1
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
2
|
da Silva Nunes Barreto R, da Silva Júnior LN, Henrique Doná Rodrigues Almeida G, de Oliveira Horvath-Pereira B, da Silva TS, Garcia JM, Smith LC, Carreira ACO, Miglino MA. Placental scaffolds as a potential biological platform for embryonic stem cells differentiation into hepatic-like cells lineage: A pilot study. Tissue Cell 2023; 84:102181. [PMID: 37515966 DOI: 10.1016/j.tice.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Hepatic microenvironment plays an essential role in liver regeneration, providing the necessary conditions for cell proliferation, differentiation and tissue rearrangement. One of the key factors for hepatic tissue reconstruction is the extracellular matrix (ECM), which through collagenous and non-collagenous proteins provide a three-dimensional structure that confers support for cell adhesion and assists on their survival and maintenance. In this scenario, placental ECM may be eligible for hepatic tissue reconstruction, once these scaffolds hold the major components required for cell support. Therefore, this preliminary study aimed to access the possibility of mouse embryonic stem cells differentiation into hepatocyte-like cells on placental scaffolds in a three-dimensional dynamic system using a Rotary Cell Culture System. Following a four-phase differentiation protocol that simulates liver embryonic development events, the preliminary results showed that a significant quantity of cells adhered and interacted with the scaffold through outer and inner surfaces. Positive immunolabelling for alpha fetus protein and CK7 suggest presence of hepatoblast phenotype cells, and CK18 and Albumin positive immunolabelling suggest the presence of hepatocyte-like phenotype cells, demonstrating the presence of a heterogeneous population into the recellularized scaffolds. Periodic Acid Schiff-Diastase staining confirmed the presence of glycogen storage, indicating that differentiate cells acquired a hepatic-like phenotype. In conclusion, these preliminary results suggested that mouse placental scaffolds might be used as a biological platform for stem cells differentiation into hepatic-like cells and their establishment, which may be a promissing biomaterial for hepatic tissue reconstruction.
Collapse
Affiliation(s)
| | | | | | | | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, State University of São Paulo, Jaboticabal, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fertilité, University of Montreal, Montreal, QC, Canada
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Centre of Human and Natural Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Messina A, Luce E, Hussein M, Dubart-Kupperschmitt A. Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells 2020; 9:cells9020420. [PMID: 32059501 PMCID: PMC7072243 DOI: 10.3390/cells9020420] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
The liver is a very complex organ that ensures numerous functions; it is thus susceptible to multiple types of damage and dysfunction. Since 1983, orthotopic liver transplantation (OLT) has been considered the only medical solution available to patients when most of their liver function is lost. Unfortunately, the number of patients waiting for OLT is worryingly increasing, and extracorporeal liver support devices are not yet able to counteract the problem. In this review, the current and expected methodologies in liver regeneration are briefly analyzed. In particular, human pluripotent stem cells (hPSCs) as a source of hepatic cells for liver therapy and regeneration are discussed. Principles of hPSC differentiation into hepatocytes are explored, along with the current limitations that have led to the development of 3D culture systems and organoid production. Expected applications of these organoids are discussed with particular attention paid to bio artificial liver (BAL) devices and liver bio-fabrication.
Collapse
Affiliation(s)
- Antonietta Messina
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Eléanor Luce
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Marwa Hussein
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
- Correspondence: ; Tel.: +33-145595138
| |
Collapse
|
4
|
Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
Collapse
|
5
|
Shirahashi H, Wu J, Yamamoto N, Catana A, Wege H, Wager B, Okita K, Zern MA. Differentiation of Human and Mouse Embryonic Stem Cells along a Hepatocyte Lineage. Cell Transplant 2017; 13:197-211. [PMID: 15191158 DOI: 10.3727/000000004783984016] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem (ES) cells may differentiate along a hepatocyte lineage; however, currently there are no reports of culture conditions yielding high levels of hepatocyte-specific gene expression in these cells. We investigated culture conditions for differentiating ES cells into hepatocyte-like cells in vitro. Various combinations of culture media, growth and differentiation factors, and substratum precoatings were evaluated, and it was determined that a combination of Iscove's modified Dulbecco's medium with 20% fetal bovine serum, human insulin, dexamethasone, and collagen type I precoating was optimal for directing mouse ES cells along a hepatocyte lineage. Treatment of mouse ES cell with the optimal condition led to prealbumin gene expression 20% as high, and albumin synthesis 7% as high, as in mouse liver. The optimal culture condition also induced albumin gene expression in differentiated human ES cells 1% as high as in normal human hepatocytes as shown by Western blot analysis, and cells were positive for human albumin by immunocyto-chemistry. In addition, our optimal condition led to high levels of albumin gene expression in primary mouse hepatocytes after 35 days of culture, levels 10-fold higher than with other hepatocyte differentiation media. In conclusion, our optimal condition directed both mouse and human ES cells along a hepatocyte lineage. This represents the initial step in establishing cell lines that can be employed in cell-based therapeutics in humans and for toxicology and pharmacology studies.
Collapse
Affiliation(s)
- Hitoshi Shirahashi
- Transplant Research Institute, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Teratani T, Quinn G, Yamamoto Y, Sato T, Yamanokuchi H, Asari A, Ochiya T. Long-Term Maintenance of Liver-Specific Functions in Cultured ES Cell-Derived Hepatocytes with Hyaluronan Sponge. Cell Transplant 2017; 14:629-35. [PMID: 16405073 DOI: 10.3727/000000005783982611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study investigated the three-dimensional culture of hepatocytes differentiated from mouse embryonic stem (ES) cells with a porous hyaluronan (HA) sponge support. Hepatocytes were immobilized within the pores of the support. Spheroids could be observed within the support, each containing between 20 and 50 hepatocytes. To examine the liver-specific functions of the hepatocytes in the culture, the levels of albumin secreted into the medium were analyzed. The secretion of albumin was stable over the course of 32 days, longer than that in both conventional monolayer and collagen sponge cultures. To elucidate further the liver-specific functions of hepatocytes embedded in the HA sponge, metabolic activities of the hepatocytes were examined for their ability to eliminate ammonia from culture media and the synthesis of urea nitrogen. While rates of ammonia removal and urea nitrogen synthesis were similar to those in both conventional monolayer and in collagen sponge cultures, these functions were maintained for longer duration in cells embedded in the HA sponge. These results demonstrate that the porous HA sponge is an effective support for the in vitro culture of ES-derived hepatocytes used for both basic and applied studies for cell transplantation.
