1
|
Law ASY, Lee LCC, Lo KKW, Yam VWW. Aggregation and Supramolecular Self-Assembly of Low-Energy Red Luminescent Alkynylplatinum(II) Complexes for RNA Detection, Nucleolus Imaging, and RNA Synthesis Inhibitor Screening. J Am Chem Soc 2021; 143:5396-5405. [PMID: 33813827 DOI: 10.1021/jacs.0c13327] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As an important nuclear substructure, the nucleolus has received increasing attention because of its significant functions in the transcription and processing of ribosomal RNA in eukaryotic cells. In this work, we introduce a proof-of-concept luminescence assay to detect RNA and to accomplish nucleolus imaging with the use of the supramolecular self-assembly of platinum(II) complexes. Noncovalent interactions between platinum(II) complexes and RNA can be induced by the introduction of a guanidinium group into the complexes, and accordingly, a high RNA affinity can be achieved. Interestingly, the aggregation affinities of platinum(II) complexes enable them to display remarkable luminescence turn-on upon RNA binding, which is a result of the strengthening of noncovalent Pt(II)···Pt(II) and π-π stacking interactions. The complexes exhibit not only intriguing spectroscopic changes and luminescence enhancement after RNA binding but also specific nucleolus imaging in cells. As compared to fluorescent dyes, the low-energy red luminescence and large Stokes shifts of platinum(II) complexes afford a high signal-to-background autofluorescence ratio in nucleolus imaging. Additional properties, including long phosphorescence lifetimes and low cytotoxicity, have endowed the platinum(II) complexes with the potential for biological applications. Also, platinum(II) complexes have been adopted to monitor the dynamics of the nucleolus induced by the addition of RNA synthesis inhibitors. This capability allows the screening of inhibitors and can be advantageous for the development of antineoplastic agents. This work provides a novel strategy for exploring the application of platinum(II) complex-based cell imaging agents based on the mechanism of supramolecular self-assembly. It is envisaged that platinum(II) complexes can be utilized as valuable probes because of the aforementioned appealing advantages.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
2
|
Ge C, Huang H, Wang Y, Zhao H, Zhang P, Zhang Q. Near-Infrared Luminescent Osmium(II) Complexes with an Intrinsic RNA-Targeting Capability for Nucleolus Imaging in Living Cells. ACS APPLIED BIO MATERIALS 2018; 1:1587-1593. [DOI: 10.1021/acsabm.8b00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chen Ge
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Huaiyi Huang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Hang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| |
Collapse
|
3
|
Wang X, Wang Y, He H, Ma X, Chen Q, Zhang S, Ge B, Wang S, Nau WM, Huang F. Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17799-17806. [PMID: 28492304 DOI: 10.1021/acsami.7b04576] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Zhang
- Department of Life Sciences and Chemistry, Jacobs University Bremen , Campus Ring 1, 28759 Bremen, Germany
| | | | | | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen , Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|
4
|
Nucleolar reorganization in response to rDNA damage. Curr Opin Cell Biol 2017; 46:81-86. [PMID: 28431265 DOI: 10.1016/j.ceb.2017.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
Abstract
Nucleoli, sites of ribosome biogenesis, form around nucleolar organizer regions (NORs) comprising rDNA arrays, located on human acrocentric chromosome p-arms. NORs provide an opportunity to investigate the DNA double strand break (DSB) response at highly transcribed, repetitive, essential loci. Targeted introduction of DSBs into rDNA results in ATM-dependent inhibition of RNA-polymerase I transcription, coupled with movement of rDNA from the nucleolar interior to anchoring points at the periphery. Reorganization renders rDNA accessible to repair factors, normally excluded from nucleoli. Importantly, rDNA DSBs recruit the accurate homologous recombination (HR) repair machinery throughout the cell cycle, suggesting that HR can be templated in cis. We discuss recent findings regarding the biophysical properties of nucleoli and suggest a mechanism for stress-induced nucleolar reorganization.
