1
|
Adesulu-Dahunsi AT, Dahunsi SO, Ajayeoba TA. Co-occurrence of Lactobacillus Species During Fermentation of African Indigenous Foods: Impact on Food Safety and Shelf-Life Extension. Front Microbiol 2022; 13:684730. [PMID: 35464919 PMCID: PMC9021961 DOI: 10.3389/fmicb.2022.684730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
The benefits derived from fermented foods and beverages have placed great value on their acceptability worldwide. Food fermentation technologies have been employed for thousands of years and are considered essential processes for the production and preservation of foods, with the critical roles played by the autochthonous fermenting food-grade microorganisms in ensuring food security and safety, increased shelf life, and enhanced livelihoods of many people in Africa, particularly the marginalized and vulnerable groups. Many indigenous fermented foods and beverages of Africa are of plant origin. In this review, the predominance, fermentative activities, and biopreservative role of Lactobacillus spp. during production of indigenous foods and beverages, the potential health benefit of probiotics, and the impact of these food-grade microorganisms on food safety and prolonged shelf life are discussed. During production of African indigenous foods (with emphasis on cereals and cassava-based food products), fermentation occurs in succession; the first group of microorganisms to colonize the fermenting substrates are lactic acid bacteria (LAB) with the diversity and dominance of Lactobacillus spp. The Lactobacillus spp. multiply rapidly in the fermentation matrix, by taking up nutrients from the surrounding environments, and cause rapid acidification in the fermenting system via the production of organic compounds that convert fermentable sugars into mainly lactic acid. Production of these compounds in food systems inhibits spoilage microorganisms, which has a direct effect on food quality and safety. The knowledge of microbial interaction and succession during food fermentation will assist the food industry in producing functional foods and beverages with improved nutritional profiling and technological attributes, as Lactobacillus strains isolated during fermentation of several African indigenous foods have demonstrated desirable characteristics that make them safe for use as probiotic microorganisms and even as a starter culture in small- and large-scale/industrial food production processes.
Collapse
Affiliation(s)
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| | | |
Collapse
|
2
|
Ren H, Deng Y, Wang X. Effect of a compound starter cultures inoculation on bacterial profile and biogenic amine accumulation in Chinese Sichuan sausages. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Manganese Privation-Induced Transcriptional Upregulation of the Class IIa Bacteriocin Plantaricin 423 in Lactobacillus plantarum Strain 423. Appl Environ Microbiol 2021; 87:e0097621. [PMID: 34406833 DOI: 10.1128/aem.00976-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plantaricin 423 is produced by Lactobacillus plantarum 423 using the pla biosynthetic operon located on the 8,188-bp plasmid pPLA4. As with many class IIa bacteriocin operons, the pla operon carries biosynthetic genes (plaA, precursor peptide; plaB, immunity; plaC, accessory; and plaD, ABC transporter) but does not carry local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins, such as plantaricin 423. In this study, phylogenetic analysis of class IIa immunity proteins indicated that at least three distinct clades exist, which were then used to subgroup the class IIa operons. It became evident that the absence of classical quorum-sensing genes on mobile bacteriocin-encoding elements is a predisposition of the subgroup that includes plantaricin 423, pediocin AcH/PA-1, divercin V41, enterocin A, leucocin-A and -B, mesentericin Y105, and sakacin G. Further analysis of the subgroup suggested that the regulation of these class IIa operons is linked to transition metal homeostasis in the host. By using a fluorescent promoter-reporter system in Lactobacillus plantarum 423, transcriptional regulation of plantaricin 423 was shown to be upregulated in response to manganese privation. IMPORTANCE Lactic acid bacteria hold huge industrial application and economic value, especially bacteriocinogenic strains, which further aids in the exclusion of specific foodborne pathogens. Since bacteriocinogenic strains are sought after, it is equally important to understand the mechanism of bacteriocin regulation. This is currently an understudied aspect of class IIa operons. Our research suggests the existence of a previously undescribed mode of class IIa bacteriocin regulation, whereby bacteriocin expression is linked to management of the producer's transition metal homeostasis. This delocalized metalloregulatory model may fundamentally affect the selection of culture conditions for bacteriocin expression and change our understanding of class IIa bacteriocin gene transfer dynamics in a given microbiome.
