Otera H, Fujiki Y. Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J Biol Chem 2000; 275:21715-21. [PMID: 10767287 DOI: 10.1074/jbc.m000721200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated peroxisome biogenesis-defective Chinese hamster ovary cell mutants from TKaG2 cells, wild-type CHO-K1 cells transformed with two cDNAs encoding rat Pex2p and peroxisome targeting signal (PTS) type 2-tagged green fluorescent protein, by the 9-(1'-pyrene)nonanol/UV selection method. Ten mutant clones showed cytosolic PTS2-green fluorescent protein, indicative of a defect in PTS2 import, and were classified in five complementation groups, i.e. pex1, pex2, pex5, pex14, and group A. One PEX5-deficient mutant, ZPG231, showed a novel phenotype: PTS2 proteins in the cytosol, but PTS1 proteins and catalase in peroxisomes. In ZPG231, two isoforms of the PTS1 receptor Pex5p, a shorter Pex5pS and a longer Pex5pL, were expressed as in wild-type cells, but possessed the missense point mutation S214F in both Pex5p isoforms, termed Pex5pS-S214F and Pex5pL-S214F, respectively. The S214F mutation was located only one amino acid upstream of the Pex5pL-specific 37-amino acid insertion site. Pex5pS-S214F and Pex5pL-S214F interacted with peroxisomal proteins, including PTS1 protein, catalase, and Pex14p, as efficiently as normal Pex5p. In contrast, the S214F mutation severely affected the binding of Pex5pL to the PTS2 receptor Pex7p. Expression of Pex5pL-S214F in pex5 cell mutants defective in PTS1 and PTS2 transport restored peroxisomal import of PTS1, but not PTS2. Together, the results indicate that ZPG231 is the first cell mutant providing evidence that disruption of the Pex5pL-Pex7p interaction completely abolishes PTS2 import in mammals.
Collapse
Affiliation(s)
- T Matsumura
- Department of Biology, Kyushu University Graduate School of Science, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
18
|
Ghaedi K, Tamura S, Okumoto K, Matsuzono Y, Fujiki Y. The peroxin pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 2000; 11:2085-102. [PMID: 10848631 PMCID: PMC14905 DOI: 10.1091/mbc.11.6.2085] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rat cDNA encoding a 372-amino-acid peroxin was isolated, primarily by functional complementation screening, using a peroxisome-deficient Chinese hamster ovary cell mutant, ZPG208, of complementation group 17. The deduced primary sequence showed approximately 25% amino acid identity with the yeast Pex3p, thereby we termed this cDNA rat PEX3 (RnPEX3). Human and Chinese hamster Pex3p showed 96 and 94% identity to rat Pex3p and had 373 amino acids. Pex3p was characterized as an integral membrane protein of peroxisomes, exposing its N- and C-terminal parts to the cytosol. A homozygous, inactivating missense mutation, G to A at position413, in a codon (GGA) for Gly(138) and resulting in a codon (GAA) for Glu was the genetic cause of peroxisome deficiency of complementation group 17 ZPG208. The peroxisome-restoring activity apparently required the full length of Pex3p, whereas its N-terminal part from residues 1 to 40 was sufficient to target a fusion protein to peroxisomes. We also demonstrated that Pex3p binds the farnesylated peroxisomal membrane protein Pex19p. Moreover, upon expression of PEX3 in ZPG208, peroxisomal membrane vesicles were assembled before the import of soluble proteins such as PTS2-tagged green fluorescent protein. Thus, Pex3p assembles membrane vesicles before the matrix proteins are translocated.
