1
|
Frank F, Bezold V, Bork K, Rosenstock P, Scheffler J, Horstkorte R. Advanced glycation endproducts and polysialylation affect the turnover of the neural cell adhesion molecule (NCAM) and the receptor for advanced glycation endproducts (RAGE). Biol Chem 2019; 400:219-226. [PMID: 30138107 DOI: 10.1515/hsz-2018-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 01/11/2023]
Abstract
The balance between protein synthesis and degradation regulates the amount of expressed proteins. This protein turnover is usually quantified as the protein half-life time. Several studies suggest that protein degradation decreases with age and leads to increased deposits of damaged and non-functional proteins. Glycation is an age-dependent, non-enzymatic process leading to posttranslational modifications, so-called advanced glycation endproducts (AGE), which usually damage proteins and lead to protein aggregation. AGE are formed by the Maillard reaction, where carbonyls of carbohydrates or metabolites react with amino groups of proteins. In this study, we quantified the half-life time of two important receptors of the immunoglobulin superfamily, the neural cell adhesion molecule (NCAM) and the receptor for advanced glycation end products (RAGE) before and after glycation. We found, that in two rat PC12 cell lines glycation leads to increased turnover, meaning that glycated, AGE-modified proteins are degraded faster than non-glycated proteins. NCAM is the most prominent carrier of a unique enzymatic posttranslational modification, the polysialylation. Using two PC12 cell lines (a non-polysialylated and a polysialylated one), we could additionally demonstrate, that polysialylation of NCAM has an impact on its turnover and that it significantly increases its half-life time.
Collapse
Affiliation(s)
- Franziska Frank
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
| | - Veronika Bezold
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
| | - Kaya Bork
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
| | - Philip Rosenstock
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
| | - Jonas Scheffler
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
| |
Collapse
|
2
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
3
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
4
|
Zapater JL, Colley KJ. Sequences prior to conserved catalytic motifs of polysialyltransferase ST8Sia IV are required for substrate recognition. J Biol Chem 2011; 287:6441-53. [PMID: 22184126 DOI: 10.1074/jbc.m111.322024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid on the neural cell adhesion molecule (NCAM) modulates cell-cell adhesion and signaling, is required for proper brain development, and plays roles in neuronal regeneration and the growth and invasiveness of tumor cells. Evidence indicates that NCAM polysialylation is highly protein-specific, requiring an initial polysialyltransferase-NCAM protein-protein interaction. Previous work suggested that a polybasic region located prior to the conserved polysialyltransferase catalytic motifs may be involved in NCAM recognition, but not overall enzyme activity (Foley, D. A., Swartzentruber, K. G., and Colley, K. J. (2009) J. Biol. Chem. 284, 15505-15516). Here, we employ a competition assay to evaluate the role of this region in substrate recognition. We find that truncated, catalytically inactive ST8SiaIV/PST proteins that include the polybasic region, but not those that lack this region, compete with endogenous ST8SiaIV/PST and reduce NCAM polysialylation in SW2 small cell lung carcinoma cells. Replacing two polybasic region residues, Arg(82) and Arg(93), eliminates the ability of a full-length, catalytically inactive enzyme (PST H331K) to compete with SW2 cell ST8SiaIV/PST and block NCAM polysialylation. Replacing these residues singly or together in ST8SiaIV/PST substantially reduces or eliminates NCAM polysialylation, respectively. In contrast, replacing Arg(82), but not Arg(93), substantially reduces the ability of ST8SiaIV/PST to polysialylate neuropilin-2 and SynCAM 1, suggesting that Arg(82) plays a general role in substrate recognition, whereas Arg(93) specifically functions in NCAM recognition. Taken together, our results indicate that the ST8SiaIV/PST polybasic region plays a critical role in substrate recognition and suggest that different combinations of basic residues may mediate the recognition of distinct substrates.
Collapse
Affiliation(s)
- Joseph L Zapater
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607, USA
| | | |
Collapse
|
5
|
Abstract
Axonal outgrowth is a prerequisite for the development of the most complex organ, the brain. It depends partially on the attachment of sialic acid on glycans of (sialo)-glycoproteins expressed on the plasma membrane. In our study, we showed that nerve growth factor-induced neurite outgrowth of PC12-cells enhances the expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine-kinase (GNE), the key enzyme for the biosynthesis of sialic acid. Furthermore, we could show that overexpression of GNE induces neurite outgrowth in PC12 cells. The neurite-outgrowth promoting activity of overexpressed GNE, however, does not lead to an increased biosynthesis of sialic acid. These data suggest a novel role of GNE during neurite outgrowth, which is independent to its specific enzymatic activity.
