1
|
Stauber RH, Westmeier D, Wandrey M, Becker S, Docter D, Ding GB, Thines E, Knauer SK, Siemer S. Mechanisms of nanotoxicity - biomolecule coronas protect pathological fungi against nanoparticle-based eradication. Nanotoxicology 2020; 14:1157-1174. [PMID: 32835557 DOI: 10.1080/17435390.2020.1808251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Whereas nanotoxicity is intensely studied in mammalian systems, our knowledge of desired or unwanted nano-based effects for microbes is still limited. Fungal infections are global socio-economic health and agricultural problems, and current chemical antifungals may induce adverse side-effects in humans and ecosystems. Thus, nanoparticles are discussed as potential novel and sustainable antifungals via the desired nanotoxicity but often fail in practical applications. In our study, we found that nanoparticles' toxicity strongly depends on their binding to fungal spores, including the clinically relevant pathogen Aspergillus fumigatus as well as common plant pests, such as Botrytis cinerea or Penicillum expansum. Employing a selection of the model and antimicrobial nanoparticles, we found that nanoparticle-spore complex formation is influenced by the NM's physicochemical properties, such as size, identified as a key determinant for our silica model particles. Biomolecule coronas acquired in pathophysiologically and ecologically relevant environments, protected fungi against nanoparticle-induced toxicity as shown by employing antimicrobial ZnO, Ag, or CuO nanoparticles as well as dissolution-resistant quantum dots. Mechanistically, dose-dependent corona-mediated resistance was conferred via reducing the physical adsorption of nanoparticles to fungi. The inhibitory effect of biomolecules on nano-based toxicity of Ag NPs was further verified in vivo, using the invertebrate Galleria mellonella as an alternative non-mammalian infection model. We provide the first evidence that biomolecule coronas are not only relevant in mammalian systems but also for nanomaterial designs as future antifungals for human health, biotechnology, and agriculture.
Collapse
Affiliation(s)
| | - Dana Westmeier
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Madita Wandrey
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Sven Becker
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Dominic Docter
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, Shanxi, China
| | - Eckhard Thines
- Institute for Microbiology, Johannes Gutenberg University, Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen, Germany
| | - Svenja Siemer
- ENT Department, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
2
|
Siemer S, Westmeier D, Vallet C, Becker S, Voskuhl J, Ding GB, Thines E, Stauber RH, Knauer SK. Resistance to Nano-Based Antifungals Is Mediated by Biomolecule Coronas. ACS APPLIED MATERIALS & INTERFACES 2019; 11:104-114. [PMID: 30560648 DOI: 10.1021/acsami.8b12175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fungal infections are a growing global health and agricultural threat, and current chemical antifungals may induce various side-effects. Thus, nanoparticles are investigated as potential novel antifungals. We report that nanoparticles' antifungal activity strongly depends on their binding to fungal spores, focusing on the clinically important fungal pathogen Aspergillus fumigatus as well as common plant pathogens, such as Botrytis cinerea. We show that nanoparticle-spore complex formation was enhanced by the small nanoparticle size rather than the material, shape or charge, and could not be prevented by steric surface modifications. Fungal resistance to metal-based nanoparticles, such as ZnO-, Ag-, or CuO-nanoparticles as well as dissolution-resistant quantum dots, was mediated by biomolecule coronas acquired in pathophysiological and ecological environments, including the lung surfactant, plasma or complex organic matters. Mechanistically, dose-dependent corona-mediated resistance occurred via reducing physical adsorption of nanoparticles to fungal spores. The inhibitory effect of biomolecules on the antifungal activity of Ag-nanoparticles was further verified in vivo, using the invertebrate Galleria mellonella as an A. fumigatus infection model. Our results explain why current nanoantifungals often show low activity in realistic application environments, and will guide nanomaterial designs that maximize functionality and safe translatability as potent antifungals for human health, biotechnology, and agriculture.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department , University Medical Center Mainz , Langenbeckstrasse 1 , 55131 Mainz , Germany
| | - Dana Westmeier
- Nanobiomedicine Department , University Medical Center Mainz , Langenbeckstrasse 1 , 55131 Mainz , Germany
| | | | - Sven Becker
- Nanobiomedicine Department , University Medical Center Mainz , Langenbeckstrasse 1 , 55131 Mainz , Germany
| | | | - Guo-Bin Ding
- Nanobiomedicine Department , University Medical Center Mainz , Langenbeckstrasse 1 , 55131 Mainz , Germany
- Institute for Biotechnology , Shanxi University , No. 92 Wucheng Road , 030006 Taiyuan , Shanxi , China
| | - Eckhard Thines
- Institute for Microbiology , Johannes Gutenberg University , Becherweg 15 , D 55128 Mainz , Germany
| | - Roland H Stauber
- Nanobiomedicine Department , University Medical Center Mainz , Langenbeckstrasse 1 , 55131 Mainz , Germany
| | | |
Collapse
|
3
|
Hüttl S, Fiebig J, Kutter S, Hause G, Lilie H, Spinka M, König S. Catalytically active filaments - pyruvate decarboxylase from Neurospora crassa. pH-controlled oligomer structure and catalytic function. FEBS J 2011; 279:275-84. [PMID: 22077835 DOI: 10.1111/j.1742-4658.2011.08421.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pyruvate decarboxylase is a key enzyme in organisms whose energy metabolism is based on alcoholic fermentation. The enzyme catalyses the nonoxidative decarboxylation of 2-oxo acids in the presence of the cofactors thiamine diphosphate and magnesium ions. Pyruvate decarboxylase species from yeasts and plant seeds studied to date are allosterically activated by their substrate pyruvate. However, detailed kinetic studies on the enzyme from Neurospora crassa demonstrate for the first time the lack of substrate activation for a yeast pyruvate decarboxylase species. The quaternary structure of this enzyme species is also peculiar because it forms filamentous structures. The complex enzyme structure was analysed using a number of methods, including small-angle X-ray solution scattering, transmission electron microscopy, analytical ultracentrifugation and size-exclusion chromatography. These measurements were complemented by detailed kinetic studies in dependence on the pH.