Collapse
Affiliation(s)
- Takumi Teratani
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Jeong J, Kim KN, Chung MS, Kim HJ. Functional comparison of human embryonic stem cells and induced pluripotent stem cells as sources of hepatocyte-like cells. Tissue Eng Regen Med 2016; 13:740-749. [PMID: 30603455 DOI: 10.1007/s13770-016-0094-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
Pluripotent stem cells can differentiate into many cell types including mature hepatocytes, and can be used in the development of new drugs, treatment of diseases, and in basic research. In this study, we established a protocol leading to efficient hepatic differentiation, and compared the capacity to differentiate into the hepatocyte lineage of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Optimal combinations of cytokines and growth factors were added to embryoid bodies produced by both types of cell. Differentiation of the cells was assessed with optical and electron microscopes, and hepatic-specific transcripts and proteins were detected by quantitative reverse transcription polymerase chain reaction and immunocytochemistry, respectively. Both types of embryoid body produced polygonal hepatocyte-like cells accompanied by time-dependent up regulation of genes for α-fetoprotein, albumin (ALB), asialoglycoprotein1, CK8, CK18, CK19, CYP1A2, and CYP3A4, which are expressed in fetal and adult hepatocytes. Both types of cell displayed functions characteristic of mature hepatocytes such as accumulation of glycogen, secretion of ALB, and uptake of indocyanine green. And these cells are transplanted into mouse model. Our findings indicate that hESCs and hiPSCs have similar abilities to differentiate into hepatocyte in vitro using the protocol developed here, and these cells are transplantable into damaged liver. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-0094-y and is accessible for authorized users.
Collapse
Affiliation(s)
- Jaemin Jeong
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyu Nam Kim
- 2Department of Anesthesiology and Pain Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Min Sung Chung
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- 3Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Korea
| | - Han Joon Kim
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- 3Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Korea
| |
Collapse
|
8
|
Singh VK, Saini A, Kalsan M, Kumar N, Chandra R. Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Front Cell Dev Biol 2016; 4:134. [PMID: 27921030 PMCID: PMC5118841 DOI: 10.3389/fcell.2016.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Stem cells are defined by their capabilities to self-renew and give rise to various types of differentiated cells depending on their potency. They are classified as pluripotent, multipotent, and unipotent as demonstrated through their potential to generate the variety of cell lineages. While pluripotent stem cells may give rise to all types of cells in an organism, Multipotent and Unipotent stem cells remain restricted to the particular tissue or lineages. The potency of these stem cells can be defined by using a number of functional assays along with the evaluation of various molecular markers. These molecular markers include diagnosis of transcriptional, epigenetic, and metabolic states of stem cells. Many reports are defining the particular set of different functional assays, and molecular marker used to demonstrate the developmental states and functional capacities of stem cells. The careful evaluation of all these methods could help in generating standard identifying procedures/markers for them.
Collapse
Affiliation(s)
- Vimal K Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Manisha Kalsan
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Neeraj Kumar
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi Delhi, India
| |
Collapse
|
9
|
Wu HW, Hsiao YH, Chen CC, Yet SF, Hsu CH. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation. Molecules 2016; 21:molecules21070882. [PMID: 27399655 PMCID: PMC6272923 DOI: 10.3390/molecules21070882] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023] Open
Abstract
The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.
Collapse
Affiliation(s)
- Huei-Wen Wu
- Institutes of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Yi-Hsing Hsiao
- Institute of Nano Engineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chih-Chen Chen
- Institute of Nano Engineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Chia-Hsien Hsu
- Institutes of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan.
- Institute of Nano Engineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
10
|
Hhex Is Necessary for the Hepatic Differentiation of Mouse ES Cells and Acts via Vegf Signaling. PLoS One 2016; 11:e0146806. [PMID: 26784346 PMCID: PMC4718667 DOI: 10.1371/journal.pone.0146806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex-/- mESCs fail to differentiate from definitive endoderm (Sox17+/Foxa2+) to hepatic endoderm (Alb+/Dlk+). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex-/- cells compared to Hhex+/+ cells. Furthermore, we identified VEGFR2+/ALB+/CD34- in early Hhex+/+ hepatic cultures. These cells were absent in Hhex-/- cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.
Collapse
|
11
|
Zhu XQ, Pan XH, Yao L, Li W, Cui J, Wang G, Mrsny RJ, Hoffman AR, Hu JF. Converting Skin Fibroblasts into Hepatic-like Cells by Transient Programming. J Cell Biochem 2015; 117:589-98. [PMID: 26312781 DOI: 10.1002/jcb.25355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Xiang-Qing Zhu
- Research Center of Stem Cell, Tissue and Organ Engineering; Kunming Army General Hospital; Kunming Yunnan P. R. China
| | - Xing-Hua Pan
- Research Center of Stem Cell, Tissue and Organ Engineering; Kunming Army General Hospital; Kunming Yunnan P. R. China
| | - Ling Yao
- Stanford University Medical School; Palo Alto California
| | - Wei Li
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| | - Jiuwei Cui
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| | - Guanjun Wang
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| | - Randall J. Mrsny
- GMR Epigenetics; Palo Alto California
- Department of Pharmacy & Pharmacology; University of Bath; Bath England
| | | | - Ji-Fan Hu
- Stanford University Medical School; Palo Alto California
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| |
Collapse
|
12
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Xu LB, Liu C. Role of liver stem cells in hepatocarcinogenesis. World J Stem Cells 2014; 6:579-590. [PMID: 25426254 PMCID: PMC4178257 DOI: 10.4252/wjsc.v6.i5.579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/24/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the “cancer stem cell hypothesis”, which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells (liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.