Collapse
|
6
|
Beecken WD, Engl T, Ogbomo H, Relja B, Cinatl J, Bereiter-Hahn J, Oppermann E, Jonas D, Blaheta RA. Valproic acid modulates NCAM polysialylation and polysialyltransferase mRNA expression in human tumor cells. Int Immunopharmacol 2005; 5:757-69. [PMID: 15710344 DOI: 10.1016/j.intimp.2004.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/30/2004] [Accepted: 12/09/2004] [Indexed: 10/26/2022]
Abstract
Polysialic acid (PSA) is a dynamically regulated carbohydrate modification of the neural cell adhesion molecule NCAM, which has been linked to cancer development and dissemination. Two enzymes, the polysialyltransferases ST8SiaIV and ST8SiaII, are known to be involved in the polysialylation of NCAM. The antiepileptic drug valproic acid (VPA) is associated with anti-cancer activity. In this study, VPA blocked the adhesion of several neuroectodermal tumor cell lines to human umbilical vein endothelial cells. Furthermore, VPA induced intracellular PSA accumulation and enhanced expression of PSA-NCAM on the cell surface. Using a semiquantitative RT-PCR strategy, VPA was shown to up-regulate ST8SiaIV mRNA, whereas ST8SiaII mRNA was down-regulated by this compound. Our data indicate that increased expression of ST8SiaIV enables accelerated polysialylation of NCAM, which might be coupled to a loss of adhesive functions of tumor cells.
Collapse
Affiliation(s)
- Wolf-Dietrich Beecken
- Johann Wolfgang Goethe-Universitätsklinik, Zentrum der Chirurgie, Klinik für Urologie und KinderurologieWissenschaftliches LaborHaus 23 A, EG 7, Theodor-Stern-Kai 7, Frankfurt am Main D-60590, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Horstkorte R, Mühlenhoff M, Reutter W, Nöhring S, Zimmermann-Kordmann M, Gerardy-Schahn R. Selective inhibition of polysialyltransferase ST8SiaII by unnatural sialic acids. Exp Cell Res 2004; 298:268-74. [PMID: 15242781 DOI: 10.1016/j.yexcr.2004.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/05/2004] [Indexed: 10/26/2022]
Abstract
Polysialic acid (polySia) is a unique and highly regulated posttranslational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration and plastic processes including learning and memory. Polysialylated NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. However, the impact of each enzyme in NCAM polysialylation is not understood. Here, we describe the selective cell-based in vitro inhibition of ST8SiaII using synthetic sialic acid precursors. We provide evidence for different substrate affinities of ST8SiaII and ST8SiaIV. These data open the possibility to study the individual role of the two enzymes during various aspects of brain development and function and in tumorigenesis.
Collapse
Affiliation(s)
- Rüdiger Horstkorte
- Institut für Molekularbiologie und Biochemie, Charité-Universitätsmedizin Berlin, D-14195 Berlin-Dahlem, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Fanzani A, Colombo F, Giuliani R, Preti A, Marchesini S. Cytosolic sialidase Neu2 upregulation during PC12 cells differentiation. FEBS Lett 2004; 566:178-82. [PMID: 15147891 DOI: 10.1016/j.febslet.2004.03.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/19/2004] [Accepted: 03/31/2004] [Indexed: 11/18/2022]
Abstract
The cytosolic sialidase Neu2 is known to be involved in myoblast differentiation. Here, we observed a Neu2 transcriptional induction during nerve growth factor, fibroblast growth factor 2 and epidermal growth factor treatments of PC12 cells, a favored model to study neuronal differentiation. The expression analysis of Neu2 deleted promoter revealed a remarkable increase of luciferase activity in treated PC12 cells, suggesting that in this cell line the Neu2 transcriptional levels are highly regulated. The enzymatic activity of cytosolic sialidase Neu2 was found to increase transiently only during differentiation, whereas was undetectable in untreated PC12 cells. These data suggest a possible involvement of cytosolic sialidase Neu2 in differentiation of PC12 cells.
