1
|
Wu E, Wang K, Liu Z, Wang J, Yan H, Zhu X, Zhu X, Chen B. Metabolic and Microbial Profiling of Soil Microbial Community under Per- and Polyfluoroalkyl Substance (PFAS) Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21855-21865. [PMID: 38086098 DOI: 10.1021/acs.est.3c07020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent significant stress to organisms and are known to disrupt microbial community structure and function. Nevertheless, a detailed knowledge of the soil microbial community responding to PFAS stress at the metabolism level is required. Here we integrated UPLC-HRMS-based metabolomics data with 16S rRNA and ITS amplicon data across soil samples collected adjacent to a fluoropolymer production facility to directly identify the biochemical intermediates in microbial metabolic pathways and the interactions with microbial community structure under PFAS stress. A strong correlation between metabolite and microbial diversity was observed, which demonstrated significant variations in soil metabolite profiles and microbial community structures along with the sampling locations relative to the facility. Certain key metabolites were identified in the metabolite-PFAS co-occurrence network, functioning on microbial metabolisms including lipid metabolism, amino acid metabolism, and secondary metabolite biosynthesis. These results provide novel insights into the impacts of PFAS contamination on soil metabolomes and microbiomes. We suggest that soil metabolomics is an informative and useful tool that could be applied to reinforce the chemical evidence on the disruption of microbial ecological traits.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, People's Republic of China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, People's Republic of China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaomin Zhu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Innovation Center of Yangtze River Delta, Zhejiang University, Haining, Zhejiang 311400, People's Republic of China
| |
Collapse
|
2
|
A Novel Role of Pipecolic Acid Biosynthetic Pathway in Drought Tolerance through the Antioxidant System in Tomato. Antioxidants (Basel) 2021; 10:antiox10121923. [PMID: 34943026 PMCID: PMC8750784 DOI: 10.3390/antiox10121923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
With global warming and water shortage, drought stress is provoking an increasing impact on plant growth, development, and crop productivity worldwide. Pipecolic acid (Pip) is an emerging lysine catabolite in plants, acting as a critical element in disease resistance with a related signal pathway of phytohormone salicylic acid (SA). While SA plays a vital role in various abiotic stresses, the role of Pip in plant response to abiotic stresses, especially drought, remains largely unknown. To address this issue, Pip biosynthetic gene Slald1 mutants and hydroxylated modification gene Slfmo1 mutants were generated using CRISPR-Cas9 gene-editing approaches. Drought resistance dramatically increased in Slald1 mutants compared with wild-type, which was associated with increased CO2 assimilation, photosystems activities, antioxidant enzymes activities, ascorbate and glutathione content, and reduced reactive oxygen species accumulation, lipid peroxidation and protein oxidation. On the contrary, Slfmo1 mutants were more sensitive to drought, showing damaged photosystems and impaired antioxidant systems, which were significantly alleviated by exogenous ascorbate. Our results demonstrate that Pip biosynthesis and hydroxylated modification pathways play a critical role in drought tolerance through the antioxidant system in tomato. This knowledge can be helpful to breed improved crop cultivars that are better equipped with drought resistance.
Collapse
|
3
|
Frossard SM, Khan AA, Warrick EC, Gately JM, Hanson AD, Oldham ML, Sanders DA, Csonka LN. Identification of a third osmoprotectant transport system, the osmU system, in Salmonella enterica. J Bacteriol 2012; 194:3861-71. [PMID: 22609924 PMCID: PMC3416524 DOI: 10.1128/jb.00495-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022] Open
Abstract
The growth of Salmonella enterica serovar Typhimurium mutants lacking the ProP and ProU osmoprotectant transport systems is stimulated by glycine betaine in high-osmolarity media, suggesting that this organism has an additional osmoprotectant transport system. Bioinformatic analysis revealed that the genome of this organism contains a hitherto-unidentified operon, designated osmU, consisting of four genes whose products show high similarity to ABC-type transport systems for osmoprotectants in other bacteria. The osmU operon was inactivated by a site-directed deletion, which abolished the ability of glycine betaine to alleviate the inhibitory effect of high osmolarity and eliminated the accumulation of [(14)C]glycine betaine and [(14)C]choline-O-sulfate in high-osmolarity media in a strain lacking the ProP and ProU systems. Although the OsmU system can take up glycine betaine and choline-O-sulfate, these two osmoprotectants are recognized at low affinity by this transporter, suggesting that there might be more efficient substrates that are yet to be discovered. The transcription of osmU is induced 23-fold by osmotic stress (0.3 M NaCl). The osmU operon is present in the genomes of a number of Enterobacteriaceae, and orthologs of the OsmU system can be recognized in a wide variety of Bacteria and Archaea. The structure of the periplasmic binding protein component of this transporter, OsmX, was modeled on the crystallographic structure of the glycine betaine-binding protein ProX of Archaeoglobus fulgidus; the resultant model indicated that the amino acids that constitute substrate-binding site, including an "aromatic cage" made up of four tyrosines, are conserved between these two proteins.