Collapse
|
14
|
Abstract
Liver transplantation remains the only definitive treatment for liver failure and is available to only a tiny fraction of patients with end-stage liver diseases. Major limitations for the procedure include donor organ shortage, high cost, high level of required expertise, and long-term consequences of immune suppression. Alternative cell-based liver therapies could potentially greatly expand the number of patients provided with effective treatment. Investigative research into augmenting or replacing liver function extends into three general strategies. Bioartificial livers (BALs) are extracorporeal devices that utilize cartridges of primary hepatocytes or cell lines to process patient plasma. Injection of liver cell suspensions aims to foster organ regeneration or provide a missing metabolic function arising from a genetic defect. Tissue engineering recreates the organ in vitro for subsequent implantation to augment or replace patient liver function. Translational models and clinical trials have highlighted both the immense challenges involved and some striking examples of success.
Collapse
Affiliation(s)
- Joseph P Vacanti
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Massachusetts General Hospital, 55 Fruit St, WRN 1151, Boston, Massachusetts 02114; Department of Pediatric Surgery, MassGeneral Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Katherine M Kulig
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Massachusetts General Hospital, 55 Fruit St, WRN 1151, Boston, Massachusetts 02114; Department of Pediatric Surgery, MassGeneral Hospital for Children, Boston, Massachusetts
| |
Collapse
|
15
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
16
|
Wang Y, Zhang Y, Zhang S, Peng G, Liu T, Li Y, Xiang D, Wassler MJ, Shelat HS, Geng Y. Rotating Microgravity-Bioreactor Cultivation Enhances the Hepatic Differentiation of Mouse Embryonic Stem Cells on Biodegradable Polymer Scaffolds. Tissue Eng Part A 2012; 18:2376-85. [DOI: 10.1089/ten.tea.2012.0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yingjie Wang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yunping Zhang
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
- Department of Emergency Medicine, JaoTong University, Shanghai, China
| | - Shichang Zhang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Guangyong Peng
- Division of Immunobiology, Department of Internal Medicine, Saint Louis University School of Medicine, Edward A Doisy Research Center, St. Louis, Missouri
| | - Tao Liu
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yangxin Li
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Dedong Xiang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Michael J. Wassler
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Harnath S. Shelat
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yongjian Geng
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| |
Collapse
|
17
|
Chistiakov DA, Chistiakov PA. Strategies to produce hepatocytes and hepatocyte-like cells from pluripotent stem cells. Hepatol Res 2012; 42:111-9. [PMID: 21988469 DOI: 10.1111/j.1872-034x.2011.00896.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a potent source for unlimited production of hepatocytes and hepatocyte-like cells that may replace primary human hepatocytes in a variety of fields including liver cell therapy, liver tissue engineering, manufacturing bioartificial liver, modeling inherited and chronic liver diseases, drug screening and toxicity testing. Human ESCs are able to spontaneously form embryoid bodies, which then spontaneously differentiate to various tissue-specific cell lineages containing a total of 10-30% albumin-producing hepatocytes and hepatocyte-like cells. Enrichment of embryoid bodies with the definitive endoderm, from which hepatocytes arise, yields increasing the final ratio of hepatocyte population up by 50-65%. Current strategies of the directed differentiation of human ESCs (and iPSCs) to hepatocytes that reproduce liver embryogenesis by sequential stimulation of culturing ESCs with tissue-specific growth factors result in achieving the differentiation rate up to 60-80%. In the future, directed differentiation of human ESCs and iPSCs to hepatocytes should be further optimized towards generating homogeneous cultures of hepatocytes in order to avoid expensive procedures of separation and isolation of hepatocytes and hepatocyte-like cells.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Bionanotechnology, Pirogov Russian State Medical University Department of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow, Russia
| | | |
Collapse
|
18
|
Han S, Bourdon A, Hamou W, Dziedzic N, Goldman O, Gouon-Evans V. Generation of functional hepatic cells from pluripotent stem cells. ACTA ACUST UNITED AC 2012; Suppl 10:1-7. [PMID: 25364624 DOI: 10.4172/2157-7633.s10-008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver diseases affect millions of people worldwide, especially in developing country. According to the American Liver Foundation, nearly 1 in every 10 Americans suffers from some form of liver disease. Even though, the liver has great ability to self-repair, in end-stage liver diseases including fibrosis, cirrhosis, and liver cancer induced by viral hepatitis and drugs, the liver regenerative capacity is exhausted. The only successful treatment for chronic liver failure is the whole liver transplantation. More recently, some clinical trials using hepatocyte transplantation have shown some clinical improvement for metabolic liver diseases and acute liver failure. However, the shortage of donor livers remains a life-threatening challenge in liver disease patients. To overcome the scarcity of donor livers, hepatocytes generated from embryonic stem cell or induced pluripotent stem cell differentiation cultures could provide an unlimited supply of such cells for transplantation. This review provides an updated summary of hepatic differentiation protocols published so far, with a characterization of the hepatic cells generated in vitro and their ability to regenerate damaged livers in vivo following transplantation in pre-clinical liver deficient mouse models.
Collapse
Affiliation(s)
- Songyan Han
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Alice Bourdon
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Wissam Hamou
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Noelle Dziedzic
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
19
|
Zhang M, Zhong Y, Chen J. Model systems and clinical applications of hepatic stem cells for liver regeneration. Hepatol Int 2011. [DOI: 10.1007/s12072-011-9323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
El-Hagrasy MA, Shimizu E, Saito M, Yamaguchi Y, Tamiya E. Discrimination of primitive endoderm in embryoid bodies by Raman microspectroscopy. Anal Bioanal Chem 2011; 402:1073-81. [DOI: 10.1007/s00216-011-5554-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/08/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
21
|
Investigation of hepatoprotective activity of induced pluripotent stem cells in the mouse model of liver injury. J Biomed Biotechnol 2011; 2011:219060. [PMID: 21808596 PMCID: PMC3144694 DOI: 10.1155/2011/219060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/27/2011] [Indexed: 01/14/2023] Open
Abstract
To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs) may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA-) induced acute/fulminant hepatic failure (AHF) in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy.
Collapse
|
22
|
Sancho-Bru P. [Therapeutic possibilities of stem cells in the treatment of liver diseases]. GASTROENTEROLOGIA Y HEPATOLOGIA 2011; 34:701-10. [PMID: 21640436 DOI: 10.1016/j.gastrohep.2011.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 12/19/2022]
Abstract
Cell therapy and the use of stem cells in the treatment of liver diseases is still in the research phase. Nevertheless, the diversity of stem cells in terms of their origin, characteristics and potential for differentiation provides a wide spectrum of possibilities for the treatment of liver diseases. The present article describes the main types of stem cells and their potential for the treatment of liver diseases, as well as the main therapeutic strategies that are currently being explored for the treatment of these diseases through cell therapy. In addition, the main preclinical and clinical studies suggesting that stem cells could become an effective therapeutic alternative in distinct liver diseases are discussed.
