1
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Levic DS, Ryan S, Marjoram L, Honeycutt J, Bagwell J, Bagnat M. Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. J Cell Biol 2020; 219:133852. [PMID: 32328632 PMCID: PMC7147097 DOI: 10.1083/jcb.201908225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial cell physiology critically depends on the asymmetric distribution of channels and transporters. However, the mechanisms targeting membrane proteins to the apical surface are still poorly understood. Here, we performed a visual forward genetic screen in the zebrafish intestine and identified mutants with defective apical targeting of membrane proteins. One of these mutants, affecting the vacuolar H+-ATPase gene atp6ap1b, revealed specific requirements for luminal acidification in apical, but not basolateral, membrane protein sorting and transport. Using a low temperature block assay combined with genetic and pharmacologic perturbation of luminal pH, we monitored transport of newly synthesized membrane proteins from the TGN to apical membrane in live zebrafish. We show that vacuolar H+-ATPase activity regulates sorting of O-glycosylated proteins at the TGN, as well as Rab8-dependent post-Golgi trafficking of different classes of apical membrane proteins. Thus, luminal acidification plays distinct and specific roles in apical membrane biogenesis.
Collapse
Affiliation(s)
| | - Sean Ryan
- Department of Cell Biology, Duke University, Durham, NC
| | | | | | | | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC
| |
Collapse
|
3
|
Lebreton S, Paladino S, Zurzolo C. Clustering in the Golgi apparatus governs sorting and function of GPI‐APs in polarized epithelial cells. FEBS Lett 2019; 593:2351-2365. [DOI: 10.1002/1873-3468.13573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse Institut Pasteur Paris France
| | - Simona Paladino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse Institut Pasteur Paris France
| |
Collapse
|
4
|
Shashikanth N, Yeruva S, Ong MLDM, Odenwald MA, Pavlyuk R, Turner JR. Epithelial Organization: The Gut and Beyond. Compr Physiol 2017; 7:1497-1518. [DOI: 10.1002/cphy.c170003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Yin X, Kang JH, Andrianifahanana M, Wang Y, Jung MY, Hernandez DM, Leof EB. Basolateral delivery of the type I transforming growth factor beta receptor is mediated by a dominant-acting cytoplasmic motif. Mol Biol Cell 2017; 28:2701-2711. [PMID: 28768825 PMCID: PMC5620377 DOI: 10.1091/mbc.e17-05-0334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/25/2022] Open
Abstract
A novel motif within the cytoplasmic tail of the type I TGF-β receptor (TβRI) controls basolateral delivery. While this element functions independent of TβRI recycling and heteromeric TGF-β receptor trafficking, it can dominantly direct an apically expressed receptor to the basolateral membrane in polarized epithelial cells. Delivery of biomolecules to the correct subcellular locales is critical for proper physiological function. To that end, we have previously determined that type I and II transforming growth factor beta (TGF-β) receptors (TβRI and TβRII, respectively) localize to the basolateral domain in polarized epithelia. While TβRII targeting was shown to be regulated by sequences between amino acids 529 and 538, the analogous region(s) within TβRI is unknown. To address that question, sequential cytoplasmic TβRI truncations and point mutations identified a targeting motif between residues 158 and 163 (VxxEED) required for basolateral TβRI expression. Further studies documented that receptor internalization, down-regulation, direct recycling, or Smad signaling were unaffected by motif mutations that caused TβRI mislocalization. However, inclusion of amino acids 148–217 containing the targeting motif was able to direct basolateral expression of the apically sorted nerve growth factor receptor (NGFR, p75; extracellular and transmembrane regions) in a dominant manner. Finally, coexpression of apically targeted type I and type II TGF-β receptors mediated Smad3 signaling from the apical membrane of polarized epithelial cells. These findings demonstrate that the absence of apical TGF-β signaling in normal epithelia is primarily a reflection of domain-specific receptor expression and not an inability to couple with the signaling machinery.
