1
|
He ZQ, Hu YB, Wang D, Liu YT, Yang CY, Qian D, Zhou RM, Lu DL, Li SH, Liu Y, Zhang HW. Insecticide resistance of Anopheles sinensis after elimination of malaria in Henan Province, China. Parasit Vectors 2023; 16:180. [PMID: 37268968 DOI: 10.1186/s13071-023-05796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Historically, malaria due to Plasmodium vivax has been epidemic in Henan Province, China, with Anopheles sinensis as the main vector. The most effective measures to prevent malaria transmission are based on vector control through the use of insecticides. However, insecticides exert a strong selective pressure on mosquito populations for insecticide resistance. The aim of this study was to investigate the susceptibility profile and population genetic characteristics of An. sinensis to provide basic data and scientific guidance for the study of resistance mechanisms and the control of An. sinensis in Henan Province. METHODS Adult Anopheles mosquitoes were collected at sites near local farmers' sheepfolds, pigsties and/or cowsheds located in Pingqiao, Xiangfu, Xiangcheng and Tanghe counties/districts of Henan Province during July-September 2021 for insecticide susceptibility testing. Molecular identification of collected mosquitoes as belonging to genus Anopheles was by PCR, and the frequencies of mutations in the knockdown resistance gene (kdr) and acetylcholinesterase-1 gene (ace-1) were detected using gene amplification. The mitochondrial DNA cytochrome oxidase subunit I (COI) gene was amplified in deltamethrin-resistant and deltamethrin-sensitive mosquitoes to analyze the genetic evolutionary relationship. RESULTS A total of 1409 Anopheles mosquitoes were identified by molecular identification, of which 1334 (94.68%) were An. sinensis, 28 (1.99%) were An. yatsushiroensis, 43 (3.05%) were An. anthropophagus and four (0.28%) were An. belenrae. The 24-h mortality rates of An. sinensis in Pingqiao, Tanghe, Xiangcheng and Xiangfu counties/districts exposed to deltamethrin were 85.85%, 25.38%, 29.73% and 7.66%, respectively; to beta-cyfluthrin, 36.24%, 70.91%, 34.33% and 3.28%, respectively; to propoxur, 68.39%, 80.60%, 37.62% and 9.29%, respectively; and to malathion, 97.43%, 97.67%, 99.21% and 64.23%, respectively. One mutation, G119S, was detected in the ace-1 gene. The frequencies of the main genotypes were 84.21% of specimens collected in Xiangfu (G/S), 90.63% of speciments collected in Xiangcheng (G/G) and 2.44% of speciments collected in Tanghe (S/S). Significantly higher G119S allele frequencies were observed in both propoxur- and malathion-resistant mosquitoes than in their sensitive counterparts in the Tanghe population (P < 0.05). Three mutations, L1014F (41.38%), L1014C (9.15%) and L1014W (0.12%), were detected in the kdr gene. The genotypes with the highest frequency in the populations of An. sinensis in Xiangfu and Tanghe were the mutant TTT (F/F) and wild-type TTG (L/L), at 67.86% (57/84) and 74.29% (52/70), respectively. In Pingqiao and Xiangfu, higher frequencies of the L1014F allele and lower frequencies of the L1014C allele were observed in mosquitoes resistant for beta-cyfluthrin than in those which were sensitive for this insecticide (P < 0.05). The results of Tajima's D and of Fu and Li's D and F were not significantly negative (P > 0.10), and each haplotype was interlaced and did not form two distinct branches. CONCLUSIONS High resistance to pyrethroids and propoxur was observed at four sites, but the resistance to malathion varied according to the location. Anopheles belenrae and the L1014W (TGG) mutation in An. sinensis were first discovered in Henan Province. The deltamethrin-resistant and deltamethrin-sensitive mosquito populations showed no genetic differentiation. The generation of resistance might be the result of the combination of multiple factors.
Collapse
Affiliation(s)
- Zhi-Quan He
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Ya-Bo Hu
- Zhengzhou Second Hospital, No. 90 Hanghai Middle Road, Erqi District, Zhengzhou, 450016, China
| | - Dan Wang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Yu-Ting Liu
- College of Public Health, Zhengzhou University, No.100 Science Avenue, High-Tech District, Zhengzhou, 450016, China
| | - Cheng-Yun Yang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Rui-Min Zhou
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - De-Ling Lu
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Su-Hua Li
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China.
| | - Hong-Wei Zhang
- Department of Parasite Disease Control and Prevention, Henan Center for Disease Control and Prevention, Zhengzhou, China.