Collapse
|
4
|
Wang X, Zhang Y, Sun J, Pan P, Liu Y, Tian T. Effects of starter culture inoculation on microbial community diversity and food safety of Chinese Cantonese sausages by high-throughput sequencing. Journal of Food Science and Technology 2020; 58:931-939. [PMID: 33678876 DOI: 10.1007/s13197-020-04607-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
Effects of starter culture composed of Lactobacillus sakei, Pediococcus pentosaceus, Staphylococcus xylosus and Staphylococcus carnosus at the ratios (w/w) of 1:1:1:1 on bacterial community diversity and food safety of Chinese Cantonese sausages were demonstrated by high-throughput sequencing technology. At genus level, spoilage organisms and pathogenic bacteria such as Vibrio spp., Acinetobacter spp., Enterobacter spp., Yersinia spp. accounted for 54.13%, 10.01%, 6.94% and 5.35% of bacterial in the initial fermentation of spontaneous sausage, and the dominant bacteria of Lactobacillus spp. reached 84.61% on day 20. Accordingly, the total proportion of Pediococcus spp., Lactobacillus spp. and Staphylococcus spp. were present higher than 98% during fermentation in fermented sausage by starter culture inoculation, and Pediococcus spp. was dominant genus and increased from 53.53 to 74.09% during whole fermentation process. Moreover, the histamine accumulation was lower 84.17% in sausage fermented by starter culture inoculation than that of spontaneous sausage, suggesting that starter culture could decrease histamine accumulation of sausages significantly (P < 0.01). These results revealed that the starter culture inoculation was conducive to improve the microbial quality and food safety of Chinese Cantonese sausages.
Collapse
Affiliation(s)
- Xinhui Wang
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Yalin Zhang
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China.,Ministry of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000 Sichuan Province China
| | - Jinsong Sun
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Pan Pan
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Yang Liu
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Tian Tian
- Chengdu Agricultural College, Chengdu, 611130 Sichuan Province China
| |
Collapse
|
5
|
Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204270] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Piperine is the main compound present in black pepper, and is the carrier of its specific pungent taste, which is responsible for centuries of human dietary utilization and worldwide popularity as a food ingredient. Along with the application as a food ingredient and food preservative, it is used in traditional medicine for many purposes, which has in most cases been justified by modern scientific studies on its biological effects. It has been confirmed that piperine has many bioactive effects, such as antimicrobial action, as well as many physiological effects that can contribute to general human health, including immunomodulatory, hepatoprotective, antioxidant, antimetastatic, antitumor, and many other activities. Clinical studies demonstrated remarkable antioxidant, antitumor, and drug availability-enhancing characteristics of this compound, together with immunomodulatory potential. All these facts point to the therapeutic potential of piperine and the need to incorporate this compound into general health-enhancing medical formulations, as well as into those that would be used as adjunctive therapy in order to enhance the bioavailability of various (chemo)therapeutic drugs.
Collapse
|
6
|
Costa JCCP, Bover-Cid S, Bolívar A, Zurera G, Pérez-Rodríguez F. Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions. Int J Food Microbiol 2019; 297:72-84. [PMID: 30901694 DOI: 10.1016/j.ijfoodmicro.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
The objective of this work was to quantitatively evaluate the effect of Lactobacillus sakei CTC494 (sakacin-producing bioprotective strain) against Listeria monocytogenes in fish juice and to apply and validate three microbial interaction models (Jameson, modified Jameson and Lotka Volterra models) through challenge tests with gilthead sea bream (Sparus aurata) fillets under modified atmosphere packaging stored at isothermal and non-isothermal conditions. L. sakei CTC494 inhibited L. monocytogenes growth when simultaneously present in the matrix (fish juice and fish fillets) at different inoculation ratios pathogen:bioprotector (i.e. 1:1, 1:2 and 1:3). The higher the inoculation ratio, the stronger the inhibition of L. monocytogenes growth, with the ratio 1:3 yielding no growth of the pathogen. The maximum population density (Nmax) was the most affected parameter for L. monocytogenes at all inoculation ratios. According to the microbiological and sensory analysis outcomes, an initial inoculation level of 4 log cfu/g for L. sakei CTC494 would be a suitable bioprotective strategy without compromising the sensory quality of the fish product. The performance of the tested interaction models was evaluated using the Acceptable Simulation Zone approach. The Lotka Volterra model showed slightly better fit than the Jameson-based models with 75-92% out of the observed counts falling into the Acceptable Simulation Zone, indicating a satisfactory model performance. The evaluated interaction models could be used as predictive modelling tool to simulate the simultaneous behaviour of bacteriocin-producing Lactobacillus strains and L. monocytogenes; thus, supporting the design and optimization of bioprotective culture-based strategies against L. monocytogenes in minimally processed fish products.