Collapse
Affiliation(s)
- Xueqian Yin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jeong-Han Kang
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Mahefatiana Andrianifahanana
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Youli Wang
- Division of Nephrology, Augusta University, Augusta, GA 30904
| | - Mi-Yeon Jung
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Danielle M Hernandez
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Edward B Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
6
|
Bagdonaite I, Nordén R, Joshi HJ, King SL, Vakhrushev SY, Olofsson S, Wandall HH. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus. J Biol Chem 2016; 291:12014-28. [PMID: 27129252 DOI: 10.1074/jbc.m116.721746] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/27/2022] Open
Abstract
Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Rickard Nordén
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sarah L King
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sigvard Olofsson
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| |
Collapse
|
7
|
Gamma-secretase-independent role for cadherin-11 in neurotrophin receptor p75 (p75(NTR)) mediated glioblastoma cell migration. Mol Cell Neurosci 2015; 69:41-53. [PMID: 26476273 DOI: 10.1016/j.mcn.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/06/2015] [Accepted: 10/13/2015] [Indexed: 11/23/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR)) undergoes γ-secretase-mediated regulated intramembrane proteolysis and is involved in glioblastoma cell migration and invasion. Consistent with previous reports, in this study we show that p75NTR increases U87-MG glioblastoma cell migration, which is reversed by inhibition of γ-secretase activity. However, we show that expression or stabilization of the γ-secretase-generated p75(NTR) intracellular domain (ICD) is not sufficient to induce U87-MG glioblastoma cell migration, and that exogenous expression of p75(NTR) ICD inhibits p75(NTR)-mediated glioblastoma cell (U87-MG and U373-MG) migration. To identify pathways and to determine how p75(NTR) mediates glioblastoma migration we utilized a microarray approach to assess differential gene expression profiles between parental U87-MG and cells stably expressing wild-type p75(NTR), a γ-secretase cleavage-resistant chimeric p75(NTR) mutant (p75FasTM) and the γ-secretase-generated p75(NTR)-ICD, which mimics constitutively cleaved p75(NTR) receptor. In our microarray data analysis we identified a subset of genes that were constitutively up-regulated in wild-type p75(NTR) cells, which were also repressed in p75(NTR) ICD expressing cells. Furthermore, our data revealed among the many differentially expressed genes, cadherin-11 (Cdh-11), matrix metalloproteinase 12 and relaxin/insulin-like family peptide receptor 2 as constitutively up-regulated in wild-type p75(NTR) cells, independent of γ-secretase activity. Consistent with a role in glioblastoma migration, we found that U87-p75(NTR) cells express higher levels of Cdh-11 protein and that siRNA-mediated knockdown of Cdh-11 resulted in a significant decrease in p75(NTR)-mediated glioblastoma cell migration. Therefore, we hypothesize that p75(NTR) can impact U87-MG glioblastoma cell migration in a γ-secretase-independent manner through modulation of specific genes, including Cdh-11, and that both γ-secretase-independent and -dependent mechanisms are involved in p75(NTR)-mediated U87-MG glioblastoma cell migration.
Collapse
|
8
|
Yoshida CA, Kawane T, Moriishi T, Purushothaman A, Miyazaki T, Komori H, Mori M, Qin X, Hashimoto A, Sugahara K, Yamana K, Takada K, Komori T. Overexpression of Galnt3 in chondrocytes resulted in dwarfism due to the increase of mucin-type O-glycans and reduction of glycosaminoglycans. J Biol Chem 2014; 289:26584-26596. [PMID: 25107907 PMCID: PMC4176229 DOI: 10.1074/jbc.m114.555987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/04/2014] [Indexed: 11/06/2022] Open
Abstract
Galnt3, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-D-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2(-/-) cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3(-/-) mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3(-/-) mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation.
