1
|
Mailler J, Padayachy L, Halazonetis TD. A method to sequence genomic sites of mitotic DNA synthesis in mammalian cells. Methods Enzymol 2021; 661:283-304. [PMID: 34776216 DOI: 10.1016/bs.mie.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Under normal conditions, the genome of eukaryotic cells is faithfully replicated during S phase. However, in cells exposed to DNA polymerase inhibitors, some regions of the genome may fail to be replicated prior to mitotic entry. To prevent chromosomal breakage and loss of genomic information, mitotic DNA synthesis (MiDAS) completes replication of the genome prior to the onset of anaphase. We have developed a protocol that allows one to map the genomic regions that are replicated by MiDAS in mammalian cells. The protocol involves incorporation of a thymidine analog in nascent DNA in mitotic cells and then capture and high throughput sequencing of the nascent DNA. With this approach, sites of MiDAS can be identified at high resolution.
Collapse
Affiliation(s)
- Jonathan Mailler
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
2
|
Macheret M, Bhowmick R, Sobkowiak K, Padayachy L, Mailler J, Hickson ID, Halazonetis TD. High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Res 2020; 30:997-1008. [PMID: 32561860 PMCID: PMC7784693 DOI: 10.1038/s41422-020-0358-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/31/2020] [Indexed: 12/22/2022] Open
Abstract
DNA replication stress, a feature of human cancers, often leads to instability at specific genomic loci, such as the common fragile sites (CFSs). Cells experiencing DNA replication stress may also exhibit mitotic DNA synthesis (MiDAS). To understand the physiological function of MiDAS and its relationship to CFSs, we mapped, at high resolution, the genomic sites of MiDAS in cells treated with the DNA polymerase inhibitor aphidicolin. Sites of MiDAS were evident as well-defined peaks that were largely conserved between cell lines and encompassed all known CFSs. The MiDAS peaks mapped within large, transcribed, origin-poor genomic regions. In cells that had been treated with aphidicolin, these regions remained unreplicated even in late S phase; MiDAS then served to complete their replication after the cells entered mitosis. Interestingly, leading and lagging strand synthesis were uncoupled in MiDAS, consistent with MiDAS being a form of break-induced replication, a repair mechanism for collapsed DNA replication forks. Our results provide a better understanding of the mechanisms leading to genomic instability at CFSs and in cancer cells.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Katarzyna Sobkowiak
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Jonathan Mailler
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland.
| |
Collapse
|
3
|
From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork. Int J Mol Sci 2020; 21:ijms21041506. [PMID: 32098397 PMCID: PMC7073102 DOI: 10.3390/ijms21041506] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Replicating the entire genome is one of the most complex tasks for all organisms. Research carried out in the last few years has provided us with a clearer picture on how cells preserve genomic information from the numerous insults that may endanger its stability. Different DNA repair pathways, coping with exogenous or endogenous threat, have been dissected at the molecular level. More recently, there has been an increasing interest towards intrinsic obstacles to genome replication, paving the way to a novel view on genomic stability. Indeed, in some cases, the movement of the replication fork can be hindered by the presence of stable DNA: RNA hybrids (R-loops), the folding of G-rich sequences into G-quadruplex structures (G4s) or repetitive elements present at Common Fragile Sites (CFS). Although differing in their nature and in the way they affect the replication fork, all of these obstacles are a source of replication stress. Replication stress is one of the main hallmarks of cancer and its prevention is becoming increasingly important as a target for future chemotherapeutics. Here we will try to summarize how these three obstacles are generated and how the cells handle replication stress upon their encounter. Finally, we will consider their role in cancer and their exploitation in current chemotherapeutic approaches.
Collapse
|
4
|
Abstract
Ever since initial suggestions that instability at common fragile sites (CFSs) could be responsible for chromosome rearrangements in cancers, CFSs and associated genes have been the subject of numerous studies, leading to questions and controversies about their role and importance in cancer. It is now clear that CFSs are not frequently involved in translocations or other cancer-associated recurrent gross chromosome rearrangements. However, recent studies have provided new insights into the mechanisms of CFS instability, their effect on genome instability, and their role in generating focal copy number alterations that affect the genomic landscape of many cancers.