Collapse
Affiliation(s)
- A Fanzani
- Department of Biomedical Sciences and Biotechnology, Unit of Biochemistry, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | |
Collapse
|
9
|
Brocco M, Pollevick GD, Frasch ACC. Differential regulation of polysialyltransferase expression during hippocampus development: Implications for neuronal survival. J Neurosci Res 2003; 74:744-53. [PMID: 14635225 DOI: 10.1002/jnr.10781] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polysialyltransferases ST8SiaII/STX and ST8SiaIV/PST add polysialic acid (PSA) to the neural cell adhesion molecule (NCAM). Surface-located PSA is involved in cell-cell interactions participating in structural and functional plasticity of neuronal circuits. This study was undertaken to investigate the polysialyltransferase regulation pattern during hippocampal development. Polysialyltransferase expression levels analyzed by real-time RT-PCR indicated that ST8SiaII/STX mRNA is markedly down-regulated in vivo, decreasing abruptly at about the first week of postnatal development. ST8SiaII/STX mRNA is also down-regulated in hippocampal cells in culture, accompanying the morphological differentiation of neuronal interconnectivity. In contrast, ST8SiaIV/PST levels remain comparatively low during hippocampus ontogeny. Immunolabeling of primary hippocampal culture assays demonstrated that PSA expression parallels ST8SiaII/STX mRNA levels. In comparison, polysialyltransferase mRNA levels are not regulated in neuroblastoma cells during their proliferation. Sequence analysis of the 3'-untranslated region of ST8SiaII/STX cDNA indicated putative regulatory motifs. This information and the observed changes in mRNA half-life during development suggest that ST8SiaII/STX might be also regulated at the posttranscriptional level. To understand the reasons for the tight control of ST8SiaII/STX expression during development, we overexpressed the enzyme in hippocampal primary cultures by transfection. Overexpression of ST8SiaII/STX wild type as well as of a mutant lacking enzymatic activity affected neuronal viability, leading to cell death. However, this phenomenon was abolished by a double mutation in the ST8SiaII/STX that prevents formation of its three-dimentional structure. Interestingly, the overexpressed polysialyltransferase accumulates not only in the perinuclear region but also in the plasma membrane. Thus, overexpression of an ST8SiaII/STX that conserves its structure leads to abnormal accumulation of the protein, probably on the neuronal surface, affecting cell viability. This result explains the importance of an accurate regulation of polysialyltransferase expression during development.
Collapse
Affiliation(s)
- Marcela Brocco
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de General San Martín, San Martín, Pcia de Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Abstract
Sialylation is essential for development and regeneration in mammals. Using N-propanoylmannosamine, a novel precursor of sialic acid, we were able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into cell surface glycoconjugates. Here we report that this biochemical engineering of sialic acid leads to a stimulation of neuronal cells. Both PC12 cells and cerebellar neurons showed a significant increase in neurite outgrowth after treatment with this novel sialic acid precursor. Furthermore, also the reestablishment of the perforant pathway was stimulated in brain slices. In addition, we surprisingly identified several cytosolic proteins with regulatory functions, which are differentially expressed after treatment with N-propanoylmannosamine. Because sialic acid is the only monosaccharide that is activated in the nucleus, we hypothesize that transcription could be modulated by the unnatural CMP-N-propanoylneuraminic acid and that sialic acid activation might be a general tool to regulate cellular functions, such as neurite outgrowth.
Collapse
|
11
|
Poongodi GL, Suresh N, Gopinath SCB, Chang T, Inoue S, Inoue Y. Dynamic change of neural cell adhesion molecule polysialylation on human neuroblastoma (IMR-32) and rat pheochromocytoma (PC-12) cells during growth and differentiation. J Biol Chem 2002; 277:28200-11. [PMID: 12023285 DOI: 10.1074/jbc.m202731200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid (PSA) is a regulatory epitope of neural cell adhesion molecule (NCAM) in homophilic adhesion of neural cells mediated by NCAM, is also known to be re-expressed in several human tumors, thus serves as an oncodevelopmental antigen. In this study, using a recently developed ultrasensitive chemical method in addition to immunochemical methods, growth stage-dependent and retinoic acid (RA)-induced differentiation-dependent changes of PSA expression in human neuroblastoma (IMR-32) and rat pheochromocytoma (PC-12) cells were analyzed both qualitatively and quantitatively. Both IMR-32 and PC-12 cells expressed PSA on NCAM, and the level of PSA expressed per unit weight of cells increased with post-inoculation incubation time. The most prominent feature was seen at the full confluence stage. RA induced neuronal differentiation in both IMR-32 and CP-12 cells that paralleled the change in the PSA level. Chemical analysis revealed the presence of NCAM glycoforms differing in the degree of polymerization (DP) of oligo/polysialyl chains, whose DP was smaller than 40. DP distribution of PSA was different between the cell lines and was changed by the growth stage and the RA treatment. Thus DP analysis of PSA is important in understanding both mechanism and biological significance of its regulated expression.