Collapse
Affiliation(s)
- Carolina Andrea Yoshida
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Tetsuya Kawane
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takeshi Moriishi
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Anurag Purushothaman
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-0003, Japan
| | - Toshihiro Miyazaki
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Hisato Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Masako Mori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Xin Qin
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Ayako Hashimoto
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan,; Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuyuki Sugahara
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-0003, Japan,; Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Frontier Research Center for Post-Genomic Science and Technology, Sapporo 001-0021, Japan, and
| | - Kei Yamana
- Teijin Institute for Biomedical Research, Teijin Ltd., Hino, Tokyo 191-8512, Japan
| | - Kenji Takada
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan,.
| |
Collapse
|
9
|
Hoff F, Greb C, Hollmann C, Hönig E, Jacob R. The Large GTPase Mx1 Is Involved in Apical Transport in MDCK Cells. Traffic 2014; 15:983-96. [DOI: 10.1111/tra.12186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Florian Hoff
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Christoph Greb
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Christina Hollmann
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Ellena Hönig
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| |
Collapse
|
10
|
Gómez H, Rojas R, Patel D, Tabak LA, Lluch JM, Masgrau L. A computational and experimental study of O-glycosylation. Catalysis by human UDP-GalNAc polypeptide:GalNAc transferase-T2. Org Biomol Chem 2014; 12:2645-55. [PMID: 24643241 PMCID: PMC4744471 DOI: 10.1039/c3ob42569j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is estimated that >50% of proteins are glycosylated with sugar tags that can modulate protein activity through what has been called the sugar code. Here we present the first QM/MM calculations of human GalNAc-T2, a retaining glycosyltransferase, which initiates the biosynthesis of mucin-type O-glycans. Importantly, we have characterized a hydrogen bond between the β-phosphate of UDP and the backbone amide group from the Thr7 of the sugar acceptor (EA2 peptide) that promotes catalysis and that we propose could be a general catalytic strategy used in peptide O-glycosylation by retaining glycosyltransferases. Additional important substrate-substrate interactions have been identified, for example, between the β-phosphate of UDP with the attacking hydroxyl group from the acceptor substrate and with the substituent at the C2' position of the transferred sugar. Our results support a front-side attack mechanism for this enzyme, with a barrier height of ~20 kcal mol(-1) at the QM(M05-2X/TZVP//BP86/SVP)/CHARMM22 level, in reasonable agreement with the experimental kinetic data. Experimental and in silico mutations show that transferase activity is very sensitive to changes in residues Glu334, Asn335 and Arg362. Additionally, our calculations for different donor substrates suggest that human GalNAc-T2 would be inactive if 2'-deoxy-Gal or 2'-oxymethyl-Gal were used, while UDP-Gal is confirmed as a valid sugar donor. Finally, the analysis herein presented highlights that both the substrate-substrate and the enzyme-substrate interactions are mainly concentrated on stabilizing the negative charge developing at the UDP leaving group as the transition state is approached, identifying this as a key aspect of retaining glycosyltransferases catalysis.
Collapse
Affiliation(s)
- Hansel Gómez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Raúl Rojas
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Divya Patel
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Lawrence A. Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - José M. Lluch
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Laura Masgrau
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
11
|
Paladino S, Lebreton S, Tivodar S, Formiggini F, Ossato G, Gratton E, Tramier M, Coppey-Moisan M, Zurzolo C. Golgi sorting regulates organization and activity of GPI proteins at apical membranes. Nat Chem Biol 2014; 10:350-357. [PMID: 24681536 PMCID: PMC4027978 DOI: 10.1038/nchembio.1495] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 02/19/2014] [Indexed: 01/01/2023]
Abstract
Here we combined classical biochemistry with new biophysical approaches to study the organization of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) with high spatial and temporal resolution at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, after sorting in the Golgi, each GPI-AP reaches the apical surface in homoclusters. Golgi-derived homoclusters are required for their subsequent plasma membrane organization into cholesterol-dependent heteroclusters. By contrast, in nonpolarized MDCK cells, GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form heteroclusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, in contrast to fibroblasts, in polarized epithelial cells, a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and function of GPI-APs at the apical surface.