- Henan Provincial Medical Key Laboratory of Parasitic Pathogen and Vector, No. 105 South Agricultural Road, Zhengdong New District, Zhengzhou, 450016, China.
| |
Collapse
|
2
|
Li J, Li F, Wu G, Gui F, Li H, Xu L, Hao X, Zhao Y, Ding X, Qin X. Acetylcholinesterase inhibitory activity of sesquiterpenoids isolated from Laggera pterodonta. FRONTIERS IN PLANT SCIENCE 2023; 14:1074184. [PMID: 36844064 PMCID: PMC9950556 DOI: 10.3389/fpls.2023.1074184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Plant-derived natural products are important resources for pesticide discovery. Acetylcholinesterase (AChE) is a well-validated pesticide target, and inhibiting AChE proves fatal for insects. Recent studies have shown that the potential of various sesquiterpenoids as AChE inhibitors. However, few studies have been conducted with eudesmane-type sesquiterpenes with AChE inhibitory effects. Therefore, in this research, we isolated two new sesquiterpenes, laggeranines A (1) and B (2), along with six known eudesmane-type sesquiterpenes (3-8) from Laggera pterodonta, and characterized their structures and the inhibitory effect they exerted on AChE. The results showed that these compounds had certain inhibitory effects on AChE in a dose-dependent manner, of which compound 5 had the best inhibitory effect with IC50 of 437.33 ± 8.33 mM. As revealed by the Lineweaver-Burk and Dixon plots, compound 5 was observed to suppress AChE activity reversibly and competitively. Furthermore, all compounds exhibited certain toxicity levels on C. elegans. Meanwhile, these compounds had good ADMET properties. These results are significant for the discovery of new AChE targeting compounds, and also enrich the bioactivity activity repertoire of L. pterodonta.
Collapse
Affiliation(s)
- Jinliang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fengchao Li
- College of Water Conservancy, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Furong Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Hongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaoping Qin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Xu J, Wang Z, Wang Y, Ma H, Zhu H, Liu J, Zhou Y, Deng X, Zhou X. ABCC2 participates in the resistance of Plutella xylostella to chemical insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:52-59. [PMID: 31836054 DOI: 10.1016/j.pestbp.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The ABCC2 protein of Plutella xylostella is an important target of Cry1A toxins from Bacillus thuringiensis (Bt), but whether this protein is involved in the resistance of P. xylostella to other insecticides remains unclear. In this study, the abcc2 gene of P. xylostella was cloned and the expression levels of Pxabcc2 in susceptible and resistant strains were investigated. ABCC2 was found to be expressed 3.2-6.7-fold higher in the resistant strain than in the susceptible strain; in the surviving P. xylostella, ABCC2 levels were significantly higher when treated with indoxacarb, avermectin, and beta-cypermethrin. We constructed a stable ABCC2-expressing HEK-293 cell line to reveal the contribution of ABCC2 to insecticide resistance. The avermectin and chlorfenapyr sensitivities of the stably-transfected cell line were significantly lower than those of the control cells. The intracellular avermectin concentration was significantly lower in the stably-transfected cell line than in the control cells after four hours of exposure. This study shows that up-regulated ABCC2 expression is related to insecticide resistance in P. xylostella. Moreover, we used RNA interference technology to reduce ABCC2 levels in P. xylostella. Down-regulating ABCC2 expression did not significantly affect avermectin or chlorfenapyr resistance in P. xylostella. We speculate that increased ABCC2 expression can enhance metabolic resistance in P. xylostella. This study also provides new insights into cross-resistance between B. thuringiensis toxins and chemical insecticides.
Collapse
Affiliation(s)
- Jie Xu
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha 410128, China
| | - Zanyong Wang
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yafei Wang
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha 410128, China
| | - Haihao Ma
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hang Zhu
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jia Liu
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Zhou
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xile Deng
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaomao Zhou
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
5
|
Bosch D, Avilla J, Musleh S, Rodríguez MA. Target-site mutations (AChE and kdr), and PSMO activity in codling moth (Cydia pomonella (L.) (Lepidoptera: Tortricidae)) populations from Spain. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 146:52-62. [PMID: 29626992 DOI: 10.1016/j.pestbp.2018.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Dolors Bosch
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Sustainable Plant Protection Program, Avinguda Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Jesús Avilla
- Department of Crop and Forest Sciences, Agrotecnio, University of Lleida (UdL), Avinguda Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Selim Musleh
- Núcleo Milenio INVASAL, Concepción, Chile; Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | - Marcela A Rodríguez
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
6
|
Wang MM, Xing LY, Ni ZW, Wu G. Identification and characterization of ace1-type acetylcholinesterase in insecticide-resistant and -susceptible Propylaea japonica (Thunberg). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:253-262. [PMID: 28747242 DOI: 10.1017/s0007485317000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Characterization and gene cloning of acetylecholinesterase (AChE) in the insecticide-resistant (R) and -susceptible (S) insects have been reported in the past. However, the studies focused mostly on herbivorous pests, rather than predacious species, such as ladybird beetles. Using R and S Propylaea japonica (thunberg), a full-length cDNA sequence (2928 bp) of the ace1-type AChE gene was determined for the first time. The ace1 encoding a protein of 645 amino acids contained typical conserved motifs, such as FGESAG domains, catalytic triad, acyl pocket, oxyanino hole, choline binding site, peripheral anionic site, omega loop and conserved aromatic residues. R P. japonica displayed 50-times greater resistance to chlorpyrifos or mathamidophos with a significantly lower AChE sensitivity to paraoxon, malaoxon, chlorpyrifos or methamidophos than its S counterpart. Five amino acids in the ace1 of R P. japonica differed from those found in S P. japonica. One of them, F358S, located in the acyl-binding pocket, might play a crucial role in the resistance of the insect to organophosphates (OPs). Whereas, K493E and I538V, which were close to some of the conserved aromatic amino acids (i.e., H509, Y511, and W499) in the gorge, and G571R and T576A near C593 that formed the disulfide bonds with C471, might also involve in the change of insecticide resistance in P. japonica. AChE insensitivity and amino acid replacements, particularly F358S, might be the determining factors in the alteration of OPs-resistance in P. japonica.