Collapse
Affiliation(s)
- K Ghaedi
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
19
|
Toyama R, Mukai S, Itagaki A, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Wanders RJ, Fujiki Y. Isolation, characterization and mutation analysis of PEX13-defective Chinese hamster ovary cell mutants. Hum Mol Genet 1999; 8:1673-81. [PMID: 10441330 DOI: 10.1093/hmg/8.9.1673] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We isolated peroxisome biogenesis mutants ZP128 and ZP150 from rat PEX2 -transformed Chinese hamster ovary (CHO) cells, by the 9-(1'-pyrene)nonanol/ultraviolet method. The mutants lacked morphologically recognizable peroxisomes and showed a typical peroxisome assembly-defective phenotype such as a high sensitivity to 12-(1'-pyrene)dodecanoic acid/UV treatment. By means of PEX cDNA transfection and cell fusion, ZP128 and ZP150 were found to belong to a recently identified complementation group H. Expression of human PEX13 cDNA restored peroxisome assembly in ZP128 and ZP150. CHO cell PEX13 was isolated; its deduced sequence comprises 405 amino acids with 93% identity to human Pex13p. Mutation in PEX13 of mutant ZP150 was determined by RT-PCR: G to A transition resulted in one amino acid substitution, Ser319Asn, in one allele and truncation of a 42 amino acid sequence from Asp265 to Lys306 in another allele. Therefore, ZP128 and ZP150 are CHO cell lines with a phenotype of impaired PEX13.
Collapse
Affiliation(s)
- R Toyama
- Department of Biology, Kyushu University Graduate School of Science, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ghaedi K, Itagaki A, Toyama R, Tamura S, Matsumura T, Kawai A, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y. Newly identified Chinese hamster ovary cell mutants defective in peroxisome assembly represent complementation group A of human peroxisome biogenesis disorders and one novel group in mammals. Exp Cell Res 1999; 248:482-8. [PMID: 10222139 DOI: 10.1006/excr.1999.4412] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated peroxisome biogenesis-defective mutants from rat PEX2-transformed Chinese hamster ovary (CHO) cells, using the 9-(1'-pyrene)nonanol/ultraviolet method. A total of 18 mutant cell clones showing cytosolic localization of catalase were isolated. By complementation group (CG) analysis by means of PEX cDNA transfection and cell fusion, cell mutants, ZP124 and ZP126, were found to belong to two novel CGs of CHO mutants. Mutants, ZP135 and ZP167, were also classified to the same CG as ZP124. Further cell fusion analysis using 12 CGs fibroblasts from patients with peroxisome deficiency disorders such as Zellweger syndrome revealed that ZP124 belonged to human CG-A, the same group as CG-VIII in the United States. ZP126 could not be classified to any of human and CHO CGs. These mutants also showed typical peroxisome assembly-defective phenotypes such as severe loss of catalase latency and impaired biogenesis of peroxisomal enzymes. Collectively, ZP124 represents CG-A, and ZP126 is in a newly identified CG distinct from the 14 mammalian CGs previously characterized.
Collapse
Affiliation(s)
- K Ghaedi
- Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ghaedi K, Kawai A, Okumoto K, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y. Isolation and characterization of novel peroxisome biogenesis-defective Chinese hamster ovary cell mutants using green fluorescent protein. Exp Cell Res 1999; 248:489-97. [PMID: 10222140 DOI: 10.1006/excr.1999.4413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed an improved method for isolation of peroxisome biogenesis-defective somatic animal cell mutants, using a combination of green fluorescent protein (GFP) expression and the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) selection method. We used TKaG1 and TKaG2 cells, the wild-type Chinese hamster ovary (CHO) cells, CHO-K1, that had been stably transfected with cDNAs each encoding rat Pex2p as well as GFP tagged at the C-terminus with peroxisome targeting signal type 1 (PTS1) or N-terminally PTS2-tagged GFP. P9OH/UV-resistant cell colonies were examined for intracellular location of GFP on unfixed cells, by fluorescence microscopy. Seven each of the mutant cell clones isolated from TKaG1 and TKaG2 showed cytosolic GFP-PTS1 and PTS2-GFP, respectively, indicating the defect in peroxisome assembly. By transfection of PEX2, PEX5, PEX6, and PEX12 cDNAs and cell fusion analysis between the CHO cell mutants, five different complementation groups (CGs) were identified. Two mutant clones, ZPG207 and ZPG208, belonged to novel CGs. Further CG analysis using fibroblasts from patients with peroxisome biogenesis disorders, including rhizomelic chondrodysplasia punctata (RCDP), revealed that ZPG208 belonged to none of human CGs. ZPG207 was classified into the same CG as RCDP. Taken together, ZPG208 is in a newly identified, the 12th, CG in peroxisome-deficient CHO mutants reported to date and represents a novel mammalian CG.