Collapse
Affiliation(s)
- Jean Carlos Correia Peres Costa
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (CeiA3), University of Cordoba, Córdoba, Spain
| | - Sara Bover-Cid
- IRTA, Food Safety Programme, - Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Araceli Bolívar
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (CeiA3), University of Cordoba, Córdoba, Spain
| | - Gonzalo Zurera
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (CeiA3), University of Cordoba, Córdoba, Spain
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (CeiA3), University of Cordoba, Córdoba, Spain.
| |
Collapse
|
7
|
Sidooski T, Brandelli A, Bertoli SL, Souza CKD, Carvalho LFD. Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria – A review. Crit Rev Food Sci Nutr 2018; 59:2839-2849. [DOI: 10.1080/10408398.2018.1474852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Thiago Sidooski
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | - Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sávio Leandro Bertoli
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | | | | |
Collapse
|
8
|
Orihuel A, Bonacina J, Vildoza MJ, Bru E, Vignolo G, Saavedra L, Fadda S. Biocontrol of Listeria monocytogenes in a meat model using a combination of a bacteriocinogenic strain with curing additives. Food Res Int 2018; 107:289-296. [DOI: 10.1016/j.foodres.2018.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
|
9
|
Oliveira M, Ferreira V, Magalhães R, Teixeira P. Biocontrol strategies for Mediterranean-style fermented sausages. Food Res Int 2017; 103:438-449. [PMID: 29389634 DOI: 10.1016/j.foodres.2017.10.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 11/26/2022]
Abstract
Naturally fermented meat sausages have a long tradition in Mediterranean countries and are one of the most important groups of traditional foods consumed throughout Europe. Despite all the advances in food science and technology and increased regulatory requirements and concerns for safety and quality during the last decades, the challenge to control important foodborne pathogens in this type of meat products still persists. Simultaneously, growing consumer interest in safe, high quality and minimal processed products, with less additives/preservatives have driven the food industry and scientists in a crusade for innovative technologies to maintain the safety of these products by natural means. Biological control (biocontrol) fits well within this tendency. This review summarizes the latest achievements on biocontrol strategies applied to Mediterranean-style fermented sausages, namely: (i) bioprotective cultures; (ii) bacteriocins; and, (iii) essential oils (EOs).
Collapse
Affiliation(s)
- Márcia Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Vânia Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| |
Collapse
|
10
|
Roseiro L, Santos C, Gonçalves H, Serrano C, Aleixo C, Partidário A, Lourenço A, Dias MA, da Ponte D. Susceptibility of dry-cured tuna to oxidative deterioration and biogenic amines generation: I. Effect of NaCl content, antioxidant type and ageing. Food Chem 2017; 228:26-34. [DOI: 10.1016/j.foodchem.2017.01.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 11/26/2022]
|
11
|
Djenane D, Martínez L, Sánchez-Escalante A, Montañés L, Blanco D, Yangüela J, Beltrán JA, Roncalés P. Effect of Lactic Acid Bacteria on Beef Steak Microbial Flora Stored Under Modified Atmosphere and on Listeria Monocytogenes in Broth Cultures. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013206067788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Beef steaks were inoculated with one or other of two protective strains of lactic acid bacteria, the bacteriocinogenic Lactobacillus sakei CTC 372 or the uncharacterised Lactobacillus CTC 711. They were stored under modified atmospheres (20–40% CO2). Inoculation of meat with both strains inhibited the growth of the spoilage bacteria. Neither CO2 in the pack atmosphere, inoculation with protective strains, nor a combination of both, affected formation of metmyoglobin or the development of off-odours. The formation of metmyoglobin in meat pigments and the sensory odour scores were compatible to those of fresh meat which had not undergone either oxidative deterioration or microbial spoilage. Listeria monocytogenes were inhibited in broth by meat surface microbiota containing either of the protective strains. With an initial population of 5.6 log cfu/mL, after 7 days incubation at 3°C, Listeria monocytogenes were recovered at log mean population of 2.8 log cfu/mL when neither protective strain was present. At 8°C, the population of Listeria monocytogenes recovered were reduced by about 2.5 or 1.5 log cfu/mL in the presence of Lactobacillus sakei CTC 372 or Lactobacillus CTC 711, respectively. At 25°C, the population of Listeria monocytogenes recovered from broth containing either protective strain were about 5 log cfu/mL less than the population recovered from broth containing Listeria monocytogenes only.