Collapse
Affiliation(s)
- M M Wang
- Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University,Fuzhou, Fujian 350002,China
| | - L Y Xing
- Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University,Fuzhou, Fujian 350002,China
| | - Z W Ni
- Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University,Fuzhou, Fujian 350002,China
| | - G Wu
- Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University,Fuzhou, Fujian 350002,China
| |
Collapse
|
7
|
Pezzementi L, Geiss C, King W, Lenfant N, Chatonnet A. Molecular characterization of an acetylcholinesterase from the hemichordate Saccoglossus kowalevskii. Comp Biochem Physiol B Biochem Mol Biol 2014; 181:50-8. [PMID: 25475711 DOI: 10.1016/j.cbpb.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 01/12/2023]
Abstract
Our goal is to understand the evolution of the structure and function of cholinesterases (ChEs) in the deuterostome lineage and in particular to understand the role of paralogous enzymes such as the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) of the vertebrates. We have, in the past, characterized ChEs in two acraniate deuterostomes: amphioxus (a cephalochordate) and Ciona intestinalis (a urochordate). Here we present results on an AChE from a basal deuterostome, a model hemichordate, the acorn worm Saccoglossus kowalevskii. Of the eight genes coding for putative ChE-like proteins possessing Trp84, a characteristic of the choline-binding catalytic subsite of ChEs, we cloned a full length cDNA with a coding sequence typical of an acraniate AChE possessing a C-terminal exon coding for a typical T-peptide. We then used in vitro expression of the cDNA in COS-7 cells to characterize the AChE kinetically, pharmacologically, and biochemically. The cDNA codes for an AChE (AChE1), which is found in monomeric (G1), dimeric (G2), and tetrameric (G4) forms; and interacts with poly-L-proline, PRiMA, and ColQ, characteristic of an AChE possessing a T-peptide. The expression of the AChE is temperature dependent, with greater expression at 30 °C. We discuss the implications of these data for the evolution of the ChEs in the deuterostomes.
Collapse
Affiliation(s)
- Leo Pezzementi
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA.
| | - Cybil Geiss
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - William King
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Nicolas Lenfant
- INRA Dynamique Musculaire et Métabolisme, 34000 Montpellier, France; Université de Montpellier, 34000 Montpellier, France
| | - Arnaud Chatonnet
- INRA Dynamique Musculaire et Métabolisme, 34000 Montpellier, France; Université de Montpellier, 34000 Montpellier, France
| |
Collapse
|
8
|
Reyes-Solis GDC, Saavedra-Rodriguez K, Suarez AF, Black WC. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti. PLoS Negl Trop Dis 2014; 8:e3177. [PMID: 25330200 PMCID: PMC4199591 DOI: 10.1371/journal.pntd.0003177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. METHODOLOGY/PRINCIPAL FINDINGS Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. CONCLUSIONS/SIGNIFICANCE Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.
Collapse
Affiliation(s)
- Guadalupe del Carmen Reyes-Solis
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adriana Flores Suarez
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - William C. Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
9
|
Functional study on the mutations in the silkworm (Bombyx mori) acetylcholinesterase type 1 gene (ace1) and its recombinant proteins. Mol Biol Rep 2013; 41:429-37. [PMID: 24323194 PMCID: PMC3889635 DOI: 10.1007/s11033-013-2877-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022]
Abstract
The acetylcholinesterase of Lepidoptera insects is encoded by two genes, ace1 and ace2. The expression of the ace1 gene is significantly higher than that of the ace2 gene, and mutations in ace1 are one of the major reasons for pesticide resistance in insects. In order to investigate the effects of the mutations in ace1’s characteristic sites on pesticide resistance, we generated mutations for three amino acids using site-directed mutagenesis, which were Ala(GCG)303Ser(TCG), Gly(GGA)329Ala(GCA) and Leu (TCT)554Ser(TTC). The Baculovirus expression system was used for the eukaryotic expression of the wild type ace1 (wace1) and the mutant ace1 (mace1). SDS-PAGE and Western blotting were used to detect the targeting proteins with expected sizeof about 76 kDa. The expression products were purified for the determination of AChE activity and the inhibitory effects of physostigmine and phoxim. We observed no significant differences in the overall activity of the wild type and mutant AChEs. However, with 10 min of physostigmine (10 μM) inhibition, the remaining activity of the wild type AChE was significantly lower than that of the mutant AChE. Ten min inhibition with 33.4 μM phoxim also resulted in significantly lower remaining activity of the wild type AChE than that of the mutant AChE. These results indicated that mutations for the three amino acids reduced the sensitivity of AChE to physostigmine and phoxim, which laid the foundation for future in vivo studies on AChE’s roles in pesticide resistance.