Collapse
Affiliation(s)
- K Ghaedi
- Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shimizu N, Itoh R, Hirono Y, Otera H, Ghaedi K, Tateishi K, Tamura S, Okumoto K, Harano T, Mukai S, Fujiki Y. The peroxin Pex14p. cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. J Biol Chem 1999; 274:12593-604. [PMID: 10212238 DOI: 10.1074/jbc.274.18.12593] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat cDNA encoding a 376-amino acid peroxin was isolated by functional complementation of a peroxisome-deficient Chinese hamster ovary cell mutant, ZP110, of complementation group 14 (CG14). The primary sequence showed 28 and 24% amino acid identity with the yeast Pex14p from Hansenula polymorpha and Saccharomyces cerevisiae, respectively; therefore, we termed this cDNA rat PEX14 (RnPEX14). Human and Chinese hamster Pex14p showed 96 and 94% identity to rat Pex14p, except that both Pex14p comprised 377 amino acids. Pex14p was characterized as an integral membrane protein of peroxisomes, exposing its N- and C-terminal parts to the cytosol. Pex14p interacts with both Pex5p and Pex7p, the receptors for peroxisome targeting signal type 1 (PTS1) and PTS2, respectively, together with the receptors' cargoes, PTS1 and PTS2 proteins. Mutation in PEX14 from ZP161, the same CG as ZP110, was determined by reverse transcription-PCR as follows. A 133-base pair deletion at nucleotide residues 37-169 in one allele created a termination codon at 40-42; in addition to this mutation, 103 base pairs were deleted at positions 385-487, resulting in the second termination immediately downstream the second deletion site in the other allele. Neither of these two mutant forms of Pex14p restored peroxisome biogenesis in ZP110 and ZP161, thereby demonstrating PEX14 to be responsible for peroxisome deficiency in CG14.
Collapse
Affiliation(s)
- N Shimizu
- Department of Biology, Kyushu University Faculty of Science, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Matsuzono Y, Kinoshita N, Tamura S, Shimozawa N, Hamasaki M, Ghaedi K, Wanders RJ, Suzuki Y, Kondo N, Fujiki Y. Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci U S A 1999; 96:2116-21. [PMID: 10051604 PMCID: PMC26746 DOI: 10.1073/pnas.96.5.2116] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At least 11 complementation groups (CGs) have been identified for the peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, for which seven pathogenic genes have been elucidated. We have isolated a human PEX19 cDNA (HsPEX19) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary cell line, ZP119, defective in import of both matrix and membrane proteins. This cDNA encodes a hydrophilic protein (Pex19p) comprising 299 amino acids, with a prenylation motif, CAAX box, at the C terminus. Farnesylated Pex19p is partly, if not all, anchored in the peroxisomal membrane, exposing its N-terminal part to the cytosol. A stable transformant of ZP119 with HsPEX19 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX19 expression also restored peroxisomal protein import in fibroblasts from a patient (PBDJ-01) with Zellweger syndrome of CG-J. This patient (PBDJ-01) possessed a homozygous, inactivating mutation: a 1-base insertion, A764, in a codon for Met255, resulted in a frameshift, inducing a 24-aa sequence entirely distinct from normal Pex19p. These results demonstrate that PEX19 is the causative gene for CG-J PBD and suggest that the C-terminal part, including the CAAX homology box, is required for the biological function of Pex19p. Moreover, Pex19p is apparently involved at the initial stage in peroxisome membrane assembly, before the import of matrix protein.
Collapse
Affiliation(s)
- Y Matsuzono
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y. Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 1998; 63:1622-30. [PMID: 9837814 PMCID: PMC1377633 DOI: 10.1086/302161] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome (ZS), are autosomal recessive diseases caused by a deficiency in peroxisome assembly as well as by a malfunction of peroxisomes, among which>10 genotypes have been identified. We have isolated a human PEX16 cDNA (HsPEX16) by performing an expressed-sequence-tag homology search on a human DNA database, by using yeast PEX16 from Yarrowia lipolytica and then screening the human liver cDNA library. This cDNA encodes a peroxisomal protein (a peroxin Pex16p) made up of 336 amino acids. Among 13 peroxisome-deficiency complementation groups (CGs), HsPEX16 expression morphologically and biochemically restored peroxisome biogenesis only in fibroblasts from a CG-D patient with ZS in Japan (the same group as CG-IX in the United States). Pex16p was localized to peroxisomes through expression study of epitope-tagged Pex16p. One patient (PBDD-01) possessed a homozygous, inactivating nonsense mutation, C-->T at position 526 in a codon (CGA) for 176Arg, that resulted in a termination codon (TGA). This implies that the C-terminal half is required for the biological function of Pex16p. PBDD-01-derived PEX16 cDNA was defective in peroxisome-restoring activity when expressed in the patient's fibroblasts. These results demonstrate that mutation in PEX16 is the genetic cause of CG-D PBDs.
