1
|
Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC. Quantitative single molecule RNA-FISH and RNase-free cell wall digestion in Neurospora crassa. Fungal Genet Biol 2021; 156:103615. [PMID: 34425213 PMCID: PMC8463489 DOI: 10.1016/j.fgb.2021.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Single molecule RNA-FISH (smFISH) is a valuable tool for analysis of mRNA spatial patterning in fixed cells that is underutilized in filamentous fungi. A primary complication for fixed-cell imaging in filamentous fungi is the need for enzymatic cell wall permeabilization, which is compounded by considerable variability in cell wall composition between species. smFISH adds another layer of complexity due to a requirement for RNase free conditions. Here, we describe the cloning, expression, and purification of a chitinase suitable for supplementation of a commercially available RNase-free enzyme preparation for efficient permeabilization of the Neurospora cell wall. We further provide a method for smFISH in Neurospora which includes a tool for generating numerical data from images that can be used in downstream customized analysis protocols.
Collapse
Affiliation(s)
- Bradley M Bartholomai
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA
| | - Amy S Gladfelter
- University of North Carolina, Department of Biology, Chapel Hill, NC, USA
| | - Jennifer J Loros
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH, USA
| | - Jay C Dunlap
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA.
| |
Collapse
|
2
|
Hansen M, Thrane C, Olsson S, Sørensen J. Confocal imaging of living fungal hyphae challenged with the fungal antagonist viscosinamide. Mycologia 2019. [DOI: 10.1080/00275514.2000.12061147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Michael Hansen
- Section of Genetics and Microbiology, Department of Ecology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Copenhagen), Denmark
| | - Charlotte Thrane
- Section of Genetics and Microbiology, Department of Ecology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Copenhagen), Denmark
| | - Stefan Olsson
- Section of Genetics and Microbiology, Department of Ecology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Copenhagen), Denmark
| | - Jan Sørensen
- Section of Genetics and Microbiology, Department of Ecology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Copenhagen), Denmark
| |
Collapse
|
3
|
Czymmek KJ, Bourett TM, Sweigard JA, Carroll A, Howard RJ. Utility of cytoplasmic fluorescent proteins for live-cell imaging ofMagnaporthe griseain planta. Mycologia 2017. [DOI: 10.1080/15572536.2003.11833234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kirk J. Czymmek
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | | | | | - Anne Carroll
- DuPont Crop Genetics, Delaware Technology Park, Newark, Delaware 19713
| | | |
Collapse
|
4
|
|
5
|
|
6
|
Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe. Biosci Biotechnol Biochem 2013; 77:405-8. [PMID: 23391931 DOI: 10.1271/bbb.120777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
White rot fungus, Phanerochaete chrysosporium, and brown rot fungus, Postia placenta, grown on agar plates, were visualized by fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) probe. Mycelia grown on wood chips were also clearly detected by PNA-FISH following blocking treatment. To the best of our knowledge, this is the first report on the visualization of fungi in wood by FISH.
Collapse
|
7
|
BARTON D, OVERALL R. Cryofixation rapidly preserves cytoskeletal arrays of leaf epidermal cells revealing microtubule co-alignments between neighbouring cells and adjacent actin and microtubule bundles in the cortex. J Microsc 2010; 237:79-88. [DOI: 10.1111/j.1365-2818.2009.03305.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Czymmek K. Exploring Fungal Activity with Confocal and Multiphoton Microscopy. Mycology 2005. [DOI: 10.1201/9781420027891.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. PLANTA 2005; 221:95-104. [PMID: 15747143 DOI: 10.1007/s00425-004-1423-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 10/12/2004] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a crucial role in the growth and polarity of the pollen tube. Due to inconsistencies in the conventional preservation methods, we lack a unified view of the organization of actin microfilaments, especially in the apical domain, where tip growth occurs. In an attempt to improve fixation methods, we have developed a rapid freeze-whole mount procedure, in which growing pollen tubes (primarily lily) are frozen in liquid propane at -180 degrees C, substituted at -80 degrees C in acetone containing glutaraldehyde, rehydrated, quenched with sodium borohydride, and probed with antibodies. Confocal microscopy reveals a distinct organization of actin in the apical domain that consists of a dense cortical fringe or collar of microfilaments starting about 1-5 microm behind the extreme apex and extending basally for an additional 5-10 microm. In the shank of the pollen tube, basal to the fringe, actin forms abundant longitudinal filaments that are evenly dispersed throughout the cytoplasm. We have also developed an improved ambient-temperature chemical fixation procedure, modified from a protocol based on simultaneous fixation and phalloidin staining. We removed EGTA, elevated the pH to 9, and augmented the fixative with ethylene glycol bis[sulfosuccinimidylsuccinate] (sulfo-EGS). Notably, this protocol preserves the actin cytoskeleton in a pattern similar to that produced by cryofixation. These procedures provide a reproducible way to preserve the actin cytoskeleton; employing them, we find that a cortical fringe in the apex and finely dispersed longitudinal filaments in the shank are consistent features of the actin cytoskeleton.