Collapse
Affiliation(s)
- Pau Sancho-Bru
- Unidad de Hepatología, Hospital Clínic de Barcelona, Centro de Investigación Biológica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España.
| |
Collapse
|
23
|
Ehnert S, Seeliger C, Vester H, Schmitt A, Saidy-Rad S, Lin J, Neumaier M, Gillen S, Kleeff J, Friess H, Burkhart J, Stöckle U, Nüssler AK. Autologous serum improves yield and metabolic capacity of monocyte-derived hepatocyte-like cells: possible implication for cell transplantation. Cell Transplant 2011; 20:1465-77. [PMID: 21294943 DOI: 10.3727/096368910x550224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte-transplantation is a therapeutic approach for diverse acute and chronic liver diseases. As availability of primary cells is limited, there is an increasing demand for hepatocyte-like cells (e.g., neohepatocytes generated from peripheral blood monocytes). The aim of this study was to evaluate the effects of six different human AB sera, fetal calf serum, or autologous serum on production of neohepatocytes. The yield and quality of neohepatocytes varied considerably depending on the different sera. Using autologous sera for the whole production process we constantly generated the highest amount of cells with the highest metabolic activity for phase I (e.g., CYP1A1/2, CYP3A4) and phase II enzymes (e.g., glutathione-S-transferase). Moreover, similar effects were seen examining glucose and urea metabolism. Especially, glucose-6-phosphatase and PAS staining showed distinct serum-dependent differences. The role of macrophage activation was investigated by measuring the secretion of TNF-α, TGF-β, and RANKL, MMP activity, as well as mRNA levels of different interleukins in programmable cells of monocytic origin (PCMO). Our data clearly demonstrate that the use of autologous serum reduced initial macrophage activation in PCMOs and subsequently improved both yield and function of differentiated neohepatocytes. The autologous approach presented here might also be useful in other stem cell preparation processes where cell activation during generation shall be kept to a minimum.
Collapse
Affiliation(s)
- S Ehnert
- Department of Traumatology, MRI, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shafritz DA, Oertel M. Model systems and experimental conditions that lead to effective repopulation of the liver by transplanted cells. Int J Biochem Cell Biol 2011; 43:198-213. [PMID: 20080205 PMCID: PMC2907475 DOI: 10.1016/j.biocel.2010.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 12/26/2022]
Abstract
In recent years, there has been substantial progress in transplanting cells into the liver with the ultimate goal of restoring liver mass and function in both inherited and acquired liver diseases. The basis for considering that this might be feasible is that the liver is a highly regenerative organ. After massive liver injury or surgical removal of two-thirds or more of the liver tissue, the organ can restore its mass with completely normal morphologic structure and function. It has also been found under highly selective conditions that transplanted hepatocytes can fully repopulate the liver and cure a metabolic disorder or deficiency state. Fetal liver cells can also substantially repopulate the normal liver, and it is hoped in the future that effective repopulation will be achievable with cultured cells or cell lines, pluripotent stem cells from other somatic tissues, embryonic stem cells, or induced pluripotent stem cells, which can now be generated in vitro by a variety of methods. The purpose of this review is to present the major systems that have been used for liver repopulation, the variables involved in obtaining successful repopulation and what has been achieved in these various systems to date with different cell types.
Collapse
Affiliation(s)
- David A Shafritz
- Marion Bessin Liver Research Center, Department of Medicine and Division of Hepatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
25
|
Abstract
Liver regeneration is known to be a process involving highly organized and ordered tissue growth triggered by the loss of liver tissue, and remains a fascinating topic. A large number of genes are involved in this process, and there exists a sequence of stages that results in liver regeneration, while at the same time inhibitors control the size of the regenerated liver. The initiation step is characterized by priming of quiescent hepatocytes by factors such as TNF-α, IL-6 and nitric oxide. The proliferation step is the step during which hepatocytes enter into the cell cycle's G1 phase and are stimulated by complete mitogens including HGF, TGF-α and EGF. Hepatic stimulator substance, glucagon, insulin, TNF-α, IL-1 and IL-6 have also been implicated in regulating the regeneration process. Inhibitors and stop signals of hepatic regeneration are not well known and only limited information is available. Furthermore, the effects of other factors such as VEGF, PDGF, hypothyroidism, proliferating cell nuclear antigen, heat shock proteins, ischemic-reperfusion injury, steatosis and granulocyte colony-stimulating factor on liver regeneration are also systematically reviewed in this article. A tissue engineering approach using isolated hepatocytes for in vitro tissue generation and heterotopic transplantation of liver cells has been established. The use of stem cells might also be very attractive to overcome the limitation of donor liver tissue. Liver-specific differentiation of embryonic, fetal or adult stem cells is currently under investigation.
Collapse
Affiliation(s)
- Changku Jia
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China.
| |
Collapse
|
26
|
Katona RL, Vanderbyl SL, Perez CF. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. Methods Mol Biol 2011; 738:199-216. [PMID: 21431729 DOI: 10.1007/978-1-61779-099-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.
Collapse
Affiliation(s)
- Robert L Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
27
|
Zhou M, Li P, Tan L, Qu S, Ying QL, Song H. Differentiation of mouse embryonic stem cells into hepatocytes induced by a combination of cytokines and sodium butyrate. J Cell Biochem 2010; 109:606-14. [PMID: 20039312 DOI: 10.1002/jcb.22442] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is increasing evidence to suggest that embryonic stem cells (ESCs) are capable of differentiating into hepatocytes in vitro. In this study, we used a combination of cytokines and sodium butyrate in a novel three-step procedure to efficiently direct the differentiation of mouse ESCs into hepatocytes. Mouse ESCs were first differentiated into definitive endoderm cells by 3 days of treatment with Activin A. The definitive endoderm cells were then differentiated into hepatocytes by the addition of acidic fibroblast growth factor (aFGF) and sodium butyrate to the culture medium for 5 days. After 10 days of further in vitro maturation, the morphological and phenotypic markers of hepatocytes were characterized using immunohistochemistry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, the cells were tested for functions associated with mature hepatocytes, including glycogen storage and indocyanine green uptake and release, and the ratio of hepatic differentiation was determined by counting the percentage of albumin-positive cells. In the presence of medium containing cytokines and sodium butyrate, numerous epithelial cells resembling hepatocytes were observed, and approximately 74% of the cells expressed the hepatic marker, albumin, after 18 days in culture. RT-PCR analysis and immunohistochemistry showed that these cells expressed adult liver cell markers, and had the abilities of glycogen storage and indocyanine green uptake and release. We have developed an efficient method for directing the differentiation of mouse ESCs into cells that exhibit the characteristics of mature hepatocytes. This technique will be useful for research into the molecular mechanisms underlying liver development, and could provide a source of hepatocytes for transplantation therapy and drug screening.