Collapse
Affiliation(s)
- Stefanie Hüttl
- Division of Enzymology, Institute of Biochemistry & Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The filamentous fungi Neurospora crassa and Sordaria macrospora are materials of choice for recombination studies because each of the DNA strands involved in meiosis can be visually analyzed using spore-color mutants. Well-advanced molecular genetic methodologies have been developed for each of these fungi, and several mutants defective in recombination and/or pairing are available. Moreover, the complete genome sequence of N. crassa has made it possible to clone virtually any gene involved in their life cycle. Both fungi provide also a particularly attractive experimental system for cytological analysis of meiosis: stages can be determined independently of chromosomal morphology and their seven chromosomes are easily identified. The techniques for light, immunofluorescence and electron microscopy presented here have been used, with success, for monitoring of chromosome behavior during both meiotic and sporulation processes. They have also proved useful for the analysis of mitochondria and peroxisomes as well as cytoskeleton and spindle pole-body components. Moreover, all techniques of this chapter can be easily applied to other filamentous ascomycetes, including other Sordaria and Neurospora species as well as Podospora, Ascobolus, Ascophanus, Fusarium, Neotiella, and Aspergillus species.
Collapse
|
5
|
Freitag M, Hickey PC, Raju NB, Selker EU, Read ND. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 2004; 41:897-910. [PMID: 15341912 DOI: 10.1016/j.fgb.2004.06.008] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 06/28/2004] [Indexed: 11/21/2022]
Abstract
We report the construction of a versatile GFP expression plasmid and demonstrate its utility in Neurospora crassa. To visualize nuclei and microtubules, we generated carboxy-terminal fusions of sgfp to Neurospora histone H1 (hH1) and beta-tubulin (Bml). Strong expression of GFP fusion proteins was achieved with the inducible Neurospora ccg-1 promoter. Nuclear and microtubule organization and dynamics were observed in live vegetative hyphae, developing asci, and ascospores by conventional and confocal laser scanning fluorescence microscopy. Observations of GFP fusion proteins in live cells largely confirmed previous results obtained by examination of fixed cells with various microscopic techniques. H1-GFP revealed dynamic nuclear shapes. Microtubules were mostly aligned parallel to the growth axis in apical compartments but more randomly arranged in sub-apical compartments. Time-lapse imaging of beta-tubulin-GFP in germinating macroconidia revealed polymerization and depolymerization of microtubules. In heterozygous crosses, H1-GFP and beta-tubulin-GFP expression was silenced, presumably by meiotic silencing. H1-GFP was translated in the vicinity of hH1+-sgfp+ nuclei in the common cytoplasm of giant Banana ascospores, but it diffused into all nuclei, another illustration of the utility of GFP fusion proteins.
Collapse
Affiliation(s)
- Michael Freitag
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|
6
|
Nowrousian M, Würtz C, Pöggeler S, Kück U. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Fungal Genet Biol 2004; 41:285-92. [PMID: 14761789 DOI: 10.1016/j.fgb.2003.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 10/22/2003] [Indexed: 11/16/2022]
Abstract
One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | | | | | | |
Collapse
|
7
|
Dumas R, Biou V, Halgand F, Douce R, Duggleby RG. Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase. Acc Chem Res 2001; 34:399-408. [PMID: 11352718 DOI: 10.1021/ar000082w] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetohydroxy acid isomeroreductase is a key enzyme involved in the biosynthetic pathway of the amino acids isoleucine, valine, and leucine. This enzyme is of great interest in agrochemical research because it is present only in plants and microorganisms, making it a potential target for specific herbicides and fungicides. Moreover, it catalyzes an unusual two-step reaction that is of great fundamental interest. With a view to characterizing both the mechanism of inhibition by potential herbicides and the complex reaction mechanism, various techniques of enzymology, molecular biology, mass spectrometry, X-ray crystallography, and theoretical simulation have been used. The results and conclusions of these studies are described briefly in this paper.
Collapse
Affiliation(s)
- R Dumas
- Laboratoire Mixte CNRS/INRA/Aventis, Aventis CropScience, 14-20 rue Pierre Baizet, 69263 Lyon, France.
| | | | | | | | | |
Collapse
|