Collapse
Affiliation(s)
- M Honsho
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Abe I, Fujiki Y. cDNA cloning and characterization of a constitutively expressed isoform of the human peroxin Pex11p. Biochem Biophys Res Commun 1998; 252:529-33. [PMID: 9826565 DOI: 10.1006/bbrc.1998.9684] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a human cDNA encoding an isoform of the peroxin Pex11p, termed Pex11pbeta, by screening of human liver cDNA library using as a probe human EST-derived, approximately 300 bp-long nucleotides showing homology to PEX11 from Candida boidinii and Saccharomyces cerevisiae. PEX11beta encoded a protein comprising 259 amino acids, with two putative transmembrane segments, showing approximately 40% identity to inducible Pex11palpha, at the amino acid sequence level. Pex11pbeta was found to be a peroxisomal protein, as assessed by colocalization with acyl-CoA oxidase, an enzyme catalyzing the first step of peroxisomal beta-oxidation system, in Pex11pbeta-expressing Chinese hamster ovary cells. PEX11beta was not induced in rats by treatment of clofibrate, a peroxisome proliferator, in contrast to PEX11alpha.
Collapse
Affiliation(s)
- I Abe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
26
|
Kinoshita N, Ghaedi K, Shimozawa N, Wanders RJ, Matsuzono Y, Imanaka T, Okumoto K, Suzuki Y, Kondo N, Fujiki Y. Newly identified Chinese hamster ovary cell mutants are defective in biogenesis of peroxisomal membrane vesicles (Peroxisomal ghosts), representing a novel complementation group in mammals. J Biol Chem 1998; 273:24122-30. [PMID: 9727033 DOI: 10.1074/jbc.273.37.24122] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated peroxisome biogenesis-defective mutants from Chinese hamster ovary cells by the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) method. Seven cell mutants, ZP116, ZP119, ZP160, ZP161, ZP162, ZP164, and ZP165, of 11 P9OH/UV-resistant cell clones showed cytosolic localization of catalase, a peroxisomal matrix enzyme, apparently indicating a defect of peroxisome biogenesis. By transfection of PEX cDNAs and cell fusion analysis, mutants ZP119 and ZP165 were found to belong to a novel complementation group (CG), distinct from earlier mutants. CG analysis by cell fusion with fibroblasts from patients with peroxisome biogenesis disorders such as Zellweger syndrome indicated that ZP119 and ZP165 were in the same CG as the most recently identified human CG-J. The peroxisomal matrix proteins examined, including PTS1 proteins as well as a PTS2 protein, 3-ketoacyl-CoA thiolase, were also found in the cytosol in ZP119 and ZP165. Furthermore, these mutants showed typical peroxisome assembly-defective phenotype such as severe loss of resistance to 12-(1'-pyrene)dodecanoic acid/UV treatment. Most strikingly, peroxisomal reminiscent vesicular structures, so-called peroxisomal ghosts noted in all CGs of earlier Chinese hamster ovary cell mutants as well as in eight CGs of patients' fibroblasts, were not discernible in ZP119 and ZP165, despite normal synthesis of peroxisomal membrane proteins. Accordingly, ZP119 and ZP165 are the first cell mutants defective in import of both soluble and membrane proteins, representing the 14th peroxisome-deficient CG in mammals, including humans.