Collapse
|
10
|
Ahmadi F, Jafari B, Rahimi-Nasrabadi M, Ghasemi S, Ghanbari K. Proposed model for in vitro interaction between fenitrothion and DNA, by using competitive fluorescence, (31)P NMR, (1)H NMR, FT-IR, CD and molecular modeling. Toxicol In Vitro 2012; 27:641-50. [PMID: 23153512 DOI: 10.1016/j.tiv.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/24/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
In this work we proposed a model for in vitro interaction of fenitrothion (FEN) with calf thymus-DNA by combination of multispectroscopic and two dimensional molecular modeling (ONIOM) methods. The circular dichroism results showed that FEN changes the conformation of B-DNA and caused some changes to C-DNA form. The FT-IR results confirmed a partial intercalation between FEN and edges of all base pairs. The competitive fluorescence, using methylene blue as fluorescence probe, in the presence of increasing amounts of FEN, revealed that FEN is able to release the non-intercalated methylene blue from the DNA. The weak chemical shift and peak broadening of (1)H NMR spectrum of FEN in the presence of DNA confirmed a non-intercalation mode. The (31)P NMR showed that FEN interacts more with DNA via its -NO2 moiety. The ONIOM, based on the hybridization of QM/MM (DFT, 6.31++G (d,p)/UFF) methodology, was also performed by Gaussian 2003 package. The results revealed that the interaction is base sequence dependent, and FEN interacts more with AT base sequences.
Collapse
Affiliation(s)
- Farhad Ahmadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | | | | | | |
Collapse
|
11
|
Kakani EG, Bon S, Massoulié J, Mathiopoulos KD. Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:150-158. [PMID: 21112395 DOI: 10.1016/j.ibmb.2010.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B. oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance. OP-resistance in the olive fly was previously shown to be associated with two mutations in the acetylcholinesterase (AChE) enzyme that, apparently, hinder the entrance of the OP into the active site. The search for additional mutations in the ace gene that encodes AChE revealed a short deletion of three glutamines (Δ3Q) from a stretch of five glutamines, in the C-terminal peptide that is normally cleaved and substituted by a GPI anchor. We verified that AChEs from B. oleae and other Dipterans are actually GPI-anchored, although this is not predicted by the "big-PI" algorithm. The Δ3Q mutation shortens the unusually long hydrophilic spacer that follows the predicted GPI attachment site and may thus improve the efficiency of GPI anchor addition. We expressed the wild type B. oleae AChE, the natural mutant Δ3Q and a constructed mutant lacking all 5 consecutive glutamines (Δ5Q) in COS cells and compared their kinetic properties. All constructs presented identical K(m) and k(cat) values, in agreement with the fact that the mutations did not affect the catalytic domain of the enzyme. In contrast, the mutants produced higher AChE activity, suggesting that a higher proportion of the precursor protein becomes GPI-anchored. An increase in the number of GPI-anchored molecules in the synaptic cleft may reduce the sensitivity to insecticides.
Collapse
Affiliation(s)
- Evdoxia G Kakani
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26, Larissa 41221, Greece
| | | | | | | |
Collapse
|
12
|
Alon M, Alon F, Nauen R, Morin S. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:940-949. [PMID: 18721883 DOI: 10.1016/j.ibmb.2008.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
Organophosphate (OP) insecticides are inhibitors of the enzyme acetylcholinesterase (AChE), which terminates nerve impulses by catalyzing the hydrolysis of the neurotransmitter acetylcholine. Previous biochemical studies in Bemisia tabaci (Hemiptera: Aleyrodidae) proposed the existence of two molecular mechanisms for OPs' resistance: carboxylesterase- (COE) mediated hydrolysis or sequestration and decreased sensitivity of AChE. Here, two acetylcholinesterase genes, ace1 and ace2, have been fully cloned and sequenced from an OP-resistant strain and an OP-susceptible strain of B. tabaci. Comparison of nucleic acid and deduced amino acid sequences revealed only silent nucleotide polymorphisms in ace2, and one mutation, Phe392Trp (Phe331 in Torpedo californica), in ace1 of the resistant strain. The Phe392Trp mutation is located in the acyl pocket of the active site gorge and was recently shown to confer OP insensitivity in Culex tritaeniorhynchus. In addition, we also report on the isolation of two carboxylesterase genes (coe1 and coe2) from B. tabaci, the first carboxylesterases to be reported from this species. We show that one of the genes, coe1, is overexpressed ( approximately 4-fold) in the OP-resistant strain, and determine, by quantitative PCR, that the elevated expression is not related to gene amplification but probably to modified transcriptional control. Lastly, we bring new biochemical evidence that support the involvement of both AChE insensitivity and COE metabolism in resistance to OP insecticides in the resistant strain.