Collapse
Affiliation(s)
- Simona Paladino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| | - Simona Tivodar
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | - Giulia Ossato
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
| | - Marc Tramier
- Institut de génétique et dévelopement de Rennes, UMR 6290
| | - Maïté Coppey-Moisan
- Complexes macromoléculaires en cellules vivantes, Institut Jacques Monod, UMR 7592 CNRS, University Paris-Diderot, France
| | - Chiara Zurzolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Sessler T, Healy S, Samali A, Szegezdi E. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 2013; 140:186-99. [PMID: 23845861 DOI: 10.1016/j.pharmthera.2013.06.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Death receptors are members of the tumour necrosis factor (TNF) receptor superfamily characterised by an ~80 amino acid long alpha-helical fold, termed the death domain (DD). Death receptors diversified during early vertebrate evolution indicating that the DD fold has plasticity and specificity that can be easily adjusted to attain additional functions. Eight members of the death receptor family have been identified in humans, which can be divided into four structurally homologous groups or clades, namely: the p75(NTR) clade (consisting of ectodysplasin A receptor, death receptor 6 (DR6) and p75 neurotrophin (NTR) receptor); the tumour necrosis factor receptor 1 clade (TNFR1 and DR3), the CD95 clade (CD95/FAS) and the TNF-related apoptosis-inducing ligand receptor (TRAILR) clade (TRAILR1 and TRAILR2). Receptors in the same clade participate in similar processes indicating that structural diversification enabled functional specialisation. On the surface of nearly all human cells multiple death receptors are expressed, enabling the cell to respond to a plethora of external signals. Activation of different death receptors converges on the activation of three main signal transduction pathways: nuclear factor-κB-mediated differentiation or inflammation, mitogen-associated protein kinase-mediated stress response and caspase-mediated apoptosis. While the ability to induce cell death is true for nearly all DRs, the FAS and TRAILR clades have specialised in inducing cell death. Here we summarise recent discoveries about the molecular regulation and structural requirements of apoptosis induction by death receptors and discuss how this information can be used to better explain the biological functions, similarities and distinguishing features of death receptors.
Collapse
Affiliation(s)
- Tamas Sessler
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
13
|
Youker RT, Bruns JR, Costa SA, Rbaibi Y, Lanni F, Kashlan OB, Teng H, Weisz OA. Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher-order oligomerization. Mol Biol Cell 2013; 24:1996-2007. [PMID: 23637462 PMCID: PMC3681702 DOI: 10.1091/mbc.e13-02-0078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75-green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery.
Collapse
Affiliation(s)
- Robert T Youker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Castorino JJ, Deborde S, Deora A, Schreiner R, Gallagher-Colombo SM, Rodriguez-Boulan E, Philp NJ. Basolateral sorting signals regulating tissue-specific polarity of heteromeric monocarboxylate transporters in epithelia. Traffic 2011; 12:483-98. [PMID: 21199217 DOI: 10.1111/j.1600-0854.2010.01155.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many solute transporters are heterodimers composed of non-glycosylated catalytic and glycosylated accessory subunits. These transporters are specifically polarized to the apical or basolateral membranes of epithelia, but this polarity may vary to fulfill tissue-specific functions. To date, the mechanisms regulating the tissue-specific polarity of heteromeric transporters remain largely unknown. Here, we investigated the sorting signals that determine the polarity of three members of the proton-coupled monocarboxylate transporter (MCT) family, MCT1, MCT3 and MCT4, and their accessory subunit CD147. We show that MCT3 and MCT4 harbor strong redundant basolateral sorting signals (BLSS) in their C-terminal cytoplasmic tails that can direct fusion proteins with the apical marker p75 to the basolateral membrane. In contrast, MCT1 lacks a BLSS and its polarity is dictated by CD147, which contains a weak BLSS that can direct Tac, but not p75 to the basolateral membrane. Knockdown experiments in MDCK cells indicated that basolateral sorting of MCTs was clathrin-dependent but clathrin adaptor AP1B-independent. Our results explain the consistently basolateral localization of MCT3 and MCT4 and the variable localization of MCT1 in different epithelia. They introduce a new paradigm for the sorting of heterodimeric transporters in which a hierarchy of apical and BLSS in the catalytic and/or accessory subunits regulates their tissue-specific polarity.