Collapse
Affiliation(s)
- Mingming Zhou
- Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
28
|
Kubo A, Kim YH, Irion S, Kasuda S, Takeuchi M, Ohashi K, Iwano M, Dohi Y, Saito Y, Snodgrass R, Keller G. The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm. Hepatology 2010; 51:633-41. [PMID: 20063280 DOI: 10.1002/hep.23293] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We investigated the role of the hematopoietically expressed homeobox (Hex) in the differentiation and development of hepatocytes within embryonic stem cell (ESC)-derived embryoid bodies (EBs). Analyses of hepatic endoderm derived from Hex(-/-) EBs revealed a dramatic reduction in the levels of albumin (Alb) and alpha-fetoprotein (Afp) expression. In contrast, stage-specific forced expression of Hex in EBs from wild-type ESCs led to the up-regulation of Alb and Afp expression and secretion of Alb and transferrin. These inductive effects were restricted to c-kit(+) endoderm-enriched EB-derived populations, suggesting that Hex functions at the level of hepatic specification of endoderm in this model. Microarray analysis revealed that Hex regulated the expression of a broad spectrum of hepatocyte-related genes, including fibrinogens, apolipoproteins, and cytochromes. When added to the endoderm-induced EBs, bone morphogenetic protein 4 acted synergistically with Hex in the induction of expression of Alb, Afp, carbamoyl phosphate synthetase, transcription factor 1, and CCAAT/enhancer binding protein alpha. These findings indicate that Hex plays a pivotal role during induction of liver development from endoderm in this in vitro model and suggest that this strategy may provide important insight into the generation of functional hepatocytes from ESCs.
Collapse
Affiliation(s)
- Atsushi Kubo
- First Department of Internal Medicine, Nara Medical University, Nara, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jackson M, Taylor AH, Jones EA, Forrester LM. The culture of mouse embryonic stem cells and formation of embryoid bodies. Methods Mol Biol 2010; 633:1-18. [PMID: 20204616 DOI: 10.1007/978-1-59745-019-5_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells isolated from the inner cell mass of the pre-implantation blastocyst. They have the capacity to undergo indefinite rounds of self-renewing cell division and differentiate into all the cell lineages of the developing embryo. In suspension culture, ES cells will differentiate into aggregates known as embryoid bodies in a manner similar to the early embryo. This culture system therefore provides a useful model to study the relatively inaccessible stages of mammalian development. We describe methods for the routine maintenance of mouse embryonic stem cells in culture, assays of stem cell self-renewal potential in monolayer culture and the generation of embryoid bodies to study differentiation pathways.
Collapse
Affiliation(s)
- Melany Jackson
- John Hughes Bennett Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH164TJ, Edinburgh, UK
| | | | | | | |
Collapse
|
30
|
Microarray Analysis of Differentiation of Mouse Embryonic Stem Cells Into Hepatocyte-like Cells*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Ehnert S, Glanemann M, Schmitt A, Vogt S, Shanny N, Nussler NC, Stöckle U, Nussler A. The possible use of stem cells in regenerative medicine: dream or reality? Langenbecks Arch Surg 2009; 394:985-97. [PMID: 19644703 DOI: 10.1007/s00423-009-0546-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 02/06/2023]
Abstract
Stem cells are one of the most fascinating areas in regenerative medicine today. They play a crucial role in the development and regeneration of human life and are defined as cells that continuously reproduce themselves while maintaining the ability to differentiate into various cell types. Stem cells are found at all developmental stages, from embryonic stem cells that differentiate into all cell types found in the human body to adult stem cells that are responsible for tissue regeneration. The general opinion postulates that clinical therapies based on the properties of stem cells may have the potential to change the treatment of degenerative diseases or important traumatic injuries in the "near" future. We here briefly review the literature in particularly for the liver, heart, kidney, cartilage, and bone regeneration.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Department of Traumatology, TU Munich, Klinikum rechts der Isar, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Use of human hepatocytes for therapeutic and drug discovery applications is hampered by limited tissue source and the inability of hepatocytes to proliferate and maintain function long-term in vitro. Human embryonic stem (hES) cells are immortal and pluripotent and may provide a cell source for functional human hepatocytes (1) Here we have outlined some of the protocols currently in use for the generation of hepatocytes from hES cells.
Collapse
Affiliation(s)
- Niloufar Safinia
- Stem Cell Biology Laboratory, Wolfson Centre for Age-Related Diseases Kings College London, London, UK
| | | |
Collapse
|
33
|
Pei H, Yang Y, Xi J, Bai Z, Yue W, Nan X, Bai C, Wang Y, Pei X. Lineage Restriction and Differentiation of Human Embryonic Stem Cells into Hepatic Progenitors and Zone 1 Hepatocytes. Tissue Eng Part C Methods 2009; 15:95-104. [DOI: 10.1089/ten.tec.2008.0234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Abstract
Pluripotent embryonic stem (ES) cells are characterized by their almost unlimited potential to self-renew and to differentiate into virtually any cell type of the organism. Here we describe basic protocols for the in vitro differentiation of mouse ES cells into cells of the cardiac, neuronal, pancreatic, and hepatic lineage. The protocols include (1) the formation of embryoid bodies (EBs) followed by (2) the spontaneous differentiation of EBs into progenitor cells of the ecto-, endo-, and mesodermal germ layer and (3) the directed differentiation of early progenitors into the respective lineages. Differentiation induction via growth and extracellular matrix factors leads to titin-expressing spontaneously beating cardiac cells, tyrosine hydroxylase-expressing dopaminergic neurons, insulin and c-peptide co-expressing pancreatic islet-like clusters, and albumin-positive hepatic cells, respectively. The differentiated cells show tissue-specific proteins and electrophysiological properties (action potentials and ion channels) in cardiac and neuronal cells, glucose-dependent insulin release in pancreatic cells, or glycogen storage and albumin synthesis in hepatic cells. The protocols presented here provide basic systems to study differentiation processes in vitro and to establish strategies for the use of stem cells in regenerative therapies.