Collapse
Affiliation(s)
- Michal Alon
- Department of Entomology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
13
|
Hsu JC, Wu WJ, Haymer DS, Liao HY, Feng HT. Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:146-154. [PMID: 18207076 DOI: 10.1016/j.ibmb.2007.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/06/2007] [Accepted: 10/08/2007] [Indexed: 05/25/2023]
Abstract
Alterations of the structure and activity of the enzyme acetylcholinesterase (AChE) leading to resistance to organophosphate insecticides have been examined in the oriental fruit fly, Bactrocera dorsalis (Hendel), an economic pest of great economic importance in the Asia-Pacific region. We used affinity chromatography to purify AChE isoenzymes from heads of insects from lines showing the phenotypes of resistance and sensitivity to insecticide treatments. The AChE enzyme from a strain selected for resistance to the insecticide fenitrothion shows substantially lower catalytic efficiency for various substrates and 124-, 373- and 5810-fold less sensitivity to inhibition by paraoxon, eserine and fenitroxon, respectively, compared to that of the fenitrothion susceptible line. Using peptide mass fingerprinting, we also show how specific changes in the structure of the AChE enzymes in these lines relate to the resistant and sensitive alleles of the AChE (ace) gene characterized previously in this species (described in Hsu, J.-C., Haymer, D.S., Wu, W.-J., Feng, H.-T., 2006. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Mol. Biol. 36, 396-402). Polyclonal antibodies specific to the purified isoenzymes and real-time PCR were also used to show that both the amount of the isoenzyme present and the expression levels of the ace genes were not significantly different between the R and S lines, indicating that quantitative changes in gene expression were not significantly contributing to the resistance phenotype. Overall, our results support a direct causal relationship between the mutations previously identified in the ace gene of this species and qualitative alterations of the structure and function of the AChE enzyme as the basis for the resistance phenotype. Our results also provide a basis for further comparisons of insecticide resistance phenomena seen in closely related species, such as Bactrocera oleae, as well as in a wide range of more distantly related insect species.
Collapse
Affiliation(s)
- Ju-Chun Hsu
- Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, 11, Guang ming Road, Wufong, 413 Taichung Hsien, Taiwan.
| | | | | | | | | |
Collapse
|
14
|
Hsu JC, Haymer DS, Wu WJ, Feng HT. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:396-402. [PMID: 16651186 DOI: 10.1016/j.ibmb.2006.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/08/2006] [Accepted: 02/21/2006] [Indexed: 05/08/2023]
Abstract
Mutations in the gene encoding the enzyme acetylcholinesterase (AChE) of the oriental fruit fly, Bactrocera dorsalis, associated with resistance to an organophosphorus insecticide have been characterized. Three point mutations producing nonsynonymous changes in the predicted amino acid sequence of the product of the B. dorsalis ace gene in resistant vs. susceptible flies have been identified. One of these changes is unique to B. dorsalis while the other two occur at sites that are identical to mutations previously described for another Bactrocera species. Although the precise role of the third mutation is not clearly established, the independent origin of two identical alterations in these two species strongly supports the idea proposed previously that molecular changes associated with insecticide resistance in key genes and enzymes such as AChE are largely constrained to a limited number of sites. The results obtained here also suggest that the widespread use of organophosphorus insecticides will likely lead to a predictable acquisition of resistance in wild populations of B. dorsalis as well as other pest species. For surveys of B. dorsalis populations that may develop resistance, diagnostic tests using PCR-RFLP based methods for detecting the presence of all three mutations in individual flies are described.
Collapse
Affiliation(s)
- Ju-Chun Hsu
- Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, 11 Kuang Ming Road, Wufeng 413, Taichung Hsien, Taiwan
| | | | | | | |
Collapse
|
15
|
Sousa-Polezzi RDC, Bicudo HEMDC. Genetic variation along time in a Brazilian population of Aedes aegypti (Diptera: Culicidae), detected by changes in the esterase patterns. Genetica 2005; 125:43-53. [PMID: 16175454 DOI: 10.1007/s10709-005-4915-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 03/23/2005] [Indexed: 11/29/2022]
Abstract
Aedes aegypti from the Brazilian cities of São José do Rio Preto (SJ) and Goiânia (GO) were analyzed as to their esterase patterns and the results were compared with data obtained about 5 years before for SJ population. Esterase bands not detected in the previous study were now observed in mosquitoes from both SJ and GO populations, being the last considered a population resistant to insecticides. Other similarities between SJ and GO populations in this study, and some differences in comparison with the previous data on SJ were observed, involving, in addition to changes in band type, changes in frequency of mosquitoes expressing them and differential gene activation during development. As it is generally true for genetic features, changes in the esterase patterns are expected to be the result of factors such as selection by environmental conditions and genetic drift. In the present case, continuous use of insecticides aiming mosquito population size control in SJ by sanitary authorities could be involved in the observed changes. Changed esterases were classified as carboxylesterases and cholinesterases, which are enzymes already shown to take part in the development of resistance in several organisms. In addition, data obtained in the elapsed time by authorities responsible for the mosquito control has shown increasing insecticide resistance of SJ population mosquitoes parallel to increase in the total amount of esterases, reinforcing the mentioned possibility.
Collapse
Affiliation(s)
- Rita de Cássia Sousa-Polezzi
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Biologia, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | | |
Collapse
|
16
|
Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact 2005; 157-158:257-61. [PMID: 16274684 DOI: 10.1016/j.cbi.2005.10.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance-modified acetylcholinesterases have been described in many insect species and sequencing of their genes has allowed several point mutations to be described. Most mutations line the active site gorge. Each mutation provides a specific resistance pattern: it confers resistance to one insecticide but may increase sensitivity to another. Most mutations alter hydrolysis of the substrate by decreasing the rate of enzyme deacetylation and by diminishing the stability of the enzyme. Mutations are often found in combination in the same protein. This has several consequences: it increases the level of resistance, it enlarges the spectrum of resistance and it may restore the catalytic efficiency of the enzyme. Natural populations are heterogeneous, composed of a mixture of different alleles.