Collapse
Affiliation(s)
- John J Castorino
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hafte T, Fagereng G, Prydz K, Grondahl F, Tveit H. Protein core-dependent glycosaminoglycan modification and glycosaminoglycan-dependent polarized sorting in epithelial Madin-Darby canine kidney cells. Glycobiology 2010; 21:457-66. [DOI: 10.1093/glycob/cwq180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Bennett EP, Chen YW, Schwientek T, Mandel U, Schjoldager KTBG, Cohen SM, Clausen H. Rescue of Drosophila Melanogaster l(2)35Aa lethality is only mediated by polypeptide GalNAc-transferase pgant35A, but not by the evolutionary conserved human ortholog GalNAc-transferase-T11. Glycoconj J 2010; 27:435-44. [PMID: 20422447 DOI: 10.1007/s10719-010-9290-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 01/02/2023]
Abstract
The Drosophila l(2)35Aa gene encodes a UDP-N-acetylgalactosamine: Polypeptide N-acetylgalactosaminyltransferase, essential for embryogenesis and development (J. Biol. Chem. 277, 22623-22638; J. Biol. Chem. 277, 22616-22). l(2)35Aa, also known as pgant35A, is a member of a large evolutionarily conserved family of genes encoding polypeptide GalNAc-transferases. Phylogenetic and functional analyses have proposed that subfamilies of orthologous GalNAc-transferase genes are conserved in species, suggesting that they serve distinct functions in vivo. Based on sequence alignments, pgant35A and human GALNT11 are thought to belong to a distinct subfamily. Recent in vitro studies have shown that pgant35A and pgant7, encoding enzymes from different subfamilies, prefer different acceptor substrates, whereas the orthologous pgant35A and human GALNT11 gene products possess, 1) conserved substrate preferences and 2) similar acceptor site preferences in vitro. In line with the in vitro pgant7 studies, we show that l(2)35Aa lethality is not rescued by ectopic pgant7 expression. Remarkably and in contrast to this observation, the human pgant35A ortholog, GALNT11, was shown not to support rescue of the l(2)35Aa lethality. By use of genetic "domain swapping" experiments we demonstrate, that lack of rescue was not caused by inappropriate sub-cellular targeting of functionally active GalNAc-T11. Collectively our results show, that fly embryogenesis specifically requires functional pgant35A, and that the presence of this gene product during fly embryogenesis is functionally distinct from other Drosophila GalNAc-transferase isoforms and from the proposed human ortholog GALNT11.
Collapse
Affiliation(s)
- Eric P Bennett
- Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
Krahn MP, Rizk S, Alfalah M, Behrendt M, Naim HY. Protocadherin of the liver, kidney, and colon associates with detergent-resistant membranes during cellular differentiation. J Biol Chem 2010; 285:13193-200. [PMID: 20159971 DOI: 10.1074/jbc.m109.080051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protocadherin LKC (PLKC) is a member of the heterogeneous subgroup of protocadherins that was identified and described as a potential tumor-suppressor gene involved in contact inhibition (Okazaki, N., Takahashi, N., Kojima, S., Masuho, Y., and Koga, H. (2002) Carcinogenesis 23, 1139-1148 and Ose, R., Yanagawa, T., Ikeda, S., Ohara, O., and Koga, H. (2009) Mol. Oncol. 3, 54-66). Several aspects of the structure, posttranslational processing, targeting, and function of this new protocadherin are still not known. Here, we demonstrate that the expression of PLKC at the apical membrane domain and its concentration at regions of cell-cell contacts occur concomitantly with significant elevation of PLKC-mRNA levels. Furthermore, it can be found within the adherens junctions, but it does not colocalize with tight junctions proteins ZO-1 and occludin, respectively. Additionally, unlike E-cadherin, PLKC is not redistributed upon Ca(2+) removal. Biosynthetic labeling revealed N- and O-glycosylation as posttranslational modifications as well as a fast transport to the cell surface and a low turnover rate. During differentiation, PLKC associates with detergent-resistant membranes that trigger its redistribution from intracellular membranes to the cell surface. This association occurs concomitant with alterations in the glycosylation pattern. We propose a role for PLKC in the establishment of a proper epithelial cell polarity that requires O-linked glycosylation and association of the protein with detergent-resistant membranes.