Collapse
|
5
|
Abstract
Nucleoli form around tandem arrays of a ribosomal gene repeat, termed nucleolar organizer regions (NORs). During metaphase, active NORs adopt a characteristic undercondensed morphology. Recent evidence indicates that the HMG-box-containing DNA-binding protein UBF (upstream binding factor) is directly responsible for this morphology and provides a mitotic bookmark to ensure rapid nucleolar formation beginning in telophase in human cells. This is likely to be a widely employed strategy, as UBF is present throughout metazoans. In higher eukaryotes, NORs are typically located within regions of chromosomes that form perinucleolar heterochromatin during interphase. Typically, the genomic architecture of NORs and the chromosomal regions within which they lie is very poorly described, yet recent evidence points to a role for context in their function. In Arabidopsis, NOR silencing appears to be controlled by sequences outside the rDNA (ribosomal DNA) array. Translocations reveal a role for context in the expression of the NOR on the X chromosome in Drosophila Recent work has begun on characterizing the genomic architecture of human NORs. A role for distal sequences located in perinucleolar heterochromatin has been inferred, as they exhibit a complex transcriptionally active chromatin structure. Links between rDNA genomic stability and aging in Saccharomyces cerevisiae are now well established, and indications are emerging that this is important in aging and replicative senescence in higher eukaryotes. This, combined with the fact that rDNA arrays are recombinational hot spots in cancer cells, has focused attention on DNA damage responses in NORs. The introduction of DNA double-strand breaks into rDNA arrays leads to a dramatic reorganization of nucleolar structure. Damaged rDNA repeats move from the nucleolar interior to form caps at the nucleolar periphery, presumably to facilitate repair, suggesting that the chromosomal context of human NORs contributes to their genomic stability. The inclusion of NORs and their surrounding chromosomal environments in future genome drafts now becomes a priority.
Collapse
Affiliation(s)
- Brian McStay
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
6
|
Kulashreshtha M, Mehta IS, Kumar P, Rao BJ. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling. Nucleic Acids Res 2016; 44:8272-91. [PMID: 27365048 PMCID: PMC5041470 DOI: 10.1093/nar/gkw573] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
During DNA damage response (DDR), certain gene rich chromosome territories (CTs) relocate to newer positions within interphase nuclei and revert to their native locations following repair. Such dynamic relocation of CTs has been observed under various cellular conditions, however, the underlying mechanistic basis of the same has remained largely elusive. In this study, we aim to understand the temporal and molecular details of such crosstalk between DDR signaling and CT relocation dynamics. We demonstrate that signaling at DNA double strand breaks (DSBs) by the phosphorylated histone variant (ϒ-H2AX) is a pre-requisite for damage induced CT relocation, as cells deficient in ϒ-H2AX signaling fail to exhibit such a response. Inhibition of Rad51 or DNA Ligase IV mediated late steps of double strand break repair does not seem to abrogate CT relocation completely. Upon DNA damage, an increase in the levels of chromatin bound motor protein nuclear myosin 1 (NM1) ensues, which appears to be functionally linked to ϒ-H2AX signaling. Importantly, the motor function of NM1 is essential for its recruitment to chromatin and CT relocation following damage. Taking these observations together, we propose that early DDR sensing and signaling result in NM1 recruitment to chromosomes which in turn guides DNA damage induced CT relocation.
Collapse
Affiliation(s)
- Mugdha Kulashreshtha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Ishita S Mehta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Pradeep Kumar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
7
|
Farley KI, Surovtseva Y, Merkel J, Baserga SJ. Determinants of mammalian nucleolar architecture. Chromosoma 2015; 124:323-31. [PMID: 25670395 DOI: 10.1007/s00412-015-0507-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 11/30/2022]
Abstract
The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation.
Collapse
Affiliation(s)
- Katherine I Farley
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | | | | |
Collapse
|
8
|
Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS One 2014; 9:e92432. [PMID: 24662969 PMCID: PMC3963894 DOI: 10.1371/journal.pone.0092432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/21/2014] [Indexed: 12/16/2022] Open
Abstract
The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.
Collapse
|
9
|
Mehta IS, Kulashreshtha M, Chakraborty S, Kolthur-Seetharam U, Rao BJ. Chromosome territories reposition during DNA damage-repair response. Genome Biol 2013; 14:R135. [PMID: 24330859 PMCID: PMC4062845 DOI: 10.1186/gb-2013-14-12-r135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/13/2013] [Indexed: 01/02/2023] Open
Abstract
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response.