Collapse
|
35
|
Stem Cells and Organ Replacement. Artif Organs 2009. [DOI: 10.1007/978-1-84882-283-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Xu YQ, Liu ZC. Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. ACTA ACUST UNITED AC 2008; 4:101-12. [PMID: 18481229 DOI: 10.1007/s12015-008-9019-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) and mesenchymal stem cell (MSCs) are two main subtypes of bone marrow stem cells. Extensive studies have been carried out to investigate the therapeutic potential of BMSCs in liver disease. A number of animal and human studies demonstrated that either HSCs or MSCs could be applied to therapeutic purposes in certain liver diseases. The diseased liver may recruit migratory stem cells, particularly from the bone marrow, to generate hepatocyte-like cells either by transdifferentiation or cell fusion. Transplantation of BMSCs has therapeutic effects of restoration of liver mass and function, alleviation of fibrosis and correction of inherited liver diseases. There are still controversial results over the potential effects of BMSCs on liver diseases, and some of the discrepancies are thought to be lied in the differences of experimental protocols, differences in individual research laboratory, and the uncertainties of the techniques employed. Several potential approaches for BMSCs delivery in liver diseases have been proposed in animal studies and human trials. BMSCs can be delivered via intraportal vein, systemic infusion, intraperitoneal, intrahepatic, intrasplenic. The optimal stem cells delivery should be easy to perform, less invasive and traumatic, minimum side effects, and with high cells survival rate. In this review, we focus on the up-to-date evidence of therapeutic effects of BMSCs on liver disease, the characteristics of various delivery approaches, and the considerations for future studies.
Collapse
Affiliation(s)
- You Qing Xu
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | |
Collapse
|
37
|
Abstract
Presently, the orthotropic liver transplantation (OLT) is still the most effective therapeutic for patients with acute or chronic hepatic failure. However, due to the shortage of donor livers, the number of patients benefited from this approach is limited. Therefore, some alternative modalities have been paid attention for restoring the liver function. The cell transplantation is one of the promising modalities to realize this purpose. The types of cells used in the cell transplantation include syngeneic hepatocytes, allogeneic hepatocytes, immortalized hepatocytes, and stem cells derived heptocytes. The stem cells, especially the adult stem cells from bone marrow, are shown as a promising cell source for liver repopulation. The mesenchymal bone marrow stem cells and embryonic stem cells can be induced to differentiate into the hepatic lineage and might be used in the cell transplantation for liver diseases. Compared to OLT, the advantages of cell-based therapy for liver disease are, but not limited to, less invasive, less expensive, easy manipulated, easy expansion of cells in vitro. Cells can be stored in a cell bank for future use. Though most of the current studies are experimental and animal based, the cellular therapy for liver disease is expected to be an effective alternative in clinical settings in near future.
Collapse
Affiliation(s)
- Elizabeth Jameson
- Department of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6.
| |
Collapse
|
38
|
Ding YN, Pan XH, Ma D, Zhu XQ, Pang RQ, Yang RH. Progress in treatment of liver fibrosis by stem cells. Shijie Huaren Xiaohua Zazhi 2008; 16:3299-3302. [DOI: 10.11569/wcjd.v16.i29.3299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Latest studies from home and abroad indicate that stem cells exist in different adult tissues and various stages of individual development. There are stem cells not only derived from liver, but also from other tissues, such as bone marrow and pancreas in liver, which can differentiate into mature hepatocyte-like cells finally. Therefore, stem cell replacement therapy offers a new way for the clinical treatment of hepatic fibrosis in patients with end-stage liver diseases. This paper summarizes the progress in treating liver fibrosis by stem cells in recent years.
Collapse
|
39
|
Cantz T, Bleidissel M, Stehling M, Schöler HR. In vitro differentiation of reprogrammed murine somatic cells into hepatic precursor cells. Biol Chem 2008; 389:889-96. [PMID: 18627307 DOI: 10.1515/bc.2008.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, a new approach to reprogram somatic cells into pluripotent stem cells was shown by fusion of somatic cells with embryonic stem (ES) cells, which results in a tetraploid karyotype. Normal hepatocytes are often polyploid, so we decided to investigate the differentiation potential of fusion hybrids into hepatic cells. We chose toxic milk mice (a model of Wilson's disease) and performed initial transplantation experiments using this potential cell therapy approach. Mononuclear bone marrow cells from Rosa26 mice were fused with OG2 (Oct4-GFP transgenic) ES cells. Unfused ES cells were eliminated by selection with G418 for OG2-Rosa26 hybrids and fusion-derived colonies could be subcloned. Using an endodermal differentiation protocol, hepatic precursor cells could be generated. After FACS depletion of contaminating Oct4-GFP-positive cells, the hepatic precursor cells were transplanted into immunosuppressed toxic milk mice by intrasplenic injection. However, five out of eight mice showed teratoma formation within 3-6 weeks after transplantation in the spleen and liver. In conclusion, a hepatic precursor cell type was achieved from mononuclear bone marrow cell-ES cell hybrids and preliminary transplantation experiments confirmed engraftment, but also showed teratoma formation, which needs to be excluded by using more stringent purification strategies.