Collapse
Affiliation(s)
- D. Djenane
- Department of Microbiology and Biochemistry, Faculty of Biology and Agricultural Sciences, University Mouloud Maameri. 15000 Tizi-Ouzou, Algeria; Department of Animal Production and Food Science, Laboratories of Food Technology and Food Hygiene, Faculty of Veterinary Science, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - L. Martínez
- Department of Animal Production and Food Science, Laboratories of Food Technology and Food Hygiene, Faculty of Veterinary Science, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - A. Sánchez-Escalante
- Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo, Sonora 83000, Mexico
| | - L. Montañés
- EIMAH (Equipo de Investigación Multidisciplinar en Alimentación Humana), Faculty of Veterinary Science, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | | | | | - J. A. Beltrán
- Department of Animal Production and Food Science, Laboratories of Food Technology and Food Hygiene, Faculty of Veterinary Science, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - P. Roncalés
- Department of Animal Production and Food Science, Laboratories of Food Technology and Food Hygiene, Faculty of Veterinary Science, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
12
|
Suh DH, Jung ES, Park HM, Kim SH, Lee S, Jo YH, Lee MK, Jung G, Do SG, Lee CH. Comparison of Metabolites Variation and Antiobesity Effects of Fermented versus Nonfermented Mixtures of Cudrania tricuspidata, Lonicera caerulea, and Soybean According to Fermentation In Vitro and In Vivo. PLoS One 2016; 11:e0149022. [PMID: 26848749 PMCID: PMC4743955 DOI: 10.1371/journal.pone.0149022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
We used ultra-performance-liquid-chromatography with quadrupole-time-of-flight mass spectrometry to study the changes in metabolites in the mixture of Cudrania tricuspidata, Lonicera caerulea, and soybean (CLM) during fermentation. Additionally, the antiobesity effects of CLM and fermented-CLM (FCLM) were studied based on the analysis of plasma from high-fat diet (HFD)-fed mice. The levels of cyanidin and the glycosides of luteolin, quercetin, and cyanidin derived from L. caerulea were decreased, whereas the levels of luteolin and quercetin were increased during fermentation. Isoflavone glycosides and soyasaponins originating from the soybean were decreased, whereas their aglycones such as daidzein, glycitein, and genistein were increased. As for prenylated flavonoids from C. tricuspidata, these metabolites were decreased at the early stage of fermentation, and were increased at end of the fermentation. In terms of the functional food product, various metabolites derived from diverse natural products in CLM had complementary effects and demonstrated higher antioxidant and pancreatic lipase inhibition activities after fermentation; these activities were closely related to flavonoid aglycones including genistein, daidzein, glycitein, luteolin, and quercetin. In an in vivo experiment, several clinical parameters affected by HFD were improved by the administration of either CLM or FCLM, but there was a difference in the antiobesity effects. The levels of lysoPCs with C20:4, C16:0, and C22:6 were significantly attenuated by CLM administration, while the attenuated levels of lysoPCs with C20:4 and C18:2 were significantly restored by FCLM administration. These metabolites may explain the above-mentioned differences in antiobesity effects. Although only the changes in plasma lysophospholipids could not fully explain antiobesity effects between non-fermented and fermented plant mixtures from our results, we suggest that metabolomics approach could provide a way to reveal the metabolite alterations in the complex fermentation process and understand the differences or changes in bioactivity according to fermentation.