Collapse
Affiliation(s)
- Thomas W Glover
- Department of Human Genetics; the Department of Pathology; and the Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Thomas E Wilson
- Department of Human Genetics; and the Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
5
|
Savelyeva L, Brueckner LM. Molecular characterization of common fragile sites as a strategy to discover cancer susceptibility genes. Cell Mol Life Sci 2014; 71:4561-75. [PMID: 25231336 PMCID: PMC11114050 DOI: 10.1007/s00018-014-1723-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/19/2022]
Abstract
The cytogenetic hypothesis that common fragile sites (cFSs) are hotspots of cancer breakpoints is increasingly supported by recent data from whole-genome profiles of different cancers. cFSs are components of the normal chromosome structure that are particularly prone to breakage under conditions of replication stress. In recent years, cFSs have become of increasing interest in cancer research, as they not only appear to be frequent targets of genomic alterations in progressive tumors, but also already in precancerous lesions. Despite growing evidence of their importance in disease development, most cFSs have not been investigated at the molecular level and most cFS genes have not been identified. In this review, we summarize the current data on molecularly characterized cFSs, their genetic and epigenetic characteristics, and put emphasis on less-studied cFS genes as potential contributors to cancer development.
Collapse
Affiliation(s)
- Larissa Savelyeva
- Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | |
Collapse
|
6
|
Kato T, Franconi CP, Sheridan MB, Hacker AM, Inagakai H, Glover TW, Arlt MF, Drabkin HA, Gemmill RM, Kurahashi H, Emanuel BS. Analysis of the t(3;8) of hereditary renal cell carcinoma: a palindrome-mediated translocation. Cancer Genet 2014; 207:133-40. [PMID: 24813807 DOI: 10.1016/j.cancergen.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/07/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22), and t(8;22). To date, all reported PATRR-mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene, whereas the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, we detect de novo translocations similar to the t(11;22) and t(8;22), involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence-based etiologies responsible for chromosome 3p14.2 genomic rearrangements.
Collapse
Affiliation(s)
- Takema Kato
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colleen P Franconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly B Sheridan
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - April M Hacker
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hidehito Inagakai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Brueckner LM, Hess EM, Schwab M, Savelyeva L. Instability at the FRA8I common fragile site disrupts the genomic integrity of the KIAA0146, CEBPD and PRKDC genes in colorectal cancer. Cancer Lett 2013; 336:85-95. [PMID: 23603433 DOI: 10.1016/j.canlet.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 01/13/2023]
Abstract
Specific patterns of genomic aberrations have been associated with different types of malignancies. In colorectal cancer, losses of chromosome arm 8p and gains of chromosome arm 8q are among the most common chromosomal rearrangements, suggesting that the centromeric portion of chromosome 8 is particularly sensitive to breakage. Genomic alterations frequently occur in the early stages of tumorigenesis at specific genomic regions known as common fragile sites (cFSs). CFSs represent parts of the normal chromosome structure that are prone to breakage under replication stress. In this study, we identified the genomic location of FRA8I, spanning 530 kb at 8q11.21 and assessed the composition of the fragile DNA sequence. FRA8I encompasses KIAA0146, a large protein-coding gene with yet unknown function, as well as CEBPD and part of PRKDC, two genes encoding proteins involved in tumorigenesis in a variety of cancers. We show that FRA8I is unstable in lymphocytes and epithelial cells, displaying similar expression rates. We examined copy number alteration patterns within FRA8I in a panel of 25 colorectal cancer cell lines and surveyed publically available profiles of 56 additional colorectal cancer cell lines. Combining these data shows that focal recombination events disrupt the genomic integrity of KIAA0146 and neighboring cFS genes in 12.3% of colorectal cancer cell lines. Moreover, data analysis revealed evidence that KIAA0146 is a translocation partner of the immunoglobulin heavy chain gene in recurrent t(8;14)(q11;q32) translocations in a subset of patients with B-cell precursor acute lymphoblastic leukemia. Our data molecularly describe a region of enhanced chromosomal instability in the human genome and point to a role of the KIAA0146 gene in tumorigenesis.