Collapse
Affiliation(s)
- Alenka Lovy-Wheeler
- Department of Biology and Plant Biology Graduate Program, Morrill Science Center III, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003-9297, USA
| | | | | | | |
Collapse
|
10
|
Riquelme M, Roberson RW, McDaniel DP, Bartnicki-García S. The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa. Fungal Genet Biol 2002; 37:171-9. [PMID: 12409101 DOI: 10.1016/s1087-1845(02)00506-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have used light and electron microscopy to document the cytoplasmic effects of the ropy (ro-1) mutation in mature hyphae of Neurospora crassa and to better understand the role(s) of dynein during hyphal tip growth. Based on video-enhanced DIC light microscopy, the mature, growing hyphae of N. crassa wild type could be divided into four regions according to cytoplasmic organization and behavior: the apical region (I) and three subapical regions (II, III, and IV). A well-defined Spitzenkörper dominated the cytoplasm of region I. In region II, vesicles ( approximately 0.48 micro m diameter) and mitochondria maintained primarily a constant location within the advancing cytoplasm. This region was typically void of nuclei. Vesicles exhibited anterograde and retrograde motility in regions III and IV and followed generally parallel paths along the longitudinal axis of the cell. A small population of mitochondria displayed rapid anterograde and retrograde movements, while most maintained a constant position in the advancing cytoplasm in regions III and IV. Many nuclei occupied the cytoplasm of regions III and IV. In ro-1 hyphae, discrete cytoplasmic regions were not recognized and the motility and/or positioning of vesicles, mitochondria, and nuclei were altered to varying degrees, relative to the wild type cells. Immunofluorescence microscopy revealed that the microtubule cytoskeleton was severely disrupted in ro-1 cells. Transmission electron microscopy of cryofixed cells confirmed that region I of wild-type hyphae contained a Spitzenkörper composed of an aggregation of small apical vesicles that surrounded entirely or partially a central core composed, in part, of microvesicles embedded in a dense granular to fibrillar matrix. The apex of ro-1 the hypha contained a Spitzenkörper with reduced numbers of apical vesicles but maintained a defined central core. Clearly, dynein deficiency in the mutant caused profound perturbation in microtubule organization and function and, consequently, organelle dynamics and positioning. These perturbations impact negatively on the organization and stability of the Spitzenkörper, which, in turn, led to severe reduction in growth rate and altered hyphal morphology.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Plant Pathology, University of California, Riverside, CA 92521-0122, USA
| | | | | | | |
Collapse
|
11
|
Gupta GD, Brent Heath I. Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal Genet Biol 2002; 36:1-21. [PMID: 12051891 DOI: 10.1016/s1087-1845(02)00017-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyphal tip growth, the hallmark of the fungi, requires highly polarized and localized exocytosis, but how this requirement is met is unknown. Members of conserved protein families called SNAREs and Rabs mediate vesicle trafficking and fusion at virtually every step of the intracellular pathway in all examined eukaryotes. We have searched the available nearly complete fungal genomes, established the presence or absence of members of the SNARE and Rab families in these genomes, and predicted their evolutionary relationships to one another. Comparisons with the extensively studied Saccharomyces cerevisiae indicate that, in general, most of the members of these families (including those involved in mediating exocytosis) are conserved. The presence of exceptional SNAREs and Rabs in some fungi that are not conserved in S. cerevisiae may be indicative of specialized steps that occur in these fungi. The implications of these findings for current tip growth models are discussed.