Collapse
Affiliation(s)
- Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejon, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Incheon, Republic of Korea
| | - Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Gayoung Jung
- Wellness R & D Center, Univera, Inc., Seoul, Republic of Korea
| | - Seon-Gil Do
- Wellness R & D Center, Univera, Inc., Seoul, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Balciunas EM, Al Arni S, Converti A, Leblanc JG, Oliveira RPDS. Production of bacteriocin-like inhibitory substances (BLIS) byBifidobacterium lactisusing whey as a substrate. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Eduardo Marcos Balciunas
- Department of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; University of São Paulo; Av. Lineu Prestes 580 São Paulo Brazil
| | - Saleh Al Arni
- Department of Chemical Engineering; Kind Saudi University; P.O. Box 800 11421 Riyadh Saudi Arabia
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering; Genoa University; Pole of Chemical Engineering; Via Opera Pia 15 Genoa Italy
| | - Jean Guy Leblanc
- Centro de Referencia para Lactobacillus (CERELA-CONICET); Chacabuco 145 San Miguel de Tucumán Argentina
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences; University of São Paulo; Av. Lineu Prestes 580 São Paulo Brazil
| |
Collapse
|
14
|
Ortiz S, López V, Garriga M, Martínez-Suárez JV. Antilisterial effect of two bioprotective cultures in a model system of Iberian chorizo fermentation. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sagrario Ortiz
- Department of Food Technology; Spanish National Institute for Agricultural and Food Research and Technology (INIA); Autopista A6, km 7.5 28040 Madrid Spain
| | - Victoria López
- Bioinformatics and Public Health Unit; National Institute of Health Carlos III; 28220 Majadahonda, Madrid Spain
| | - Margarita Garriga
- Food Safety Program; Institute for Agriculture and Food Research and Technology (IRTA); 17121 Monells Girona Spain
| | - Joaquín V. Martínez-Suárez
- Department of Food Technology; Spanish National Institute for Agricultural and Food Research and Technology (INIA); Autopista A6, km 7.5 28040 Madrid Spain
| |
Collapse
|
15
|
Balciunas EM, Castillo Martinez FA, Todorov SD, Franco BDGDM, Converti A, Oliveira RPDS. Novel biotechnological applications of bacteriocins: A review. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.11.025] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Díez JG, Patarata L. Behavior of Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Chouriço de Vinho, a dry fermented sausage made from wine-marinated meat. J Food Prot 2013; 76:588-94. [PMID: 23575119 DOI: 10.4315/0362-028x.jfp-12-212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Portuguese chouriço de vinho is made by drying coarsely minced meat and fat that has been previously marinated with wine (usually red), salt, and garlic for 1 to 2 days at a low temperature (4 to 8 °C). This procedure may improve the microbiological safety of the product. The aim of this study was to evaluate the behavior of three pathogens in this product, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus, to establish the minimum period of drying and maturation necessary to render safe products. The pathogens were inoculated in the chouriço de vinho batter. A factorial design was used to study the following variables in the fermentation process: (i) the presence or absence of an indigenous Lactobacillus sakei starter culture; (ii) the presence or absence of fermentable carbohydrates; and (iii) the salt level (1.5 or 3%). The samples were analyzed 24 h after the preparation of the batter (at stuffing); after 7, 15, and 30 days of drying; and after 30 days of storage at 4 °C under vacuum. Under all of the conditions studied, the levels of the three pathogens decreased during the drying period. In the early stages of drying, the addition of L. sakei starter culture and/or carbohydrates resulted in lower levels of gram-positive pathogens. After 15 days of drying, populations of all pathogens decreased by ca. 2 log in all samples. At that sampling time, L. monocytogenes was undetectable in the chouriço de vinho with L. sakei starter culture and carbohydrates. The mean count of S. aureus after 15 days of drying was below 1 log CFU/g. After 30 days of drying, no pathogens were detected. The drying period could be shortened to 15 days when considering only the gram-positive pathogens studied and the use of a starter culture and carbohydrates. Due to the low infective dose of Salmonella spp., the product should be considered safe after 30 days, when this pathogen became undetectable.
Collapse
Affiliation(s)
- J García Díez
- Universidade de Trás-os-Montes e Alto Douro, Centre of Studies in Animal and Veterinary Science, 5001-801 Vila Real, Portugal
| | | |
Collapse
|
17
|
Castellano P, Aristoy MC, Sentandreu MA, Vignolo G, Toldrá F. Lactobacillus sakei CRL1862 improves safety and protein hydrolysis in meat systems. J Appl Microbiol 2012; 113:1407-16. [PMID: 22963007 DOI: 10.1111/jam.12005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/16/2012] [Indexed: 11/28/2022]
Abstract
AIMS The capacity of Lactobacillus sakei CRL1862 to prevent the growth of pathogens and its ability to degrade sarcoplasmic and myofibrillar proteins in pork meat systems was evaluated. In addition, basic safety aspects of Lact. sakei CRL1862 such as production of biogenic amines and antibiotic susceptibility were addressed. METHODS AND RESULTS The bacteriocin-producing Lact. sakei CRL1862 showed respectively bactericide and bacteriostatic effect against Listeria monocytogenes and Staphylococcus aureus in beaker sausage assay during 9 days of storage at 22 °C. The hydrolytic effect of Lact. sakei CRL1862 on protein extracts was evaluated by SDS-PAGE and reverse phase HPLC. A more pronounced proteolysis was evidenced in inoculated sarcoplasmic proteins compared with myofibrillar extracts with the generation of predominantly hydrophilic peptides and increase of total free amino acids concentration. Lactobacillus sakei CRL1862 produced neither histamine nor tyrosine and exhibited no resistance to the antibiotics assayed. CONCLUSIONS Lactobacillus sakei CRL1862 effectively controlled the growth of L. monocytogenes and Staph. aureus; moreover, it was able to hydrolyse pork meat extracts generating peptides and amino acids, which may improve hygienic and sensorial attributes of fermented meat products. SIGNIFICANCE AND IMPACT OF THE STUDY The use of an integrated approach to evaluate the major traits of Lact. sakei CRL1862 showed it can be applied as an autochthonous functional starter in meat fermentation.