Collapse
Affiliation(s)
- Michael P Krahn
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover D-30559, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
The galectins, a family of lectins, modulate distinct cellular processes, such as cancer progression, immune response and cellular development, through their specific binding to extracellular or intracellular ligands. In the past few years, research has unravelled interactions of different galectins with lipids and glycoproteins in the outer milieu or in the secretory pathway of cells. Interestingly, these lectins do not possess a signalling sequence to enter the endoplasmic reticulum as a starting point for the classical secretory pathway. Instead they use a so-called non-classical mechanism for translocation across the plasma membrane and/or into the lumen of transport vesicles. Here, they stabilize transport platforms for apical trafficking or sort apical glycoproteins into specific vesicle populations. Modes of ligand interaction as well as the modulation of binding activities and trafficking pathways are discussed in this review.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | | | | |
Collapse
|
19
|
Catino MA, Paladino S, Tivodar S, Pocard T, Zurzolo C. N- andO-Glycans Are Not Directly Involved in the Oligomerization and Apical Sorting of GPI Proteins. Traffic 2008; 9:2141-50. [DOI: 10.1111/j.1600-0854.2008.00826.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A, Jacob R. Apical Sorting by Galectin-3-Dependent Glycoprotein Clustering. Traffic 2007; 8:379-88. [PMID: 17319896 DOI: 10.1111/j.1600-0854.2007.00539.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial cells are characterized by their polarized organization based on an apical membrane that is separated from the basolateral membrane domain by tight junctions. Maintenance of this morphology is guaranteed by highly specific sorting machinery that separates lipids and proteins into different carrier populations for the apical or basolateral cell surface. Lipid-raft-independent apical carrier vesicles harbour the beta-galactoside-binding lectin galectin-3, which interacts directly with apical cargo in a glycan-dependent manner. These glycoproteins are mistargeted to the basolateral membrane in galectin-3-depleted cells, dedicating a central role to this lectin in raft-independent sorting as apical receptor. Here, we demonstrate that high-molecular-weight clusters are exclusively formed in the presence of galectin-3. Their stability is sensitive to increased carbohydrate concentrations, and cluster formation as well as apical sorting are perturbed in glycosylation-deficient Madin-Darby canine kidney (MDCK) II cells. Together, our data suggest that glycoprotein cross-linking by galectin-3 is required for apical sorting of non-raft-associated cargo.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, 35033 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Chmelar RS, Nathanson NM. Identification of a novel apical sorting motif and mechanism of targeting of the M2 muscarinic acetylcholine receptor. J Biol Chem 2006; 281:35381-96. [PMID: 16968700 DOI: 10.1074/jbc.m605954200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that the M2 receptor is localized at steady state to the apical domain in Madin-Darby canine kidney (MDCK) epithelial cells. In this study, we identify the molecular determinants governing the localization and the route of apical delivery of the M2 receptor. First, by confocal analysis of a transiently transfected glycosylation mutant in which the three putative glycosylation sites were mutated, we determined that N-glycans are not necessary for the apical targeting of the M2 receptor. Next, using a chimeric receptor strategy, we found that two independent sequences within the M2 third intracellular loop can confer apical targeting to the basolaterally targeted M4 receptor, Val270-Lys280 and Lys280-Ser350. Experiments using Triton X-100 extraction followed by OptiPrep density gradient centrifugation and cholera toxin beta-subunit-induced patching demonstrate that apical targeting is not because of association with lipid rafts. 35S-Metabolic labeling experiments with domain-specific surface biotinylation as well as immunocytochemical analysis of the time course of surface appearance of newly transfected confluent MDCK cells expressing FLAG-M2-GFP demonstrate that the M2 receptor achieves its apical localization after first appearing on the basolateral domain. Domain-specific application of tannic acid of newly transfected cells indicates that initial basolateral plasma membrane expression is required for subsequent apical localization. This is the first demonstration that a G-protein-coupled receptor achieves its apical localization in MDCK cells via transcytosis.