Collapse
Affiliation(s)
- Stephen M. Frossard
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Aftab A. Khan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Eric C. Warrick
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jonathan M. Gately
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Michael L. Oldham
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - David Avram Sanders
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Laszlo N. Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J Bacteriol 2008; 190:3712-20. [PMID: 18359805 DOI: 10.1128/jb.01990-07] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osmotic stress is known to increase the thermotolerance and oxidative-stress resistance of bacteria by a mechanism that is not adequately understood. We probed the cross-regulation of continuous osmotic and heat stress responses by characterizing the effects of external osmolarity (0.3 M versus 0.0 M NaCl) and temperature (43 degrees C versus 30 degrees C) on the transcriptome of Escherichia coli K-12. Our most important discovery was that a number of genes in the SoxRS and OxyR oxidative-stress regulons were up-regulated by high osmolarity, high temperature, or a combination of both stresses. This result can explain the previously noted cross-protection of osmotic stress against oxidative and heat stresses. Most of the genes shown in previous studies to be induced during the early phase of adaptation to hyperosmotic shock were found to be also overexpressed under continuous osmotic stress. However, there was a poorer overlap between the heat shock genes that are induced transiently after high temperature shifts and the genes that we found to be chronically up-regulated at 43 degrees C. Supplementation of the high-osmolarity medium with the osmoprotectant glycine betaine, which reduces the cytoplasmic K(+) pool, did not lead to a universal reduction in the expression of osmotically induced genes. This finding does not support the hypothesis that K(+) is the central osmoregulatory signal in Enterobacteriaceae.
Collapse
|
5
|
Moulin M, Deleu C, Larher F, Bouchereau A. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:474-82. [PMID: 17023168 DOI: 10.1016/j.plaphy.2006.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 07/25/2006] [Indexed: 05/12/2023]
Abstract
Higher plant responses to abiotic stresses are associated with physiological and biochemical changes triggering a number of metabolic adjustments. We focused on L-lysine catabolism, and have previously demonstrated that degradation of this amino acid is osmo-regulated at the level of lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) in Brassica napus. LKR and SDH activities are enhanced by decreasing osmotic potential and decrease when the upshock osmotic treatment is followed by a downshock osmotic one. Moreover we have shown that the B. napus LKR/SDH gene is up-regulated in osmotically-stressed tissues. The LKR/SDH activity produces alpha-aminoadipate semialdehyde which could be further converted into alpha-aminoadipate and acetyl CoA. Alternatively alpha-aminoadipate could behave as a precursor for pipecolic acid. Pipecolic acid is described as an osmoprotectant in bacteria and is co-accumulated with proline in halophytic plants. We suggest that osmo-induction of the LKR/SDH activity could be partly responsible for pipecolic acid accumulation. This proposal has been assessed in this study through pipecolic acid amounts determination in rape leaf discs subjected to various upshift and downshift osmotic treatments. Changes in pipecolic acid level actually behave as those observed for LKR and SDH activities, since it increases or decreases in rape leaf discs treated under hyper- or hypo-osmotic conditions, respectively. In addition we show that pipecolic acid level is positively correlated with the external osmotic potential as well as with the duration of the applied treatment. On the other hand pipecolic acid level is related to the availability of L-lysine and not to that of D-lysine. Collectively the results obtained demonstrate that lysine catabolism through LKR/SDH activity is involved in osmo-induced synthesis of pipecolic acid.