Collapse
Affiliation(s)
- Lena M Brueckner
- Division of Tumor Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
8
|
Genomics and epigenomics of renal cell carcinoma. Semin Cancer Biol 2013; 23:10-7. [DOI: 10.1016/j.semcancer.2012.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/05/2012] [Indexed: 12/12/2022]
|
9
|
Brueckner LM, Sagulenko E, Hess EM, Zheglo D, Blumrich A, Schwab M, Savelyeva L. Genomic rearrangements at the FRA2H common fragile site frequently involve non-homologous recombination events across LTR and L1(LINE) repeats. Hum Genet 2012; 131:1345-59. [PMID: 22476624 DOI: 10.1007/s00439-012-1165-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/24/2012] [Indexed: 01/11/2023]
Abstract
Common fragile sites (cFSs) are non-random chromosomal regions that are prone to breakage under conditions of replication stress. DNA damage and chromosomal alterations at cFSs appear to be critical events in the development of various human diseases, especially carcinogenesis. Despite the growing interest in understanding the nature of cFS instability, only a few cFSs have been molecularly characterised. In this study, we fine-mapped the location of FRA2H using six-colour fluorescence in situ hybridisation and showed that it is one of the most active cFSs in the human genome. FRA2H encompasses approximately 530 kb of a gene-poor region containing a novel large intergenic non-coding RNA gene (AC097500.2). Using custom-designed array comparative genomic hybridisation, we detected gross and submicroscopic chromosomal rearrangements involving FRA2H in a panel of 54 neuroblastoma, colon and breast cancer cell lines. The genomic alterations frequently involved different classes of long terminal repeats and long interspersed nuclear elements. An analysis of breakpoint junction sequence motifs predominantly revealed signatures of microhomology-mediated non-homologous recombination events. Our data provide insight into the molecular structure of cFSs and sequence motifs affected by their activation in cancer. Identifying cFS sequences will accelerate the search for DNA biomarkers and targets for individualised therapies.
Collapse
Affiliation(s)
- Lena M Brueckner
- Division of Tumor Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Blumrich A, Zapatka M, Brueckner LM, Zheglo D, Schwab M, Savelyeva L. The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum Mol Genet 2011; 20:1488-501. [DOI: 10.1093/hmg/ddr027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
11
|
Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J Biomed Biotechnol 2010; 2011:984505. [PMID: 21318118 PMCID: PMC3035048 DOI: 10.1155/2011/984505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/23/2010] [Indexed: 12/20/2022] Open
Abstract
Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.
Collapse
|
12
|
Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites. DNA Repair (Amst) 2010; 9:678-89. [PMID: 20413351 DOI: 10.1016/j.dnarep.2010.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 01/22/2023]
Abstract
Common fragile sites are loci that preferentially form gaps and breaks on metaphase chromosomes when DNA synthesis is perturbed, particularly after treatment with the DNA polymerase inhibitor, aphidicolin. We and others have identified several cell cycle checkpoint and DNA repair proteins that influence common fragile site stability. However, the initial events underlying fragile site breakage remain poorly understood. We demonstrate here that aphidicolin-induced gaps and breaks at fragile sites are prevented when cells are co-treated with low concentrations of the topoisomerase I inhibitor, camptothecin. This reduction in breakage is accompanied by a reduction in aphidicolin-induced RPA foci, CHK1 and RPA2 phosphorylation, and PCNA monoubiquitination, indicative of reduced levels of single stranded DNA. Furthermore, camptothecin reduces spontaneous fragile site breakage seen in cells lacking ATR, even in the absence of aphidicolin. These data from cultured human cells demonstrate that topoisomerase I activity is required for DNA common fragile site breaks and suggest that polymerase-helicase uncoupling is a key initial event in this process.