Collapse
Affiliation(s)
- Tobias Cantz
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, Münster, Germany.
| | | | | | | |
Collapse
|
40
|
Maezawa K, Miyazato K, Matsunaga T, Momose Y, Imamura T, Johkura K, Sasaki K, Ohmori S. Expression of cytochrome P450 and transcription factors during in vitro differentiation of mouse embryonic stem cells into hepatocytes. Drug Metab Pharmacokinet 2008; 23:188-95. [PMID: 18574323 DOI: 10.2133/dmpk.23.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocyte differentiation markers were expressed in the cells differentiated from mouse embryonic stem (ES) cells. In the differentiating ES cells, Cyp1a1 mRNA was highly expressed during the early to middle stage; Cyp2c29, Cyp2e1, Cyp3a11 and Cyp7a1 mRNAs were expressed only at the late stage; Cyp7b1 mRNA was expressed throughout all stages. Alpha-fetoprotein and albumin were co-expressed with Cyp3a and Cyp1a, respectively. Aryl hydrocarbon receptor, aryl hydrocarbon receptor nuclear translocator and glucocorticoid receptor mRNAs were detected in differentiating ES cells throughout the culture period. Pregnane X receptor mRNA was detected only in cells cultured for more than 24 days. The expression levels of Cyp2c29, Cyp3a11 and Cyp7a1 and G6p mRNAs were increased in embryoid bodies that were cultured with culture medium containing acid fibroblast growth factor, hepatocyte growth factor (HGF) and oncostatin M for 12 or 18 days, then the medium was replaced by that without HGF. These findings suggested that the expression levels of Cyp genes in hepatocytes differentiated from ES cells were markedly changed in individual enzymes during the course of differentiation, and that the duration of incubation with the addition of HGF affected the expression of Cyps and hepatocytes marker proteins.
Collapse
Affiliation(s)
- Kayoko Maezawa
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sharma AD, Cantz T, Vogel A, Schambach A, Haridass D, Iken M, Bleidissel M, Manns MP, Schöler HR, Ott M. Murine embryonic stem cell-derived hepatic progenitor cells engraft in recipient livers with limited capacity of liver tissue formation. Cell Transplant 2008; 17:313-23. [PMID: 18522234 DOI: 10.3727/096368908784153896] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Directed endodermal differentiation of murine embryonic stem (ES) cells gives rise to a subset of cells with a hepatic phenotype. Such ES cell-derived hepatic progenitor cells (ES-HPC) can acquire features of hepatocytes in vitro, but fail to form substantial hepatocyte clusters in vivo. In this study, we investigated whether this is due to inefficient engraftment or an immature phenotype of ES-HPC. ES cells engrafted into recipient livers of NOD/SCID mice with a similar efficacy as adult hepatocytes after 28 days. Because transplanted unpurified ES-HPC formed teratomas in the spleen and liver, we applied an albumin promoter/enhancer-driven reporter system to purify ES-HPC by cell sorting. RT-PCR analyses for hepatocyte-specific genes showed that the cells exhibited a hepatic phenotype, lacking the expression of the pluripotency marker Oct4, comparable to cells of day 11.5 embryos. Sorted ES-HPC derived from beta-galactosidase transgenic ES cells were injected into fumaryl-acetoacetate-deficient (FAH(-/-)) SCID mice and analyzed after 8 to 12 weeks. Staining with X-gal solution revealed the presence of engrafted cells throughout the liver. However, immunostaining for the FAH protein indicated hepatocyte formation at a very low frequency, without evidence for large hepatocyte cluster formation. In conclusion, the limited repopulation capacity of ES-HPC is not caused by a failure of primary engraftment, but may be due to an immature hepatic phenotype of the transplanted ES-HPC.
Collapse
Affiliation(s)
- Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Drobinskaya I, Linn T, Saric T, Bretzel RG, Bohlen H, Hescheler J, Kolossov E. Scalable selection of hepatocyte- and hepatocyte precursor-like cells from culture of differentiating transgenically modified murine embryonic stem cells. Stem Cells 2008; 26:2245-56. [PMID: 18556507 DOI: 10.1634/stemcells.2008-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potential therapeutic applications of embryonic stem cell (ESC)-derived hepatocytes are limited by their relatively low output in differentiating ESC cultures, as well as by the danger of contamination with tumorigenic undifferentiated ESCs. To address these problems, we developed transgenic murine ESC clones possessing bicistronic expression vector that contains the alpha-fetoprotein gene promoter driving a cassette for the enhanced green "live" fluorescent reporter protein (eGFP) and a puromycin resistance gene. Under established culture conditions these clones allowed for both monitoring of differentiation and for puromycin selection of hepatocyte-committed cells in a suspension mass culture of transgenic ESC aggregates ("embryoid bodies" [EBs]). When plated on fibronectin, the selected eGFP-positive cells formed colonies, in which intensely proliferating hepatocyte precursor-like cells gave rise to morphologically differentiated cells expressing alpha-1-antitrypsin, alpha-fetoprotein, and albumin. A number of cells synthesized glycogen and in some of the cells cytokeratin 18 microfilaments were detected. Major hepatocyte marker genes were expressed in the culture, along with the gene and protein expression of stem/progenitor markers, suggesting the features of both hepatocyte precursors and more advanced differentiated cells. When cultured in suspension, the EB-derived puromycin-selected cells formed spheroids capable of outgrowing on an adhesive substrate, resembling the behavior of fetal mouse hepatic progenitor cells. The established system based on the highly efficient selection/purification procedure could be suitable for scalable generation of ESC-derived hepatocyte- and hepatocyte precursor-like cells and offers a potential in vitro source of cells for transplantation therapy of liver diseases, tissue engineering, and drug and toxicology screening.