Collapse
Affiliation(s)
- N Kinoshita
- Department of Biology, Kyushu University Faculty of Science, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abe I, Okumoto K, Tamura S, Fujiki Y. Clofibrate-inducible, 28-kDa peroxisomal integral membrane protein is encoded by PEX11. FEBS Lett 1998; 431:468-72. [PMID: 9714566 DOI: 10.1016/s0014-5793(98)00815-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We cloned a human PEX11 cDNA by expressed sequence tag homology search using yeast Candida boidinii PEX11, followed by screening of human liver cDNA library. PEX11 encoded a peroxisomal protein Pex11p comprising 247 amino acids, with two transmembrane segments and a dilysine motif at the C-terminus. Pex11p comigrated in SDS-PAGE with a 28-kDa peroxisomal integral membrane protein (PMP28) isolated from the liver of clofibrate-treated rats and was crossreactive to anti-PMP28 antibody, thereby indicating PEX11 to encode PMP28. Pex11p exposes both N- and C-terminal parts to the cytosol. PEX11 was not responsible for ten complementation groups of human peroxisome deficiency disorders.
Collapse
Affiliation(s)
- I Abe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
28
|
Okumoto K, Shimozawa N, Kawai A, Tamura S, Tsukamoto T, Osumi T, Moser H, Wanders RJ, Suzuki Y, Kondo N, Fujiki Y. PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p. Mol Cell Biol 1998; 18:4324-36. [PMID: 9632816 PMCID: PMC109016 DOI: 10.1128/mcb.18.7.4324] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11-20, 1997), using a transient transfection assay and an ectopic, readily visible marker, green fluorescent protein. This cDNA encodes a 359-amino-acid membrane protein of peroxisomes with two transmembrane segments and a cysteine-rich zinc finger, the RING motif. A stable transformant of ZP109 with the PEX12 was morphologically and biochemically restored for peroxisome biogenesis. Pex12p was shown by expression of bona fide as well as epitope-tagged Pex12p to expose both N- and C-terminal regions to the cytosol. Fibroblasts derived from patients with the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III) were also complemented for peroxisome biogenesis with PEX12. Two unrelated patients of this group manifesting peroxisome deficiency disorders possessed homozygous, inactivating PEX12 mutations: in one, Arg180Thr by one point mutation, and in the other, deletion of two nucleotides in codons for 291Asn and 292Ser, creating an apparently unchanged codon for Asn and a codon 292 for termination. These results indicate that the gene encoding peroxisome assembly factor Pex12p is a pathogenic gene of CG-III peroxisome deficiency. Moreover, truncation and site mutation studies, including patient PEX12 analysis, demonstrated that the cytoplasmically oriented N- and C-terminal parts of Pex12p are essential for biological function.
Collapse
Affiliation(s)
- K Okumoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y. A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun 1998; 245:883-6. [PMID: 9588209 DOI: 10.1006/bbrc.1998.8522] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human PEX1 (HsPEX1) is the causative gene for peroxisome-deficiency disorders such as Zellweger syndrome of complementation group I, encoding the peroxin, Pex1p, a member of AAA family. Pex1p tagged with an epitope flag was expressed in wild-type Chinese hamster ovary (CHO) cell, CHO-K1. Pex1p was localized in the cytoplasm, as assessed by immunofluorescent microscopy. Cell-lysate of HsPEX1-transfected CHO-K1 was incubated with in vitro synthesized 35S-labelled Pex6p, an AAA family peroxin. Immunoprecipitation of Pex1p using anti-Pex1p antibody resulted in concomitant recovery of 35S-Pex6p. Conversely, 35S-Pex1p was obtained in immunoprecipitate from CHO-K1 expressing human Pex6p, using anti-Pex6p antibody. These results strongly suggest that Pex1p and Pex6p interact with each other.
Collapse
Affiliation(s)
- S Tamura
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Tamura S, Okumoto K, Toyama R, Shimozawa N, Tsukamoto T, Suzuki Y, Osumi T, Kondo N, Fujiki Y. Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc Natl Acad Sci U S A 1998; 95:4350-5. [PMID: 9539740 PMCID: PMC22492 DOI: 10.1073/pnas.95.8.4350] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD), are autosomal recessive diseases caused by defects in peroxisome assembly, for which at least 10 complementation groups have been reported. We have isolated a human PEX1 cDNA (HsPEX1) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary (CHO) cell line, ZP107, transformed with peroxisome targeting signal type 1-tagged "enhanced" green fluorescent protein. This cDNA encodes a hydrophilic protein (Pex1p) comprising 1,283 amino acids, with high homology to the AAA-type ATPase family. A stable transformant of ZP107 with HsPEX1 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX1 expression restored peroxisomal protein import in fibroblasts from three patients with ZS and NALD of complementation group I (CG-I), which is the highest-incidence PBD. A CG-I ZS patient (PBDE-04) possessed compound heterozygous, inactivating mutations: a missense point mutation resulting in Leu-664 --> Pro and a deletion of the sequence from Gly-634 to His-690 presumably caused by missplicing (splice site mutation). Both PBDE-04 PEX1 cDNAs were defective in peroxisome-restoring activity when expressed in the patient fibroblasts as well as in ZP107 cells. These results demonstrate that PEX1 is the causative gene for CG-I peroxisomal disorders.