Collapse
Affiliation(s)
- P Castellano
- Centro de Referencia para Lactobacilos, Tucumán, Argentina.
| | | | | | | | | |
Collapse
|
18
|
Chen JH, Ren Y, Seow J, Liu T, Bang WS, Yuk HG. Intervention Technologies for Ensuring Microbiological Safety of Meat: Current and Future Trends. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2011.00177.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
PAPATHOMOPOULOU K, KOTZEKIDOU P. INACTIVATION OF VEROCYTOTOXIGENICESCHERICHIA COLIANDLISTERIA MONOCYTOGENESCO-CULTURED WITHLACTOBACILLUS SAKEIIN A SIMULATED MEAT FERMENTATION MEDIUM. J Food Saf 2009. [DOI: 10.1111/j.1745-4565.2009.00160.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Erkmen O. Modeling the effects of sucuk production technique on Listeria monocytogenes, aerobic bacteria and lactic acid bacteria during ripening and storage. FOOD AND BIOPRODUCTS PROCESSING 2008. [DOI: 10.1016/j.fbp.2007.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Jofré A, Aymerich T, Garriga M. Assessment of the effectiveness of antimicrobial packaging combined with high pressure to control Salmonella sp. in cooked ham. Food Control 2008. [DOI: 10.1016/j.foodcont.2007.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Settanni L, Valmorri S, Suzzi G, Corsetti A. The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (BLIS) production by Enterococcus mundtii strains. Food Microbiol 2008; 25:722-8. [PMID: 18541172 DOI: 10.1016/j.fm.2008.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 01/24/2008] [Accepted: 01/27/2008] [Indexed: 11/18/2022]
Abstract
Bacteriocin-like inhibitory substances (BLIS)-producers Enterococcus mundtii WGWT1-1A, WGW11.2, WGJ20.1, WGJ40.2 and WGK53 from raw material origin were subjected to a study for the characterization of antimicrobial compound production under several growth conditions, including different cultivation media, growth temperatures, pHs, different concentrations and sources of nitrogen compounds, carbohydrates and other nutritional factors, and in the presence of different percentages of ethanol and NaCl. The five E. mundtii strains showed different behaviors. However, in all cases, MRS and sour dough bacteria (SDB) were found as the optimal media for BLIS production. In general, the higher BLIS production was observed with pH in the range 6.0-8.0 and, except 45 degrees C, the temperature did not show a defining effect. Low or no BLIS activity was detected after growth without nitrogen sources and carbohydrates. Absence of Tween 80, triammoniun citrate, K2HPO4, MgSO4 and MnSO4 did not affect BLIS activity levels. Except for a strain (WGWT1-1A), ethanol did not play a negative role in BLIS expression, while NaCl determined decrease of BLIS activity, proportional with concentration. The above strains did not contain plasmids, hence, BLIS expression is encoded by chromosomal DNA.
Collapse
Affiliation(s)
- Luca Settanni
- Dipartimento di Scienze degli Alimenti, Sezione di Microbiologia Agro-Alimentare ed Ambientale, Università degli Studi di Teramo, V. C.R. Lerici 1, 64023 Mosciano Sant'Angelo (TE), Italy
| | | | | | | |
Collapse
|
23
|
ZOUHIR ABDELMAJEED, KHEADR EHAB, TAHIRI IMANE, BEN HAMIDA JEANNETTE, FLISS ISMAIL. COMBINATION WITH PLANT EXTRACTS IMPROVES THE INHIBITORY ACTION OF DIVERGICIN M35 AGAINST LISTERIA MONOCYTOGENES. J FOOD QUALITY 2008. [DOI: 10.1111/j.1745-4557.2007.00181.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Jofré A, Garriga M, Aymerich T. Inhibition of Listeria monocytogenes in cooked ham through active packaging with natural antimicrobials and high-pressure processing. J Food Prot 2007; 70:2498-502. [PMID: 18044426 DOI: 10.4315/0362-028x-70.11.2498] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enterocins A and B and sakacin K at 200 and 2,000 activity units (AU)/cm2, nisin at 200 AU/cm2, 1.8% potassium lactate, and a combination of 200 AU/cm2 of nisin and 1.8% lactate were incorporated into interleavers, and their effectiveness against Listeria monocytogenes spiked in sliced, cooked ham was evaluated. Antimicrobial-packaged cooked ham was then subjected to high-pressure processing (HPP) at 400 MPa. In nonpressurized samples, nisin plus lactate-containing interleavers were the most effective, inhibiting L. monocytogenes growth for 30 days at 6 degrees C, with counts that were 1.9 log CFU/g lower than in the control after 3 months. In the other antimicrobial-containing interleavers, L. monocytogenes did not exhibit a lag phase and progressively grew to levels of about 8 log CFU/g. HPP of actively packaged ham slices reduced Listeria populations about 4 log CFU/g in all batches containing bacteriocins (i.e., nisin, sakacin, and enterocins). At the end of storage, L. monocytogenes levels in the bacteriocin-containing batches were the lowest, with counts below 1.51 log CFU/g. In contrast, HPP moderately reduced L. monocytogenes counts in the control and lactate batches, with populations gradually increasing to about 6.5 log CFU/g at the end of storage.