Collapse
Affiliation(s)
- Irina Drobinskaya
- Institute for Neurophysiology, Center of Physiology and Pathophysiology, University of Cologne, Robert-Koch Str. 39, D-50931 Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Baharvand H, Hashemi SM, Shahsavani M. Differentiation of human embryonic stem cells into functional hepatocyte-like cells in a serum-free adherent culture condition. Differentiation 2008; 76:465-77. [DOI: 10.1111/j.1432-0436.2007.00252.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Tomizawa M, Toyama Y, Ito C, Toshimori K, Iwase K, Takiguchi M, Saisho H, Yokosuka O. Hepatoblast-like cells enriched from mouse embryonic stem cells in medium without glucose, pyruvate, arginine, and tyrosine. Cell Tissue Res 2008; 333:17-27. [PMID: 18478268 DOI: 10.1007/s00441-008-0618-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 03/31/2008] [Indexed: 12/15/2022]
Abstract
In order to enrich hepatocytes differentiated from embryonic stem cells, we developed a novel medium. Since only hepatocytes have the activity of ornithine transcarbamylase, phenylalanine hydroxylase, galactokinase, and glycerol kinase, we expected that hepatocytes would be enriched in a medium without arginine, tyrosine, glucose, and pyruvate, but supplemented with ornithine, phenylanaline, galactose, and glycerol (hepatocyte-selection medium, HSM). Embryoid bodies were transferred onto dishes coated with gelatin in HSM after 4 days of culture. At 18 days after embryoid body formation, a single type of polygonal cell survived with an enlarged intercellular space and micorvilli. These cells were positive for indocyanine green uptake and for mRNAs of albumin, transthyretin, and alpha-feto protein, but negative for mRNAs of tyrosine aminotransferase, alpha1-antitrypsin, glucose-6-phosphatase, and phosphoenol pyruvate carboxykinase. Since cells in HSM were positive for cytokeratin (CK)8 and CK18 (hepatocyte markers) and for CK19 (a marker of bile duct epithelial cells), we concluded that they were hepatoblasts. They showed weaker expression of CCAAT/enhancer-binding protein (C/EBP)alpha than fetal liver (18.5 days of gestation) and expression of C/EBPbeta at a similar level to that of fetal liver. These data support our conclusion that HSM allows the selection of hepatoblast-like cells.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang Z, Lu H, Wang YC, Cong XQ. Human embryonic stem cells and liver diseases: from basic research to future clinical application. J Dig Dis 2008; 9:14-9. [PMID: 18251789 DOI: 10.1111/j.1443-9573.2007.00319.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human embryonic stem cells (hESC) provide access to the earliest stages of human development and because of their high proliferation capability, pluripotency and low immunogenicity may serve as a potential source of specialized cells for regenerative medicine. hESC-derived hepatocyte-like cells exhibit characteristic hepatocyte morphology, express hepatocyte markers and are capable of executing a range of hepatocyte functions. However, there are many challenges and obstacles to be overcome before the use of hESC and hESC-derived hepatocyte-like cells in clinical practice can be realized. Here, we highlight some of the recent efforts in this area, in hope of providing insights toward this complex yet important area of therapeutical modality for treating patients with liver disease.
Collapse
Affiliation(s)
- Zheng Wang
- Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|
46
|
Cantz T, Manns MP, Ott M. Stem cells in liver regeneration and therapy. Cell Tissue Res 2008; 331:271-82. [PMID: 17901986 PMCID: PMC2757593 DOI: 10.1007/s00441-007-0483-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/18/2007] [Indexed: 02/07/2023]
Abstract
The liver has adapted to the inflow of ingested toxins by the evolutionary development of unique regenerative properties and responds to injury or tissue loss by the rapid division of mature cells. Proliferation of the parenchymal cells, i.e. hepatocytes and epithelial cells of the bile duct, is regulated by numerous cytokine/growth-factor-mediated pathways and is synchronised with extracellular matrix degradation and restoration of the vasculature. Resident hepatic stem/progenitor cells have also been identified in small numbers in normal liver and implicated in liver tissue repair. Their putative role in the physiology, pathophysiology and therapy of the liver, however, is not yet precisely known. Hepatic stem/progenitor cells also known as "oval cells" in rodents have been implicated in liver tissue repair, at a time when the capacity for hepatocyte and bile duct replication is exhausted or experimentally inhibited (facultative stem/progenitor cell pool). Although much more has to be learned about the role of stem/progenitor cells in the physiology and pathophysiology of the liver, experimental analysis of the therapeutic value of these cells has been initiated. Transplantation of hepatic stem/progenitor cells or in vivo pharmacological activation of the pool of hepatic stem cells may provide novel modalities for the therapy of liver diseases. In addition, extrahepatic stem cells (e.g. bone marrow cells) are being investigated for their contribution to liver regeneration. Hepatic progenitor cells derived from embryonic stem cells are included in this review, which also discusses future perspectives of stem cell-based therapies for liver diseases.
Collapse
Affiliation(s)
- Tobias Cantz
- Max-Planck-Institute for Molecular Biomedicine, Muenster, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Center of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Center of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
47
|
Differentiation of human embryonic stem cells along a hepatocyte lineage and its application in liver regeneration. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11434-008-0026-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Banas A, Quinn G, Yamamoto Y, Teratani T, Ochiya T. "Stem cells into liver"--basic research and potential clinical applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:3-17. [PMID: 17120773 DOI: 10.1007/978-0-387-34133-0_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Agnieszka Banas
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
49
|
Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. Biochim Biophys Acta Mol Basis Dis 2007; 1782:61-74. [PMID: 18187050 DOI: 10.1016/j.bbadis.2007.12.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 02/07/2023]
Abstract
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.
Collapse
Affiliation(s)
- Michael Oertel
- Marion Bessin Liver Research Center, Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
50
|
Improvement of the survival rate by fetal liver cell transplantation in a mice lethal liver failure model. Transplantation 2007; 84:1233-9. [PMID: 18049107 DOI: 10.1097/01.tp.0000287967.54222.4d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The use of cell transplantation as an alternative therapy for orthotopic liver transplantation has been widely anticipated due to a chronic donor shortage. We previously reported the method used to enrich hepatic progenitor cells (HPCs) forming cell aggregations. In this study, we transplanted HPCs into the liver injury model mice to determine whether HPC transplantation may improve the liver dysfunction. METHODS We obtained donor cells from E13.5 fetal livers of green fluorescent protein (GFP) transgenic mice. We transplanted GFP-positive fetal liver cells into the transgenic mice which express diphtheria toxin (DT) receptors under the control of an albumin enhancer/promoter. Subsequently, we induced selective liver injury to recipient mice by DT administration. We then evaluated the engraftment of the transplanted cells and their effect on survivorship. RESULTS The low dose of DT induced sublethal liver injury and the high dose of DT was lethal to the liver injury model mice. The transplanted GFP-positive cells were engrafted into the recipient livers and expressed albumin, resembling mature hepatocytes. They continued to proliferate, forming clusters. The survival rate at 25 days after transplantation of the cell-transplanted group (8 of 20; 40.0%) was improved significantly (P=0.0047) in comparison to that of the sham-operated group (0 of 20; 0%). CONCLUSIONS The transplanted cells were engrafted and repopulated the liver of recipient mice, resulting in the improvement of the survival rate of the liver injury model mice. We therefore propose that HPCs are a desirable cell source for cell transplantation.
Collapse
|