Collapse
|
13
|
Ragland RL, Glynn MW, Arlt MF, Glover TW. Stably transfected common fragile site sequences exhibit instability at ectopic sites. Genes Chromosomes Cancer 2008; 47:860-72. [PMID: 18615677 DOI: 10.1002/gcc.20591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Common fragile sites (CFSs) are loci that are especially prone to forming gaps and breaks on metaphase chromosomes under conditions of replication stress. Although much has been learned about the cellular responses to gaps and breaks at CFSs, less is known about what makes these sites inherently unstable. CFS sequences are highly conserved in mammalian evolution and contain a number of sequence motifs that are hypothesized to contribute to their instability. To examine the role of CFS sequences in chromosome breakage, we stably transfected two BACs containing FRA3B sequences and two nonCFS control BACs containing similar sequence content into HCT116 cells and isolated cell clones with BACs integrated at ectopic sites. Integrated BACs were present at just a few to several hundred contiguous copies. Cell clones containing integrated FRA3B BACs showed a significant, three to sevenfold increase in aphidicolin-induced gaps and breaks at the integration site as compared to control BACs. Furthermore, many FRA3B integration sites displayed additional chromosome rearrangements associated with CFS instability. Clones were examined for replication timing and it was found that the integrated FRA3B sequences were not dependent on late replication for their fragility. This is the first direct evidence in human cells that introduction of CFS sequences into ectopic nonfragile loci is sufficient to recapitulate the instability found at CFSs. These data support the hypothesis that sequences at CFSs are inherently unstable, and are a major factor in the formation of replication stress induced gaps and breaks at CFSs.
Collapse
Affiliation(s)
- Ryan L Ragland
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | |
Collapse
|
14
|
Human chromosome fragility. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:3-16. [DOI: 10.1016/j.bbagrm.2007.10.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 11/21/2022]
|
15
|
Abstract
Chromosomal fragile sites are specific loci that preferentially exhibit gaps and breaks on metaphase chromosomes following partial inhibition of DNA synthesis. Their discovery has led to novel findings spanning a number of areas of genetics. Rare fragile sites are seen in a small proportion of individuals and are inherited in a Mendelian manner. Some, such as FRAXA in the FMR1 gene, are associated with human genetic disorders, and their study led to the identification of nucleotide-repeat expansion as a frequent mutational mechanism in humans. In contrast, common fragile sites are present in all individuals and represent the largest class of fragile sites. Long considered an intriguing component of chromosome structure, common fragile sites have taken on novel significance as regions of the genome that are particularly sensitive to replication stress and that are frequently rearranged in tumor cells. In recent years, much progress has been made toward understanding the genomic features of common fragile sites and the cellular processes that monitor and influence their stability. Their study has merged with that of cell cycle checkpoints and DNA repair, and common fragile sites have provided insight into understanding the consequences of replication stress on DNA damage and genome instability in cancer cells.
Collapse
Affiliation(s)
- Sandra G Durkin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA.