Collapse
Affiliation(s)
- Anna Jofré
- IRTA, Finca Camps i Armet, E-17121 Monells, Girona, Spain
| | | | | |
Collapse
|
25
|
Colak H, Hampikyan H, Ulusoy B, Bingol EB. Presence of Listeria monocytogenes in Turkish style fermented sausage (sucuk). Food Control 2007. [DOI: 10.1016/j.foodcont.2005.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 2006; 70:564-82. [PMID: 16760314 PMCID: PMC1489543 DOI: 10.1128/mmbr.00016-05] [Citation(s) in RCA: 441] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.
Collapse
Affiliation(s)
- Djamel Drider
- Laboratoire de Microbiologie Alimentaire et Industrielle, ENITIAA, Rue de la Géraudière, BP82225, 44322 Nantes Cedex, France.
| | | | | | | | | |
Collapse
|
27
|
Hornbaek T, Brockhoff PB, Siegumfeldt H, Budde BB. Two subpopulations of Listeria monocytogenes occur at subinhibitory concentrations of leucocin 4010 and nisin. Appl Environ Microbiol 2006; 72:1631-8. [PMID: 16461719 PMCID: PMC1392907 DOI: 10.1128/aem.72.2.1631-1638.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 11/29/2005] [Indexed: 11/20/2022] Open
Abstract
In situ analyses of single Listeria monocytogenes cells at subinhibitory concentrations of leucocin 4010 and nisin revealed two subpopulations when measured by fluorescence ratio imaging microscopy (FRIM) after staining with 5(6)-carboxyfluorescein diacetate succinimidyl ester. One subpopulation consisted of cells with a dissipated pH gradient (DeltapH), and the other consisted of cells that maintained DeltapH. The proportion of cells belonging to each subpopulation was estimated, and the concentrations of bacteriocins required to dissipate DeltapH for 90% of the cell population (ED90) was predicted. ED90 increased after the addition of sodium chloride (1 to 3% [wt/vol]) to the bacteriocin solutions, while ED90 decreased by the addition of sodium nitrite (60 and 100 ppm). Other meat additives, including sodium phosphate, sodium lactate, sodium citrate, and sodium acetate slightly increased ED90. The inhibitory effect of sodium chloride on the antilisterial activity of leucocin 4010 and nisin was confirmed on the surfaces of meat sausages. This study highlights the important practical implications of applying subinhibitory concentrations of bacteriocins, which results in unaffected target cells. In situ analyses by FRIM in combination with modeling of single-cell data can be applied to ensure that sufficient concentrations of bacteriocins are used in food preservation.
Collapse
Affiliation(s)
- Tina Hornbaek
- Department of Food Science, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
28
|
Leroy F, Verluyten J, De Vuyst L. Functional meat starter cultures for improved sausage fermentation. Int J Food Microbiol 2006; 106:270-85. [PMID: 16213053 DOI: 10.1016/j.ijfoodmicro.2005.06.027] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
Starter cultures that initiate rapid acidification of the raw meat batter and that lead to a desirable sensory quality of the end-product are used for the production of fermented sausages. Recently, the use of new, functional starter cultures with an industrially or nutritionally important functionality is being explored. Functional starter cultures offer an additional functionality compared to classical starter cultures and represent a way of improving and optimising the sausage fermentation process and achieving tastier, safer, and healthier products. Examples include microorganisms that generate aroma compounds, health-promoting molecules, bacteriocins or other antimicrobials, contribute to cured meat colour, possess probiotic qualities, or lack negative properties such as the production of biogenic amines and toxic compounds. The vast quantity of artisan fermented sausages from different origins represents a treasure chest of biodiversity that can be exploited to create such functional starter cultures.