Collapse
Affiliation(s)
- D Fournier
- IPBS, Biotechnologie des Proteines, 205 route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
17
|
Guerrero FD, Miller RJ, Rousseau ME, Sunkara S, Quackenbush J, Lee Y, Nene V. BmiGI: a database of cDNAs expressed in Boophilus microplus, the tropical/southern cattle tick. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:585-595. [PMID: 15857764 DOI: 10.1016/j.ibmb.2005.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 05/24/2023]
Abstract
We used an expressed sequence tag approach to initiate a study of the genome of the southern cattle tick, Boophilus microplus. A normalized cDNA library was synthesized from pooled RNA purified from tick larvae which had been subjected to different treatments, including acaricide exposure, heat shock, cold shock, host odor, and infection with Babesia bovis. For the acaricide exposure experiments, we used several strains of ticks, which varied in their levels of susceptibility to pyrethroid, organophosphate and amitraz. We also included RNA purified from samples of eggs, nymphs and adult ticks and dissected tick organs. Plasmid DNA was prepared from 11,520 cDNA clones and both 5' and 3' sequencing performed on each clone. The sequence data was used to search public protein databases and a B. microplus gene index was constructed, consisting of 8270 unique sequences whose associated putative functional assignments, when available, can be viewed at the TIGR website (http://www.tigr.org/tdb/tgi). A number of novel sequences were identified which possessed significant sequence similarity to genes, which might be involved in resistance to acaricides.
Collapse
Affiliation(s)
- F D Guerrero
- USDA-ARS, Knipling Bushland US Livestock Insect Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX 78028, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Fallang A, Ramsay JM, Sevatdal S, Burka JF, Jewess P, Hammell KL, Horsberg TE. Evidence for occurrence of an organophosphate-resistant type of acetylcholinesterase in strains of sea lice (Lepeophtheirus salmonis Krøyer). PEST MANAGEMENT SCIENCE 2004; 60:1163-1170. [PMID: 15578596 DOI: 10.1002/ps.932] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acetylcholinesterase (AChE) is the target of a major pesticide family, the organophosphates, which were extensively used as control agents of sea lice on farmed salmonids in the early 1990s. From the mid-1990s the organophosphates dichlorvos and azamethiphos were seriously compromised by the development of resistance. AChE insensitive to organophosphate chemotherapeutants has been identified as a major resistance mechanism in numerous arthropod species, and in this study, target-site resistance was confirmed in the crustacean Lepeophtheirus salmonis Krøyer isolated from several fish-farming areas in Norway and Canada. A bimolecular rate assay demonstrated the presence of two AChE enzymes with different sensitivities towards azamethiphos, one that was rapidly inactivated and one that was very slowly inactivated. To our knowledge this is the first report of target-site resistance towards organophosphates in a third class of arthropods, the Crustacea.
Collapse
Affiliation(s)
- Anders Fallang
- The Norwegian School of Veterinary Science, PO Box 8146 Dep, N-0033 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
19
|
Temeyer KB, Davey RB, Chen AC. Identification of a third Boophilus microplus (Acari: Ixodidae) cDNA presumptively encoding an acetylcholinesterase. JOURNAL OF MEDICAL ENTOMOLOGY 2004; 41:259-268. [PMID: 15185924 DOI: 10.1603/0022-2585-41.3.259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oligodeoxynucleotide primers, based on amino acid sequences conserved in known acetylcholinesterases (AChEs), were used in reverse-transcription polymerase chain reaction (RT-PCR) with mRNA from Boophilus microplus (Canestrini) as the template. Primer walking and rapid amplification of cDNA ends (RACE) techniques were used to complete the cDNA sequence identified by RT-PCR. The complete B. microplus cDNA sequence contained an open reading frame encoding a 620 amino acid protein with a 20 amino acid signal peptide at the N-terminus targeting the protein for the secretion pathway. BLAST searches of GenBank using the presumptively encoded protein revealed highest sequence similarity to AChEs. The presumptively encoded protein was of similar size and structural properties to other identified AChEs, including the presence of the catalytic triad (Ser, Glu, His) and appropriate placement of internal cysteines to yield three internal disulfide bonds corresponding to those of known AChEs. Putative conserved domains identified the sequence as a member of the carboxylesterase family, pfam00135.8, of which AChE is a member. This cDNA therefore presumptively encodes a third transcribed AChE (AChE3) cDNA of B. microplus. Comparison of the three AChE eDNA sequences expressed in B. microplus demonstrated no discernible nucleotide sequence homology and relatively low amino acid sequence homology, strongly suggesting that they are not alleles of one another. The potential presence of multiple expressed AChEs in B. microplus suggests alternative mechanisms for development of resistance to pesticides that target AChE. The homology-based identification of a third expressed AChE in B. microplus is a surprising result and strongly implies the need for confirmation of gene identity for presumptive AChEs.
Collapse
Affiliation(s)
- Kevin B Temeyer
- Knipling-Bushland United States Livestock Insects Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Kerrville, TX 78028-9184, USA
| | | | | |
Collapse
|
20
|
Laranja AT, Manzatto AJ, Campos Bicudo HEMD. Effects of caffeine and used coffee grounds on biological features of Aedes aegypti (Diptera, Culicidae) and their possible use in alternative control. Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000400004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Abstract
Genomic technologies are revealing several mechanisms of insecticide resistance involving enhanced detoxification or reduced target-site sensitivity that had previously defied molecular analyses. Genome projects are also revealing some potentially far-reaching consequences for pest-insect genomes of the rapid accumulation of multiple resistance mutations in very short periods of evolutionary time.