| | | |
Collapse
|
16
|
Arlt MF, Durkin SG, Ragland RL, Glover TW. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 2006; 5:1126-35. [PMID: 16807141 DOI: 10.1016/j.dnarep.2006.05.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human, Genetics University of Michigan, 4909 Buhl Box 0618, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
17
|
Hormozian F, Schmitt JG, Sagulenko E, Schwab M, Savelyeva L. FRA1E common fragile site breaks map within a 370kilobase pair region and disrupt the dihydropyrimidine dehydrogenase gene (DPYD). Cancer Lett 2006; 246:82-91. [PMID: 16556484 DOI: 10.1016/j.canlet.2006.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 12/15/2005] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
Common fragile sites represent components of normal chromosome structure that are particularly prone to breakage under replication stress. Although the cytogenetic locations of 88 common fragile sites are listed in the Genome database, the DNA at only 14 of them has been defined and characterized at the molecular level. Here, we identify the precise genomic position of the common fragile site FRA1E, mapped to the chromosomal band 1p21.2, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA1E extends over 370kb within the dihydropyrimidine dehydrogenase (DPYD) gene, which genomically spans approximately 840kb. The 185kb region of the highest fragility, which accounts for 86% of all observed breaks at FRA1E, encompasses the central part of DPYD including exons 13-16. DPYD encodes dihydropyrimidine dehydrogenase (DPD), which is the first and rate-limiting enzyme in a three-step metabolic pathway involved in degradation of the pyrimidine bases uracil and thymine. Deficiency in human DPD is associated with autosomal recessive disease, thymine-uraciluria, and with severe 5-fluorouracil toxicity in cancer patients. To which extent the disruption of the DPYD gene by the fragile site break is only transient, followed by DNA repair to restore the original structure, or occasionally may result in genomic damage associated with human disease remains to be determined.
Collapse
Affiliation(s)
- Fabiola Hormozian
- Division of Tumour Genetics, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
18
|
Schwartz M, Zlotorynski E, Kerem B. The molecular basis of common and rare fragile sites. Cancer Lett 2006; 232:13-26. [PMID: 16236432 DOI: 10.1016/j.canlet.2005.07.039] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 11/30/2022]
Abstract
Fragile sites are specific loci that form gaps and constrictions on chromosomes exposed to partial replication stress. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. These loci are known to be involved in chromosomal rearrangements in tumors and are associated with human diseases. Therefore, the understanding of the molecular basis of fragile sites is of high significance. Here we discuss the works performed in recent years that investigated the characteristics of fragile sites which underlie their inherent instability.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
19
|
Savelyeva L, Sagulenko E, Schmitt JG, Schwab M. Low-frequency common fragile sites: Link to neuropsychiatric disorders? Cancer Lett 2006; 232:58-69. [PMID: 16298041 DOI: 10.1016/j.canlet.2005.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
Common fragile sites are unstable chromosomal regions that predispose chromosomes to breakage and rearrangements. Recombinogenic DNA sequences encompassing these sites may contribute to both germinal and somatic genomic mutations, and the genomic instability at these regions might cause severe inherited disorders or predispose to cancer. In this review, we discuss the characterization of common fragile site FRA13A within the neurobeachin gene, which is involved in development and function of the central nervous system. We raise the possibility of an implication of common fragile sites in neuropsychiatric disorders and overview previous and recent reports concerning individual variability of expression of common fragile sites in human populations.
Collapse
Affiliation(s)
- Larissa Savelyeva
- Division of Tumor Genetics, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
20
|
Abstract
Common fragile sites are regions showing site-specific gaps and breaks on metaphase chromosomes after partial inhibition of DNA synthesis. Common fragile sites are normally stable in somatic cells. However, following treatment of cultured cells with replication inhibitors, fragile sites display gaps, breaks, rearrangements and other features of unstable DNA. Studies showing that fragile sites and associated genes are frequently deleted or rearranged in many cancer cells have clearly demonstrated their importance in genome instability in cancer. Until recently, little was known about the molecular nature and mechanisms involved in fragile site instability. From studies conducted in many laboratories, it is now known that fragile sites extend over large regions, are associated with genes, exhibit delayed replication, and contain regions of high DNA flexibility. Recent findings from our laboratory showing that the key cell cycle checkpoint genes are important for genome stability at fragile sties have shed new light on these mechanisms and on the significance of these sites in cancer and normal chromosome structure. Since their discovery over two decades ago, much has been learned regarding their significance in chromosome structure and instability in cancer, but a number of key questions remain, including why these sites are 'fragile' and the impact of this instability on associated genes in cancer cells. These and other questions have been addressed by participants of this meeting, which highlighted instability at common fragile sites. This brief review is intended to provide background on common fragile sites that has led up to many of the studies presented in the accompanying reports in this volume and not to summarize the findings presented therein. Some aspects of this review were taken from Glover et al. (T.W. Glover, M.F. Arlt, A.M. Casper, S.G. Durkin, Mechanisms of common fragile site instability, Hum. Molec. Genet. 14 (in press). [1]).