Collapse
Affiliation(s)
- Renée S Chmelar
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
22
|
Klapper M, Daniel H, Döring F. Cytosolic COOH terminus of the peptide transporter PEPT2 is involved in apical membrane localization of the protein. Am J Physiol Cell Physiol 2006; 290:C472-83. [PMID: 16107500 DOI: 10.1152/ajpcell.00508.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The peptide transporter PEPT2 is a polytopic transmembrane protein that mediates the cellular uptake of di- and tripeptides and a variety of peptidomimetics. It is widely expressed in mammalian tissues, including kidney, lung, mammary gland, choroid plexus, and glia cells. In renal tubular cells, PEPT2 is exclusively found at the apical membrane. The molecular mechanisms underlying this polarized expression and targeting to the brush-border membrane are not known. We have explored the role of the 36 COOH-terminal amino acid residues in PEPT2 trafficking and apical expression. EGFP-tagged PEPT2 wild-type transporter and various truncated and mutant proteins were expressed in the polarized proximal tubule cell lines SKPT and OK, and the cellular distribution of the fusion proteins was assessed using confocal microscopy. Whereas deletion of the last seven amino acids (delC7) did not alter PEPT2 surface expression, deletion of the next residue (delC8) or up to 30 terminal amino acids resulted in impaired apical expression and distinct accumulation of mutant proteins in endosomal and lysosomal vesicles. Truncation of more amino acids (delC36) containing tyrosine-based motifs led to a rather diffuse intracellular distribution pattern. Mutations introduced at isoleucine-720 (I720A) and leucine-722 (I722A) also caused an impaired surface appearance. Internalization assays revealed a higher endocytotic rate of the PEPT2 mutants I720A, L722A, and delC36. Our data suggest that a three-amino acid stretch (INL) and tyrosine-based motifs within the COOH tail of PEPT2 are involved in PEPT2's apical membrane localization and membrane steady-state level.
Collapse
Affiliation(s)
- Maja Klapper
- Research Group Molecular Nutrition, Univ. of Kiel, Germany
| | | | | |
Collapse
|
23
|
Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S. Cholesterol-dependent Lipid Assemblies Regulate the Activity of the Ecto-nucleotidase CD39. J Biol Chem 2005; 280:26406-14. [PMID: 15890655 DOI: 10.1074/jbc.m413927200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.
Collapse
MESH Headings
- Actins/chemistry
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Apyrase/biosynthesis
- Apyrase/chemistry
- Apyrase/metabolism
- Caveolin 1
- Caveolins/genetics
- Cell Line
- Cell Membrane/metabolism
- Cholesterol/chemistry
- Cholesterol/metabolism
- Cricetinae
- Detergents/pharmacology
- Dogs
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Filipin/pharmacology
- Fluorescent Antibody Technique, Indirect
- Humans
- Immunohistochemistry
- Lipids/chemistry
- Lung/metabolism
- Membrane Microdomains/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Nystatin/pharmacology
- Placenta/metabolism
- Plasmids/metabolism
- Platelet Aggregation
- Protein Binding
- Protein Structure, Tertiary
- Spleen/metabolism
- Sucrose/pharmacology
- Time Factors
- Transfection
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Agathi Papanikolaou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pratt MR, Hang HC, Ten Hagen KG, Rarick J, Gerken TA, Tabak LA, Bertozzi CR. Deconvoluting the functions of polypeptide N-alpha-acetylgalactosaminyltransferase family members by glycopeptide substrate profiling. ACTA ACUST UNITED AC 2005; 11:1009-16. [PMID: 15271359 DOI: 10.1016/j.chembiol.2004.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/05/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
The polypeptide N-alpha-acetylgalactosaminyltransferases (ppGalNAcTs) play a key role in mucin-type O-linked glycan biosynthesis by installing the initial GalNAc residue on the protein scaffold. The preferred substrates and functions of the >20 isoforms in mammals are not well understood. However, current data suggest that glycosylated mucin domains are created by the successive, often hierarchical, action of several specific ppGalNAcTs. Herein we analyzed the glycopeptide substrate preferences of several ppGalNAcT family members using a library screening approach. A 56-member glycopeptide library designed to reflect a diversity of glycan clustering was assayed for substrate activity with ppGalNAcT isoforms using an azido-ELISA. The data suggest that the ppGalNAcTs can be classified into at least four types, which working together, are able to produce densely glycosylated mucin glycoproteins.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lucero HA, Robbins PW. Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 2004; 426:208-24. [PMID: 15158671 DOI: 10.1016/j.abb.2004.03.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/22/2004] [Indexed: 11/18/2022]
Abstract
Lipid rafts are membrane microdomains enriched in saturated phospholipids, sphingolipids, and cholesterol. They have a varied but distinct protein composition and have been implicated in diverse cellular processes including polarized traffic, signal transduction, endo- and exo-cytoses, entrance of obligate intracellular pathogens, and generation of pathological forms of proteins associated with Alzheimer's and prion diseases. Raft proteins can be permanently or temporarily associated to lipid rafts. Here, we review recent advances on the biochemical and cell biological characterization of rafts, and on the emerging concept of the temporary residency of proteins in rafts as a regulatory mechanism of their biological activity.