Collapse
|
10
|
Freed EF, Prieto JL, McCann KL, McStay B, Baserga SJ. NOL11, implicated in the pathogenesis of North American Indian childhood cirrhosis, is required for pre-rRNA transcription and processing. PLoS Genet 2012; 8:e1002892. [PMID: 22916032 PMCID: PMC3420923 DOI: 10.1371/journal.pgen.1002892] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/20/2012] [Indexed: 01/12/2023] Open
Abstract
The fundamental process of ribosome biogenesis requires hundreds of factors and takes place in the nucleolus. This process has been most thoroughly characterized in baker's yeast and is generally well conserved from yeast to humans. However, some of the required proteins in yeast are not found in humans, raising the possibility that they have been replaced by functional analogs. Our objective was to identify non-conserved interaction partners for the human ribosome biogenesis factor, hUTP4/Cirhin, since the R565W mutation in the C-terminus of hUTP4/Cirhin was reported to cause North American Indian childhood cirrhosis (NAIC). By screening a yeast two-hybrid cDNA library derived from human liver, and through affinity purification followed by mass spectrometry, we identified an uncharacterized nucleolar protein, NOL11, as an interaction partner for hUTP4/Cirhin. Bioinformatic analysis revealed that NOL11 is conserved throughout metazoans and their immediate ancestors but is not found in any other phylogenetic groups. Co-immunoprecipitation experiments show that NOL11 is a component of the human ribosomal small subunit (SSU) processome. siRNA knockdown of NOL11 revealed that it is involved in the cleavage steps required to generate the mature 18S rRNA and is required for optimal rDNA transcription. Furthermore, abnormal nucleolar morphology results from the absence of NOL11. Finally, yeast two-hybrid analysis shows that NOL11 interacts with the C-terminus of hUTP4/Cirhin and that the R565W mutation partially disrupts this interaction. We have therefore identified NOL11 as a novel protein required for the early stages of ribosome biogenesis in humans. Our results further implicate a role for NOL11 in the pathogenesis of NAIC. Ribosomes are the cellular factories that produce proteins. Making a ribosome is a complex and energy intensive process that requires hundreds of different factors. Ribosome biogenesis is an essential process, and therefore mutations that partially disrupt this process lead to disease. One such disease is North American Indian childhood cirrhosis (NAIC), which is caused by a mutation in a ribosome biogenesis protein called hUTP4/Cirhin. We looked for proteins that interact with hUTP4/Cirhin, since we hypothesized that disruption of this interaction could play a role in the development of NAIC. We identified a novel protein called NOL11, which is only found in animals and not in any other organisms. We showed that NOL11 is required for ribosome biogenesis and acts at one of the earliest steps in this process. We then showed that NOL11 interacts with the region of hUTP4/Cirhin that contains the NAIC mutation and that the NAIC mutation interferes with the interaction between hUTP4/Cirhin and NOL11. Further study of the interaction between hUTP4/Cirhin and NOL11 will give insight into the development of NAIC, as well as elucidate some of the differences in ribosome biogenesis between animals and other organisms.
Collapse
Affiliation(s)
- Emily F. Freed
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - José-Luis Prieto
- Centre for Chromosome Biology, School of Life Sciences, National University of Ireland Galway, Galway, Ireland
| | - Kathleen L. McCann
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Brian McStay
- Centre for Chromosome Biology, School of Life Sciences, National University of Ireland Galway, Galway, Ireland
| | - Susan J. Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE, Bridger JM, Sullivan BA. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet 2010; 6. [PMID: 20711355 PMCID: PMC2920838 DOI: 10.1371/journal.pgen.1001061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/12/2010] [Indexed: 01/05/2023] Open
Abstract
Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the α-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same α-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment. Endogenous human centromeres are defined by large arrays of α-satellite DNA. A portion of each α-satellite array is assembled into CENP-A chromatin, the structural and functional platform for kinetochore formation. Most chromosomes are monocentric, meaning they have a single centromere. However, genome rearrangement can produce chromosomes with two centromeres (dicentrics). In most organisms, dicentrics typically break during cell division; however, dicentric human chromosomes can be stable in mitosis and meiosis. This stability reflects centromere inactivation, a poorly understood phenomenon in which one centromere is functionally silenced. To explore molecular and genomic events that occur at the time of dicentric formation, we describe a cell-based system to create dicentric human chromosomes and monitor their behavior after formation. Such dicentrics can experience several fates, including centromere inactivation, breakage, or maintaining two functional centromeres. Unexpectedly, we also find that dicentrics with large (>20Mb) inter-centromeric distances are stable through at least 20 cell divisions. Our results highlight similarities and differences in dicentric behavior between humans and model organisms, and they provide evidence for one mechanism of centromere inactivation by centromeric deletion in some dicentrics. The ability to create dicentric human chromosomes provides a system to test other mechanisms of centromere disassembly and dicentric chromosome stability.