Collapse
Affiliation(s)
- John G Oakeshott
- Commonwealth Scientific and Industrial Research Organisation Entomology, Clunies Ross Street, Black Mountain, ACT 2601, Australia.
| | | | | | | |
Collapse
|
22
|
Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Janes RW, Hemingway J. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. INSECT MOLECULAR BIOLOGY 2002; 11:329-336. [PMID: 12144698 DOI: 10.1046/j.1365-2583.2002.00343.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A 2.2-kb full length cDNA containing an ORF encoding a putative acetylcholinesterase (AChE) precursor of 673 amino acid residues was obtained by a combined degenerate PCR and RACE strategy from an organophosphate-susceptible Bactrocera oleae strain. A comparison of cDNA sequences of individual insects from susceptible and resistant strains, coupled with an enzyme inhibition assay with omethoate, indicated a novel glycine-serine substitution (G488S), at an amino acid residue which is highly conserved across species (G396 of Torpedocalifornica AChE), as a likely cause of AChE insensitivity. This mutation was also associated with a 35-40% reduction in AChE catalytic efficiency. The I199V substitution, which confers low levels of resistance in Drosophila, was also present in B. oleae (I214V) and in combination with G488S produced up to a 16-fold decrease in insecticide sensitivity. This is the first agricultural pest where resistance has been associated with an alteration in AChE, which arises from point mutations located within the active site gorge of the enzyme.
Collapse
Affiliation(s)
- J G Vontas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gao JR, Kambhampati S, Zhu KY. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:765-775. [PMID: 12044493 DOI: 10.1016/s0965-1748(01)00159-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An acetylcholinesterase (AChE, EC 3.1.1.7) cDNA was cloned and characterized from a greenbug (Schizaphis graminum (Rondani)) cDNA library. The complete cDNA (3283 bp) contains a 2028-bp open reading frame encoding 676 amino acid residues. The putative AChE preproenzyme has a 17 amino acid signal peptide, a 78 amino acid activation peptide and a mature enzyme of 581 amino acid residues. The first nine amino acid residues (YTSDDPLII) that were determined by sequencing the N-terminus of a 72-kDa AChE purified from the greenbug matched the nine residues deduced from the cDNA. The key amino acid residues, including the three residues Ser206 (200 in Torpedo), Glu332 (327) and His446 (440) forming a catalytic triad, three pairs of cysteine putatively forming intrachain disulfide bonds, and 10 out of the 14 aromatic residues lining the active site gorge of the Torpedo AChE, are conserved. However, Ser336 (Phe331) in the greenbug substituted an aromatic amino acid residue that is conserved in all other known AChEs. Northern blot analysis of mRNA revealed a 3.7-kb transcript, and Southern blot analysis suggested a single copy of this gene in the greenbug. The deduced amino acid sequence is most similar to AChE1 of the nematodes Caenorhabditis briggsae and C. elegans with 43% identity. Phylogenetic analysis showed that the greenbug AChE formed a cluster with those of nematodes, a squid and ticks, and grouped out of the insect cluster. This result suggests that the cloned gene evolved from a different duplicate gene lineage of insect AChEs.
Collapse
Affiliation(s)
- J-R Gao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506-4004, USA.
| | | | | |
Collapse
|
24
|
Kozaki O, Shono T, Tomita T, Taylor D, Kono Y. Linkage analysis of an acetylcholinesterase gene in the house fly Musca domestica (Diptera: Muscidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2002; 95:129-133. [PMID: 11942747 DOI: 10.1603/0022-0493-95.1.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Linkage of an acetylcholinesterase (AChE) gene was detected in the house fly, Musca domestica L., by using the backcross method between a strain, aabys, that had a morphological multichromosomal marker on each of the five autosomes and a wild strain, LPR. Both strains were homozygous in this gene, and we used eight single nucleotide polymorphisms (SNPs) between them to distinguish the parental sequences in the backcrossed progeny, two of which resulted in the amino acid substitiutions common to the Drosophila and Aedes AChEs insensitive to organophosphates and carbamates. F, appeared to be a wild phenotype, and the AChE gene was heterozyous of aabys and LPR. In the backcross progeny, 32 (2(5)) phenotypes appeared, and 10 phenotypes with one wild or morphological marker were picked up for genotyping by the SNPs of AChE gene. A combination of the morphological markers and the SNPs revealed that the AChE structural gene is linked to autosome 2 in the house fly.