Collapse
Affiliation(s)
- M Moulin
- Plant Metabolism, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
6
|
Ly A, Henderson J, Lu A, Culham DE, Wood JM. Osmoregulatory systems of Escherichia coli: identification of betaine-carnitine-choline transporter family member BetU and distributions of betU and trkG among pathogenic and nonpathogenic isolates. J Bacteriol 2004; 186:296-306. [PMID: 14702297 PMCID: PMC305767 DOI: 10.1128/jb.186.2.296-306.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 10/08/2003] [Indexed: 11/20/2022] Open
Abstract
Multiple transporters mediate osmoregulatory solute accumulation in Escherichia coli K-12. The larger genomes of naturally occurring strains such as pyelonephritis isolates CFT073 and HU734 may encode additional osmoregulatory systems. CFT073 is more osmotolerant than HU734 in the absence of organic osmoprotectants, yet both strains grew in high osmolality medium at low K(+) (micromolar concentrations) and retained locus trkH, which encodes an osmoregulatory K(+) transporter. Both lacked the trkH homologue trkG. Transporters ProP and ProU account for all glycine-betaine uptake activity in E. coli K-12 and CFT073, but not in HU734, yet elimination of ProP and ProU impairs the growth of HU734, but not CFT073, in high osmolality human urine. No known osmoprotectant stimulated the growth of CFT073 in high osmolality minimal medium, but putative transporters YhjE, YiaMNO, and YehWXYZ may mediate uptake of additional osmoprotectants. Gene betU was isolated from HU734 by functional complementation and shown to encode a betaine uptake system that belongs to the betaine-choline-carnitine transporter family. The incidence of trkG and betU within the ECOR collection, representatives of the E. coli pathotypes (PATH), and additional strains associated with urinary tract infection (UTI) were determined. Gene trkG was present in 66% of the ECOR collection but only in 16% of the PATH and UTI collections. Gene betU was more frequently detected in ECOR groups B2 and D (50% of isolates) than in groups A, B1, and E (20%), but it was similar in overall incidence in the ECOR collection and in the combined UTI and PATH collections (32 and 34%, respectively). Genes trkG and betU may have been acquired by lateral gene transfer, since trkG is part of the rac prophage and betU is flanked by putative insertion sequences. Thus, BetU and TrkG contribute, with other systems, to the osmoregulatory capacity of the species E. coli, but they are not characteristic of a particular phylogenetic group or pathotype.
Collapse
Affiliation(s)
- Anh Ly
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
7
|
ABUSHELAIBI A, SOFOS J, SAMELIS J, KENDALL P. BEHAVIOR OF LISTERIA MONOCYTOGENES IN RECONSTITUTED INFANT CEREALS. J Food Saf 2003. [DOI: 10.1111/j.1745-4565.2003.tb00358.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Moulin M, Deleu C, Larher FR, Bouchereau A. High-performance liquid chromatography determination of pipecolic acid after precolumn ninhydrin derivatization using domestic microwave. Anal Biochem 2002; 308:320-7. [PMID: 12419346 DOI: 10.1016/s0003-2697(02)00202-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel procedure to specifically quantify low amounts of pipecolic acid and structurally related compounds in several types of biological materials has been characterized. From crude extracts of various types of biological material, the first step was to clear all low-molecular-weight compounds containing primary amino groups by a treatment of nitrous acid. Using a microwave-assisted reaction, the remaining substances containing secondary amino groups were then derivatized with ninhydrin and made soluble in glacial acetic acid. The derivatives produced were resolved by reverse-phase HPLC and detected by spectrophotometry at 570nm. This procedure allowed more rapid determination of pipecolic acid since microwave heating shortened the time needed for derivatization compared with heating at 95 degrees C in a water bath. The complete analysis of the chromogens for pipecolic acid and related substances was achieved in 20min. Under such conditions, the detection threshold for pipecolic acid was about 20pmol. The suitability of the technique was assessed in various biological matrices known to contain significant amounts of this amino acid. The data obtained are in accordance with those available in the literature. To our knowledge, this is the first method using the ninhydrin reaction in a precolumn, microwave-assisted derivatization procedure for detection and determination of heterocyclic alpha-amino acids.
Collapse
Affiliation(s)
- Michaël Moulin
- Equipe Osmoadaptation et Métabolismes de Stress, UMR-CNRS 6026, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| | | | | | | |
Collapse
|