Collapse
Affiliation(s)
- Kaitlin M. Stimpson
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Ihn Young Song
- Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anna Jauch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Heidi Holtgreve-Grez
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Karen E. Hayden
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Joanna M. Bridger
- Laboratory of Nuclear and Genomic Health, Centre for Cell and Chromosome Biology, Division of Biosciences, Brunel University, Uxbridge, United Kingdom
| | - Beth A. Sullivan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kocanova S, Kerr EA, Rafique S, Boyle S, Katz E, Caze-Subra S, Bickmore WA, Bystricky K. Activation of estrogen-responsive genes does not require their nuclear co-localization. PLoS Genet 2010; 6:e1000922. [PMID: 20421946 PMCID: PMC2858706 DOI: 10.1371/journal.pgen.1000922] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/24/2010] [Indexed: 01/06/2023] Open
Abstract
The spatial organization of the genome in the nucleus plays a role in the regulation of gene expression. Whether co-regulated genes are subject to coordinated repositioning to a shared nuclear space is a matter of considerable interest and debate. We investigated the nuclear organization of estrogen receptor alpha (ERalpha) target genes in human breast epithelial and cancer cell lines, before and after transcriptional activation induced with estradiol. We find that, contrary to another report, the ERalpha target genes TFF1 and GREB1 are distributed in the nucleoplasm with no particular relationship to each other. The nuclear separation between these genes, as well as between the ERalpha target genes PGR and CTSD, was unchanged by hormone addition and transcriptional activation with no evidence for co-localization between alleles. Similarly, while the volume occupied by the chromosomes increased, the relative nuclear position of the respective chromosome territories was unaffected by hormone addition. Our results demonstrate that estradiol-induced ERalpha target genes are not required to co-localize in the nucleus.
Collapse
Affiliation(s)
- Silvia Kocanova
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse - UPS, Toulouse, France
- LBME, CNRS, Toulouse, France
| | - Elizabeth A. Kerr
- The Breakthrough Breast Cancer Research Unit, Edinburgh, United Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sehrish Rafique
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Elad Katz
- The Breakthrough Breast Cancer Research Unit, Edinburgh, United Kingdom
| | - Stephanie Caze-Subra
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse - UPS, Toulouse, France
- LBME, CNRS, Toulouse, France
| | - Wendy A. Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse - UPS, Toulouse, France
- LBME, CNRS, Toulouse, France
| |
Collapse
|
13
|
Romão-Corrêa RF, Maria DA, Soma M, Sotto MN, Sanches JA, Neto CF, Ruiz IRG. Nucleolar organizer region staining patterns in paraffin-embedded tissue cells from human skin cancers. J Cutan Pathol 2005; 32:323-8. [PMID: 15811115 DOI: 10.1111/j.0303-6987.2005.00322.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Increased number of nucleoli (nucleolar organizer regions, NORs) with abnormal shapes and sizes, including small dots, has been used as prognostic tools to evaluate tumor proliferation levels and troublesome borderline lesions. In this study, NOR patterns of skin cancers were performed in the search of a valuable prognostic method to complement other histological procedures. METHODS Paraffin-embedded tumor tissue was obtained from basal and squamous cell carcinomas, cutaneous malignant melanoma, premalignant lesions, and Skmel-28 human melanoma cells. Slices were dewaxed and AgNOR stained. The patterns were scored and submitted for statistical analyses. RESULTS All types of cancer cells showed variable numbers of abnormally shaped nucleoli and dot-like structures. Only tumor cells presented four or more nucleoli, with or without dots, while 85% of the normal cells had one single NOR without dots. Most data were statistically significant when compared to normal cells. As a whole, squamous cell carcinoma and malignant melanoma tumor cells had less NOR alterations than basal cell carcinoma (BCC) tumor types. CONCLUSIONS Changes in the number and shape of nucleoli present in malignant cells could be attributed to increased levels on rDNA transcription on cancer cells, besides abnormal remodeling of chromatin, which could disrupt proper nucleoli association. Increased genetic alterations on malignant basal cells could contribute to impair invasive and migration abilities of BCC tumors.