Collapse
Affiliation(s)
- Thomas W Glover
- Department of Human Genetics, 4909 Buhl, Box 0618, 1241 E. Catherine Street, University of Michigan, Ann Arbor, MI 48109-0618, USA.
| |
Collapse
|
21
|
Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, le Sage C, Chen BPC, Chen DJ, Agami R, Kerem B. Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 2005; 19:2715-26. [PMID: 16291645 PMCID: PMC1283964 DOI: 10.1101/gad.340905] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 09/12/2005] [Indexed: 12/12/2022]
Abstract
Common fragile sites are specific loci that form gaps and constrictions on metaphase chromosomes exposed to replication stress, which slows DNA replication. These sites have a role in chromosomal rearrangements in tumors; however, the molecular mechanism of their expression is unclear. Here we show that replication stress leads to focus formation of Rad51 and phosphorylated DNA-PKcs, key components of the homologous recombination (HR) and nonhomologous end-joining (NHEJ), double-strand break (DSB) repair pathways, respectively. Down-regulation of Rad51, DNA-PKcs, or Ligase IV, an additional component of the NHEJ repair pathway, leads to a significant increase in fragile site expression under replication stress. Replication stress also results in focus formation of the DSB markers, MDC1 and gammaH2AX. These foci colocalized with those of Rad51 and phospho-DNA-PKcs. Furthermore, gammaH2AX and phospho-DNA-PKcs foci were localized at expressed fragile sites on metaphase chromosomes. These findings suggest that DSBs are formed at common fragile sites as a result of replication perturbation. The repair of these breaks by both HR and NHEJ pathways is essential for chromosomal stability at these sites.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Savelyeva L, Sagulenko E, Schmitt JG, Schwab M. The neurobeachin gene spans the common fragile site FRA13A. Hum Genet 2005; 118:551-8. [PMID: 16244873 DOI: 10.1007/s00439-005-0083-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Common fragile sites are normal constituents of chromosomal structure prone to chromosomal breakage. In humans, the cytogenetic locations of more than 80 common fragile sites are known. The DNA at 11 of them has been defined and characterized at the molecular level. According to the Genome Database, the common fragile site FRA13A maps to chromosome band 13q13.2. Here, we identify the precise genomic position of FRA13A, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA13A breaks are limited to a 650 kb region within the neurobeachin (NBEA) gene, which genomically spans approximately 730 kb. NBEA encodes a neuron-specific multidomain protein implicated in membrane trafficking that is predominantly expressed in the brain and during development.
Collapse
Affiliation(s)
- Larissa Savelyeva
- Division of Tumor Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
23
|
Glover TW, Arlt MF, Casper AM, Durkin SG. Mechanisms of common fragile site instability. Hum Mol Genet 2005; 14 Spec No. 2:R197-205. [PMID: 16244318 DOI: 10.1093/hmg/ddi265] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study of common fragile sites has its roots in the early cytogenetic investigations of the fragile X syndrome. Long considered an interesting component of chromosome structure, common fragile sites have taken on novel significance as regions of the genome that are particularly sensitive to certain forms of replication stress, which are frequently rearranged in cancer cells. In recent years, much has been learned about the genomic structure at fragile sites and the cellular checkpoint functions that monitor their stability. Recent findings suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early stages of tumorigenesis. Thus, the study of common fragile sites can provide insight not only into the nature of fragile sites, but also into the broader consequences of replication stress on DNA damage and cancer. However, despite recent advances, many questions remain regarding the normal functional significance of these conserved regions and the basis of their fragility.