Collapse
Affiliation(s)
- S Tamura
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-81, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Tsukamoto T, Osumi T, Tateishi K, Okumoto K, Fujiki Y, Orii T, Barth PG, Wanders RJ, Kondo N. Peroxisome biogenesis disorders: identification of a new complementation group distinct from peroxisome-deficient CHO mutants and not complemented by human PEX 13. Biochem Biophys Res Commun 1998; 243:368-71. [PMID: 9480815 DOI: 10.1006/bbrc.1997.8067] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ten complementation groups of generalized peroxisome biogenesis disorders (PBD), (excluding rhizomelic chondrodysplasia punctata) have been identified using complementation analysis. Four of the genes involved have been identified using two different methods of (1) genetic functional complementation of peroxisome deficient CHO cell mutants and (2) homology searches for human dbEST, based on yeast genes involved in peroxisome biogenesis (PEX genes). We report here the first identification of a new complementation group which is genetically different from peroxisome deficient CHO mutants. There were no complementations by the human PEX 13 gene. The nature of the related gene is being investigated.
Collapse
Affiliation(s)
- N Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Otera H, Okumoto K, Tateishi K, Ikoma Y, Matsuda E, Nishimura M, Tsukamoto T, Osumi T, Ohashi K, Higuchi O, Fujiki Y. Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol 1998; 18:388-99. [PMID: 9418886 PMCID: PMC121509 DOI: 10.1128/mcb.18.1.388] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the mechanisms of peroxisome assembly and the molecular basis of peroxisome assembly disorders, we isolated and characterized a peroxisome-deficient CHO cell mutant, ZP139, which was found to belong to human complementation group II, the same group as that of our earlier mutant, ZP105. These mutants had a phenotypic deficiency in the import of peroxisomal targeting signal type 1 (PTS1) proteins. Amino-terminal extension signal (PTS2)-mediated transport, including that of 3-ketoacyl coenzyme A thiolase, was also defective in ZP105 but not in ZP139. PEX5 cDNA, encoding the PTS1 receptor (PTS1R), was isolated from wild-type CHO-K1 cells. PTS1R's deduced primary sequence comprised 595 amino acids, 7 amino acids less than the human homolog, and contained seven tetratricopeptide repeat (TPR) motifs at the C-terminal region. Chinese hamster PTS1R showed 94, 28, and 24% amino acid identity with PTS1Rs from humans, Pichia pastoris, and Saccharomyces cerevisiae, respectively. A PTS1R isoform (PTS1RL) with 632 amino acid residues was identified in CHO cells; for PTS1R, 37 amino acids were inserted between residues at positions 215 and 216 of a shorter isoform (PTS1RS). Southern blot analysis of CHO cell genomic DNA suggested that these two isoforms are derived from a single gene. Both types of PEX5 complemented impaired import of PTS1 in mutants ZP105 and ZP139. PTS2 import in ZP105 was rescued only by PTS1RL. This finding strongly suggests that PTS1RL is also involved in the transport of PTS2. Mutations in PEX5 were determined by reverse transcription-PCR: a G-to-A transition resulted in one amino acid substitution: Gly298Glu of PTS1RS (G335E of PTS1RL) in ZP105 and Gly485Glu of PTS1RS (G522E of PTS1RL) in ZP139. Both mutations were in the TPR domains (TPR1 and TPR6), suggesting the functional consequence of these domains in protein translocation. The implications of these mutations are discussed.
Collapse
Affiliation(s)
- H Otera
- Department of Biology, Kyushu University Faculty of Science, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Fujiki Y. Molecular defects in genetic diseases of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1361:235-50. [PMID: 9375798 DOI: 10.1016/s0925-4439(97)00051-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Y Fujiki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|