Collapse
|
14
|
Bickmore WA, Teague P. Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 2003; 10:707-15. [PMID: 12575798 DOI: 10.1023/a:1021589031769] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Translocations are the most frequent chromosome structural aberration in the human population, yet little is known about their aetiology. Here, factors that might influence the occurrence of constitutional translocations in the population are examined. By analysing >10000 translocations from two large databases of cytogenetic abnormalities, chromosome size is identified as the major determinant of translocation frequency. This probably reflects the large target size for double-strand breakage and repair presented by the largest chromosomes. There is also evidence for selection against translocations that involve breakage through the most gene-dense chromosomes. Lastly, it is suggested that nuclear organization of chromosomes impinges on the frequency of translocations amongst the smallest autosomes.
Collapse
|
15
|
Cornforth MN, Greulich-Bode KM, Loucas BD, Arsuaga J, Vázquez M, Sachs RK, Brückner M, Molls M, Hahnfeldt P, Hlatky L, Brenner DJ. Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol 2002; 159:237-44. [PMID: 12403811 PMCID: PMC2173058 DOI: 10.1083/jcb.200206009] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test quantitatively whether there are systematic chromosome-chromosome associations within human interphase nuclei, interchanges between all possible heterologous pairs of chromosomes were measured with 24-color whole-chromosome painting (multiplex FISH), after damage to interphase lymphocytes by sparsely ionizing radiation in vitro. An excess of interchanges for a specific chromosome pair would indicate spatial proximity between the chromosomes comprising that pair. The experimental design was such that quite small deviations from randomness (extra pairwise interchanges within a group of chromosomes) would be detectable. The only statistically significant chromosome cluster was a group of five chromosomes previously observed to be preferentially located near the center of the nucleus. However, quantitatively, the overall deviation from randomness within the whole genome was small. Thus, whereas some chromosome-chromosome associations are clearly present, at the whole-chromosomal level, the predominant overall pattern appears to be spatially random.
Collapse
Affiliation(s)
- Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Beil M, Dürschmied D, Paschke S, Schreiner B, Nolte U, Bruel A, Irinopoulou T. Spatial distribution patterns of interphase centromeres during retinoic acid-induced differentiation of promyelocytic leukemia cells. CYTOMETRY 2002; 47:217-25. [PMID: 11933011 DOI: 10.1002/cyto.10077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The pericentromeric heterochromatin is an important element for the regulation of gene silencing. Its spatial distribution during interphase appears to be cell-type specific. This study analyzes three-dimensional (3D) centromere distribution patterns during cellular differentiation along the neutrophil pathway. METHODS Differentiation of the promyelocytic leukemia cell line NB4 was induced by retinoic acid. Centromeres in interphase nuclei were visualized by immunofluorescence staining of centromere-associated proteins with CREST serum. 3D images of nuclei were obtained by confocal microscopy. Automated methods for the segmentation of point-like objects in 3D images were implemented to detect the position of centromeres. Features of centromere localization patterns were determined by constructing the minimal spanning tree of the centromere distribution. RESULTS In differentiated NB4 cells, the number of centromere conglomerates (chromocenters) was decreased and the distance between chromocenters was increased as compared with untreated controls. The nuclear volume did not differ between the two groups. CONCLUSIONS The measured rearrangement of centromeres indicates a progressive clustering of heterochromatin and a global remodeling of interphase chromosome territories during differentiation of NB4 cells. The developed methods for the analysis of 3D centromere distribution patterns provide the opportunity for a fast and objective analysis of heterochromatin remodeling.