Collapse
Affiliation(s)
- Gagan D Gupta
- Biology Department, York University, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3
| | | |
Collapse
|
12
|
Shapiro A, Mullins JT. Hyphal tip growth in Achlya bisexualis. I. Distribution of 1,3-β-glucans in elongating and non-elongating regions of the wall. Mycologia 2002. [DOI: 10.1080/15572536.2003.11833232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - J. Thomas Mullins
- Department of Botany, PO Box 118526, University of Florida, Gainesville, Florida 32611-8526
| |
Collapse
|
13
|
Gold SE, García-Pedrajas MD, Martínez-Espinoza AD. New (and used) approaches to the study of fungal pathogenicity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:337-365. [PMID: 11701869 DOI: 10.1146/annurev.phyto.39.1.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fungi are the most economically important plant pathogens and continue to be the focus of extensive research with a wide variety of methodologies. Enhancements in microscopy techniques have increased our ability to visualize the intimate interaction of fungi and their host plants. Improving methods allow pharmacological inhibition and genetic dissection of the determinants of fungal pathogenicity in a gene-by-gene approach. Identification and analysis of genes differentially transcribed in ways pertinent to pathogenicity continues to be a frequent research approach. Genome-wide analysis is gaining favor in biological research and fungal plant pathogens are no exception. Several industrial research groups are exploring fungal plant pathogenesis based on genomic sequence data and genome-wide mutagenesis. In March 2001 the first publicly available complete genome of a filamentous fungus (Neurospora crassa) was released. N. crassa is of course a saprophyte and there is no complete sequence available for a plant pathogenic fungus in public databases. However, freely accessible entire genome sequences for both plant pathogenic fungi and their hosts are on the horizon. Sequence availability promises to revolutionize the rate at which data relevant to disease processes will be accrued. In this review we describe approaches currently applied to the study of plant pathogenic fungi and explore developments of potential future benefit with existing technologies not yet applied to this group of important organisms.
Collapse
Affiliation(s)
- S E Gold
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602-7274, USA.
| | | | | |
Collapse
|
14
|
Heath IB, Gupta G, Bai S. Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet Biol 2000; 30:45-62. [PMID: 10955907 DOI: 10.1006/fgbi.2000.1203] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization and roles of F-actin and microtubules in the maintenance and initiation of hyphal tip growth have been analyzed in Saprolegnia ferax and Neurospora crassa. In hyphae of both species, the apex is depleted of microtubules relative to subapical regions and near-normal morphogenesis occurs in concentrations of nocodazole or MBC which remove microtubules, slow growth, and disrupt nuclear positioning. In contrast, each species contains characteristic tip-high arrays of plasma membrane-adjacent F-actin, whose organization is largely unaltered by the loss of microtubules but disruption of which by latrunculin B disrupts tip morphology. Hyphal initiation and subsequent normal morphogenesis from protoplasts of both species and spores of S. ferax are independent of microtubules, but at least in S. ferax obligatorily involve the formation of F-actin caps adjacent to the hyphal tip plasma membrane. These observations indicate an obligatory role for F-actin in hyphal polarization and tip morphogenesis and only an indirect role for microtubules.
Collapse
Affiliation(s)
- I B Heath
- Biology Department, York University, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
15
|
Determination of Coniothyrium minitans conidial and germling lectin avidity by flow cytometry and digital microscopy. ACTA ACUST UNITED AC 1999. [DOI: 10.1017/s0953756299008734] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Abstract
This review traces the principal advances in the study of mitosis in filamentous fungi from its beginnings near the end of the 19(th) century to the present day. Meiosis and mitosis had been accurately described and illustrated by the second decade of the present century and were known to closely resemble nuclear divisions in higher eukaryotes. This information was effectively lost in the mid-1950s, and the essential features of mitosis were then rediscovered from about the mid-1960s to the mid-1970s. Interest in the forces that separate chromatids and spindle poles during fungal mitosis followed closely on the heels of detailed descriptions of the mitotic apparatus in vivo and ultrastructurally during this and the following decade. About the same time, fundamental studies of the structure of fungal chromatin and biochemical characterization of fungal tubulin were being carried out. These cytological and biochemical studies set the stage for a surge of renewed interest in fungal mitosis that was issued in by the age of molecular biology. Filamentous fungi have provided model studies of the cytology and genetics of mitosis, including important advances in the study of mitotic forces, microtubule-associated motor proteins, and mitotic regulatory mechanisms.
Collapse
Affiliation(s)
- J R Aist
- Department of Plant Pathology, College of Agriculture and Life Sciences, Ithaca, New York 14853, USA
| | | |
Collapse
|