Collapse
Affiliation(s)
- Héctor A Lucero
- Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| | | |
Collapse
|
26
|
Leuenberger B, Hahn D, Pischitzis A, Hansen MK, Sterchi EE. Human meprin beta: O-linked glycans in the intervening region of the type I membrane protein protect the C-terminal region from proteolytic cleavage and diminish its secretion. Biochem J 2003; 369:659-65. [PMID: 12387727 PMCID: PMC1223113 DOI: 10.1042/bj20021398] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Revised: 10/17/2002] [Accepted: 10/21/2002] [Indexed: 12/19/2022]
Abstract
Human meprin (hmeprin; N -benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase; EC 3.4.24.18) is a member of the astacin family of zinc metalloendopeptidases. The major site of expression is the brush border membrane of small intestinal and kidney epithelial cells. The enzyme is a type I integral membrane protein composed of two distinct subunits, alpha and beta, which are linked by disulphide bridges. The enzyme complex is attached to the plasma membrane only via the beta-subunit. The alpha-subunit is cleaved in the endoplasmic reticulum in a constitutive manner to remove the C-terminal membrane anchor which leads to secretion of the protein. While the beta-subunit of hmeprin remains largely attached to the brush-border membrane some proteolytic processing occurs intracellularly as well as at the cell surface and results in the release of this subunit from the cell. In the present paper, we report that the beta-subunit bears multiple O-linked sugar residues in the intervening domain. In contrast, the alpha-subunit does not contain O-linked oligosaccharides. Our results show that the O-linked carbohydrate side chains in hmeprinbeta are clustered around a 13 amino acid sequence that contains the main cleavage site for proteolytic processing of the subunit. Prevention of O-glycosylation by specific inhibitors leads to enhanced proteolytic processing and the consequence is an increased release of hmeprinbeta into the culture medium.
Collapse
Affiliation(s)
- Boris Leuenberger
- Institute of Biochemistry and Molecular Biology and Department of Pediatrics, Faculty of Medicine, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Dillon C, Creer A, Kerr K, Kümin A, Dickson C. Basolateral targeting of ERBB2 is dependent on a novel bipartite juxtamembrane sorting signal but independent of the C-terminal ERBIN-binding domain. Mol Cell Biol 2002; 22:6553-63. [PMID: 12192053 PMCID: PMC135631 DOI: 10.1128/mcb.22.18.6553-6563.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ERBB2 is a receptor tyrosine kinase present on the basolateral membrane of polarized epithelia and has important functions in organ development and tumorigenesis. Using mutagenic analyses and Madin-Darby canine kidney (MDCK) cells, we have investigated the signals that regulate basolateral targeting of ERBB2. We show that basolateral delivery of ERBB2 is dependent on a novel bipartite juxtamembrane sorting signal residing between Gln-692 and Thr-701. The signal shows only limited sequence homology to known basolateral targeting signals and is both necessary and sufficient for correct sorting of ERBB2. In addition we demonstrate that this motif can function as a dominant basolateral targeting signal by its ability to redirect the apically localized P75 neurotrophin receptor to the basolateral membrane domain of polarized epithelial cells. Interestingly, LLC-PK1 cells, which are deficient for the micro 1B subunit of the AP1B adaptor complex, missort a large proportion of ERBB2 to the apical membrane domain. This missorting can be partially corrected by the introduction of micro 1B, suggesting a possible role for AP1B in ERBB2 endosomal trafficking. Furthermore, we find that the C-terminal ERBIN binding domain of ERBB2 is not necessary for its basolateral targeting in MDCK cells.
Collapse
|