Collapse
Affiliation(s)
- Michael Beil
- Department of Internal Medicine I, University Ulm, Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Maxwell CA, Hendzel MJ. The integration of tissue structure and nuclear function. Biochem Cell Biol 2001. [DOI: 10.1139/o01-078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Living cells can filter the same set of biochemical signals to produce different functional outcomes depending on the deformation of the cell. It has been suggested that the cell may be "hard-wired" such that external forces can mediate internal nuclear changes through the modification of established, balanced, internal cytoskeletal tensions. This review will discuss the potential of subnuclear structures and nuclear chromatin to participate in or respond to transduction of mechanical signals originating outside the nucleus. The mechanical interactions of intranuclear structure with the nuclear lamina will be examined. The nuclear lamina, in turn, provides a structural link between the nucleus and the cytoplasmic and cortical cytoskeleton. These mechanical couplings may provide a basis for regulating gene expression through changes in cell shape.Key words: gene expression, cell structure, nuclear structure, mechanotransduction, chromatin.
Collapse
|
18
|
Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 2001; 20:2867-74. [PMID: 11387219 PMCID: PMC125486 DOI: 10.1093/emboj/20.11.2867] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2000] [Revised: 03/30/2001] [Accepted: 04/03/2001] [Indexed: 11/13/2022] Open
Abstract
Human ribosomal gene repeats are distributed among five nucleolar organizer regions (NORs) on the p arms of acrocentric chromosomes. On exit from mitosis, nucleoli form around individual active NORs. As cells progress through the cycle, these mini-nucleoli fuse to form large nucleoli incorporating multiple NORs. It is generally assumed that nucleolar incorporation of individual NORs is dependent on ribosomal gene transcription. To test this assumption, we determined the nuclear location of individual human acrocentric chromosomes, and their associated NORs, in mouse> human cell hybrids. Human ribosomal genes are transcriptionally silent in this context. Combined immunofluorescence and in situ hybridization (immuno-FISH) on three-dimensional preserved nuclei showed that human acrocentric chromosomes associate with hybrid cell nucleoli. Analysis of purified nucleoli demonstrated that human and mouse NORs are equally likely to be within a hybrid cell nucleolus. This is supported further by the observation that murine upstream binding factor can associate with human NORs. Incorporation of silent NORs into mature nucleoli raises interesting issues concerning the maintenance of the activity status of individual NORs.
Collapse
Affiliation(s)
| | - Joanna M. Bridger
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Andrew P. Cuthbert
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Robert F. Newbold
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Wendy A. Bickmore
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Brian McStay
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| |
Collapse
|
19
|
Nath J, Johnson KL. A review of fluorescence in situ hybridization (FISH): current status and future prospects. Biotech Histochem 2000; 75:54-78. [PMID: 10941509 DOI: 10.3109/10520290009064150] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a powerful technique for detecting DNA or RNA sequences in cells, tissues and tumors. This molecular cytogenetic technique enables the localization of specific DNA sequences within interphase chromatin and metaphase chromosomes and the identification of both structural and numerical chromosome changes. FISH is quickly becoming one of the most extensively used cytochemical staining techniques owing to its sensitivity and versatility, and with the improvement of current technology and cost effectiveness, its use will surely continue to expand. Here we review the wide variety of current applications and future prospects of FISH technology.
Collapse
Affiliation(s)
- J Nath
- Genetics and Developmental Biology Program, West Virginia University, Morgantown 26506-6108, USA.
| | | |
Collapse
|
20
|
Abstract
The first complete genomic sequence of a eukaryote (Saccharomyces cerevisiae) has already been accomplished. It is estimated that the sequence of the human genome will be known early in the next millennium. Yet it is already apparent that, despite their immense length, these linear primary sequence maps will be inadequate descriptions of the eukaryotic genome, be it of a budding yeast or a human. To reflect our growing awareness of the importance of spatial context in chromosome function and in gene expression we argue that a more complete map of the genome should seek to embody the richness of information that we expect of the maps we use to navigate our way around the outside world.
Collapse
|