Collapse
Affiliation(s)
- Geetha L Poongodi
- Institute of Biological Chemistry, Academia Sinica, Taipei 115-29, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Jimbo T, Nakayama J, Akahane K, Fukuda M. Effect of polysialic acid on the tumor xenografts implanted into nude mice. Int J Cancer 2001; 94:192-9. [PMID: 11668497 DOI: 10.1002/ijc.1458] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polysialic acid (PSA), which is abundantly expressed in the embryonic brain, plays important roles in neural development and plasticity. PSA is also expressed in tumors of neural crest origin such as neuroblastoma. However, the biologic significance of PSA in these tumors has not been elucidated. In this study, we examined the expression of PSA as well as 2 polysialyltransferases, PST and STX, in various tumor cell lines. PST and STX were simultaneously expressed in all the tumor cells positive for PSA. However, even in the tumor cells negative for PSA, they expressed PSA after transfection of neural cell adhesion molecule (NCAM) cDNA when these cells expressed PST, suggesting that the presence of NCAM was critical for PSA expression. To determine the role of PSA in tumor growth and development, we established tumor sublines expressing or lacking PSA from PC-14 or NCI-H146 cells. Although significant differences of growth rates between the PSA-positive and -negative tumor cells were not detected in vitro, the PSA-positive tumor cells hardly produced detectable tumors when injected into nude mice subcutaneously or intravenously. In addition, the PSA-positive tumor cells adhered less to a basement membrane matrix Matrigel than did the PSA-negative tumor cells. These results altogether suggested that PSA significantly reduced tumor formation in the transplanted xenografts through attenuation of cell-cell or cell-matrix interactions by its large, negatively charged glycans in this particular animal model system.
Collapse
Affiliation(s)
- T Jimbo
- New Product Research Laboratories III, Daiichi Pharmaceutical Co., Ltd., Tokyo R&D Center, Tokyo, Japan.
| | | | | | | |
Collapse
|
13
|
Close BE, Tao K, Colley KJ. Polysialyltransferase-1 autopolysialylation is not requisite for polysialylation of neural cell adhesion molecule. J Biol Chem 2000; 275:4484-91. [PMID: 10660622 DOI: 10.1074/jbc.275.6.4484] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialyltransferase-1 (PST; ST8Sia IV) is one of the alpha2, 8-polysialyltransferases responsible for the polysialylation of the neural cell adhesion molecule (NCAM). The presence of polysialic acid on NCAM has been shown to modulate cell-cell and cell-matrix interactions. We previously reported that the PST enzyme itself is modified by alpha2,8-linked polysialic acid chains in vivo. To understand the role of autopolysialylation in PST enzymatic activity, we employed a mutagenesis approach. We found that PST is modified by five Asn-linked oligosaccharides and that the vast majority of the polysialic acid is found on the oligosaccharide modifying Asn-74. In addition, the presence of the oligosaccharide on Asn-119 appeared to be required for folding of PST into an active enzyme. Co-expression of the PST Asn mutants with NCAM demonstrated that autopolysialylation is not required for PST polysialyltransferase activity. Notably, catalytically active, non-autopolysialylated PST does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Immunoblot analyses of NCAM polysialylation by polysialylated and non-autopolysialylated PST suggests that the NCAM is polysialylated to a higher degree by autopolysialylated PST. We conclude that autopolysialylation of PST is not required for, but does enhance, NCAM polysialylation.
Collapse
Affiliation(s)
- B E Close
- Department of Biochemistry and Molecular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
14
|
Lucka L, Krause M, Danker K, Reutter W, Horstkorte R. Primary structure and expression analysis of human UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, the bifunctional enzyme in neuraminic acid biosynthesis. FEBS Lett 1999; 454:341-4. [PMID: 10431835 DOI: 10.1016/s0014-5793(99)00837-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-Acetylneuraminic acid is a main constituent of glycoproteins and gangliosides. In many membrane-bound receptors it is the target for external stimuli. The key enzyme for its biosynthesis is the bifunctional enzyme UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, catalysing the first two steps of the biosynthesis in the cytosol. The rat enzyme was previously isolated and characterised. In this report we present the corresponding human cDNA sequence, compare it with the primary structure of the rodent enzyme, and report the analysis of its expression in different human tissues and cell lines.
Collapse
Affiliation(s)
- L Lucka
- Institut für Molekularbiologie und Biochemie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Berlin-Dahlem, Germany
| | | | | | | | | |
Collapse
|