Collapse
Affiliation(s)
- Oshinori Kozaki
- Institute of Agriculture and Forestry, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
25
|
Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL, Williamson MS. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 2001; 359:175-81. [PMID: 11563981 PMCID: PMC1222133 DOI: 10.1042/0264-6021:3590175] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in conferring insecticide insensitivity has been confirmed, using functional expression, only for those in Drosophila melanogaster. The housefly, Musca domestica, was one of the first insects shown to have this mechanism; here we report the occurrence of five mutations (Val-180-->Leu, Gly-262-->Ala, Gly-262-->Val, Phe-327-->Tyr and Gly-365-->Ala) in the AChE gene of this species that, either singly or in combination, confer different spectra of insecticide resistance. The baculovirus expression of wild-type and mutated housefly AChE proteins has confirmed that the mutations each confer relatively modest levels of insecticide insensitivity except the novel Gly-262-->Val mutation, which results in much stronger resistance (up to 100-fold) to certain compounds. In all cases the effects of mutation combinations are additive. The mutations introduce amino acid substitutions that are larger than the corresponding wild-type residues and are located within the active site of the enzyme, close to the catalytic triad. The likely influence of these substitutions on the accessibility of the different types of inhibitor and the orientation of key catalytic residues are discussed in the light of the three-dimensional structures of the AChE protein from Torpedo californica and D. melanogaster.
Collapse
Affiliation(s)
- S B Walsh
- Biological and Ecological Chemistry Department, IACR-Rothamsted, Harpenden, Herts. AL5 2JQ, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Kozaki T, Shono T, Tomita T, Kono Y. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:991-997. [PMID: 11483435 DOI: 10.1016/s0965-1748(01)00047-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cDNA of AChE in the housefly, Musca domestica, was sequenced and individual flies were genotyped by this gene in an inhibition assay of AChE activity with an organophaspate, fenitroxon. Mutations at Gly(342) and Tyr(407), which are reportedly conserved in resistant strains of Drosophila, were associated with the insensitivity to fenitroxon. Two other mutations, Ile(162) and Val(260), did not have an apparent effect on insensitivity. However, the four mutations are located in the active site of the enzyme, and therefore the non-neutral mutations in this gene are considered to cause the insensitivity of AChE in the development of insecticide resistance of the housefly.
Collapse
Affiliation(s)
- T Kozaki
- Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
27
|
Chen Z, Newcomb R, Forbes E, McKenzie J, Batterham P. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:805-816. [PMID: 11378416 DOI: 10.1016/s0965-1748(00)00186-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.
Collapse
Affiliation(s)
- Z Chen
- CESAR -- Centre for Environmental Stress and Adaptation Research, Genetics Department, University of Melbourne, Parkville 3052, Australia.
| | | | | | | | | |
Collapse
|
28
|
Tomita T, Hidoh O, Kono Y. Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:325-333. [PMID: 10727899 DOI: 10.1016/s0965-1748(00)00006-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cDNA sequence of acetylcholinesterase (AChE) from the green rice leafhopper, Nephotettix cincticeps, was amplified, based on conserved peptide sequences of AChEs. A 2.3 kb contiguous sequence, containing an ORF encoding an AChE precursor with 677 amino acid residues was obtained. The deduced protein sequence showed the most similarity to that of AChE in the Colorado potato beetle, having common features in the primary AChE structure. cDNA sequences of individual leafhoppers from an insecticide susceptible strain and the resistant strain Nakagawara, whose methylcarbamate-insensitive AChEs show 10(2) or more I(50) ratio for propoxur, were compared. No fixed inter-strain difference was identified in the protein sequence, though amino acid substitution polymorphism was found at one position in the susceptible strain. Insecticide-insensitivity of leafhopper AChE does not result from changes in the protein primary structure that is encoded by the AChE gene sequence isolated in this study.
Collapse
Affiliation(s)
- T Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
| | | | | |
Collapse
|
29
|
Oakeshott JG, Claudianos C, Russell RJ, Robin GC. Carboxyl/cholinesterases: a case study of the evolution of a successful multigene family. Bioessays 1999; 21:1031-42. [PMID: 10580988 DOI: 10.1002/(sici)1521-1878(199912)22:1<1031::aid-bies7>3.0.co;2-j] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of organismal diversity among the Metazoa is dependent on the proliferation of genes and diversification of functions in multigene families. Here we analyse these processes for one highly successful family, the carboxyl/cholinesterases. One key to the expansion of the functional niche of this group of enzymes is associated with versatile substrate binding and catalytic machinery. Qualitatively new functions can be obtained by substitution of one or a very few amino acids. This crudely adapted new functionality is then refined rapidly by a pulse of change elsewhere in the molecule; in one case about 13% amino acid divergence occurred in 5-10 million years. Furthermore, we postulate that the versatility of the substrate binding motifs underpins the recruitment of several family members to additional noncatalytic signal transduction functions.
Collapse
|
30
|
ffrench-Constant RH, Pittendrigh B, Vaughan A, Anthony N. Why are there so few resistance-associated mutations in insecticide target genes? Philos Trans R Soc Lond B Biol Sci 1998; 353:1685-93. [PMID: 10021768 PMCID: PMC1692388 DOI: 10.1098/rstb.1998.0319] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genes encoding the three major targets of conventional insecticides are: Rdl, which encodes a gamma-aminobutyric acid receptor subunit (RDL); para, which encodes a voltage-gated sodium channel (PARA); and Ace, which encodes insect acetylcholinesterase (AChE). Interestingly, despite the complexity of the encoded receptors or enzymes, very few amino acid residues are replaced in different resistant insects: one within RDL, two within PARA and three or more within AChE. Here we examine the possible reasons underlying this extreme conservation by looking at the aspects of receptor and/or enzyme function that may constrain replacements to such a limited number of residues.
Collapse
|