Collapse
Affiliation(s)
- Frédéric Leroy
- Research Group of Industrial Microbiology, Fermentation Technology and Downstream Processing (IMDO), Department of Applied Biological Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
29
|
Leroy F, Lievens K, De Vuyst L. Interactions of meat-associated bacteriocin-producing Lactobacilli with Listeria innocua under stringent sausage fermentation conditions. J Food Prot 2005; 68:2078-84. [PMID: 16245710 DOI: 10.4315/0362-028x-68.10.2078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The kinetics of the antilisterial effect of meat-associated lactobacilli on Listeria innocua LMG 13568 were investigated during laboratory batch fermentations. During these fermentations, which were performed in a liquid meat simulation medium, a combination of process factors typical for European-style sausage fermentations was applied, such as a temperature of 20 degrees C and a representative pH and salting profile. Two bacteriocin-producing sausage isolates (Lactobacillus sakei CTC 494 and Lactobacillus curvatus LTH 1174), which have already proven efficacy in sausage trials, and one nonbacteriocinogenic, industrial strain (Lactobacillus sakei I), were evaluated. Staphylococcus carnosus 833 was included in the experiment because of its role in flavor and color development. When grown as a monoculture or upon cocultivation with L. sakei I and S. carnosus 833, L. innocua LMG 13568 developed slightly, despite the stress of low temperature, pH, lactic acid, salt, and nitrite. In contrast, when either of the bacteriocin producers was used, the L. innocua LMG 13568 population was rapidly inactivated with more than 3 log CFU ml(-1) after 2 days of fermentation. A bacteriocin-tolerant L. innocua LMG 13568 subpopulation (4 X 10(-4)) remained after bacteriocin inactivation. Thus, when the initial level of L. innocua LMG 13568 equaled 3 log CFU ml(-1), all cells were inactivated and no bacteriocin-tolerant cells were detected, even after 7 days of incubation. S. carnosus was not inactivated by the Lactobacillus bacteriocins and displayed slight growth.
Collapse
Affiliation(s)
- Frédéric Leroy
- Research Group of Industrial Microbiology, Fermentation Technology and Downstream Processing (IMDO), Department of Applied Biological Sciences, Vrije Universiteit Brussel (VUB), B-1050 Brussels, Belgium
| | | | | |
Collapse
|
30
|
Verluyten J, Leroy F, De Vuyst L. Effects of different spices used in production of fermented sausages on growth of and curvacin A production by Lactobacillus curvatus LTH 1174. Appl Environ Microbiol 2004; 70:4807-13. [PMID: 15294818 PMCID: PMC492326 DOI: 10.1128/aem.70.8.4807-4813.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 05/05/2004] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus curvatus LTH 1174, a fermented sausage isolate, produces the listericidal bacteriocin curvacin A. The effect of different spices relevant for the production of fermented sausages was investigated in vitro through laboratory fermentations with a meat simulation medium and an imposed pH profile relevant for Belgian-type fermented sausages. The influence on the growth characteristics and especially on the kinetics of curvacin A production with L. curvatus LTH 1174 was evaluated. Pepper, nutmeg, rosemary, mace, and garlic all decreased the maximum specific growth rate, while paprika was the only spice that increased it. The effect on the lag phase was minor except for nutmeg and especially for garlic, which increased it, yet garlic was stimulatory for biomass production. The maximum attainable biomass concentration (X(max)) was severely decreased by the addition of 0.40% (wt/vol) nutmeg, while 0.35% (wt/vol) garlic or 0.80% (wt/vol) white pepper increased X(max). Nutmeg decreased both growth and bacteriocin production considerably. Garlic was the only spice enhancing specific bacteriocin production, resulting in higher bacteriocin activity in the cell-free culture supernatant. Finally, lactic acid production was stimulated by the addition of pepper, and this was not due to the manganese present because an amount of manganese that was not growth limiting was added to the growth medium. Addition of spices to the sausage mixture is clearly a factor that will influence the effectiveness of bacteriocinogenic starter cultures in fermented-sausage manufacturing.
Collapse
Affiliation(s)
- Jurgen Verluyten
- Research Group of Industrial Microbiology, Fermentation Technology and Downstream Processing, Department of Applied Biological Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
| | | | | |
Collapse
|