Collapse
Affiliation(s)
- Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
24
|
Iliopoulos D, Guler G, Han SY, Druck T, Ottey M, McCorkell KA, Huebner K. Roles of FHIT and WWOX fragile genes in cancer. Cancer Lett 2005; 232:27-36. [PMID: 16225988 DOI: 10.1016/j.canlet.2005.06.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/06/2005] [Indexed: 11/22/2022]
Abstract
It was hypothesized as early as 1986, that the recently discovered common fragile sites could facilitate recombination events, such as deletions and translocations, that result in clonally expanded cancer cell populations with specific chromosome alterations in specific cancer types. A natural extension of this hypothesis is that the clonal expansion must be driven by alteration of genes at recombination breakpoints whose altered functions actually drive clonal expansion. Nevertheless, when the FHIT gene was discovered at FRA3B, the most active common chromosome fragile region, and proposed as an example of a tumor suppressor gene altered by chromosome translocations and deletions, a wave of reports suggested that the FHIT gene was altered in cancer simply because it was in a fragile region and not because it had contributed to the clonal expansion, thus turning the original hypothesis upside down. Now, after nearly ten years and more than 500 FHIT reports, it is apparent that FHIT is an important tumor suppressor gene and that there are genes at other fragile regions that contribute significantly to development of cancer. A second fragile gene with a demonstrated role in cancer development is the WWOX gene on chromosome 16q; alterations to the WWOX gene contribute to development of hormone responsive and other cancers. Results of our recent studies of these two fragile tumor suppressor genes were summarized at the first Fragilome meeting in Heidelberg, Feb. 2005.
Collapse
Affiliation(s)
- Dimitrios Iliopoulos
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Hussain A, Gutiérrez MI, Timson G, Siraj AK, Deambrogi C, Al-Rasheed M, Gaidano G, Magrath I, Bhatia K. Frequent silencing of fragile histidine triad gene (FHIT) in Burkitt's lymphoma is associated with aberrant hypermethylation. Genes Chromosomes Cancer 2005; 41:321-9. [PMID: 15384174 DOI: 10.1002/gcc.20099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The fragile histidine triad (FHIT) gene, a potential tumor-suppressor gene, is frequently inactivated in multiple human cancers. However, the FHIT gene remains largely unexplored in Burkitt's lymphoma (BL). Hence, we assessed whether loss of FHIT expression occurs in BL, and, if so, what is the mechanism of such loss. Lack of protein expression was observed in 50% of BL cell lines. Methylation-specific polymerase chain reaction (MSP) showed that 45% of BL cell lines carried aberrantly methylated FHIT alleles. Sequencing of bisulfite-treated DNA confirmed these data and indicated a very high density of methylation in all methylated alleles. Real-time, quantitative reverse-transcription PCR analysis indicated that attenuation of full-length FHIT transcription was correlated with methylation. Sequencing of transcripts illustrated that aberrant transcription resulting in loss of FHIT exons occurred more commonly in BL containing unmethylated FHIT genes. However, such transcripts often coexisted with full-length FHIT transcripts. Not surprisingly, therefore, loss of FHIT protein in BL correlated with CpG island methylation, rather than with aberrant transcription. FHIT methylation also was detected in 31% (16 of 51) of the primary BLs examined, including 2 samples whose derived cell lines also manifested FHIT hypermethylation. Aberrant methylation can thus occur in vivo. In summary, this report provides evidence that epigenetic modification frequently results in loss of FHIT expression in BL.
Collapse
Affiliation(s)
- Azhar Hussain
- King Fahd National Centre for Children's Cancer, KFSHRC, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Denison SR, Simper RK, Greenbaum IF. How common are common fragile sites in humans: interindividual variation in the distribution of aphidicolin-induced fragile sites. Cytogenet Genome Res 2004; 101:8-16. [PMID: 14571130 DOI: 10.1159/000073411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 05/13/2003] [Indexed: 11/19/2022] Open
Abstract
To obtain an estimate of the variation in common fragile sites (CFSs) among individuals, aphidicolin (APC)-induced chromosomal breakage data were analyzed for 20 karyotypically normal adult humans. As it is specifically designed to meet the analytical requirements for considering fragile sites as presence/absence characters in single individuals, the FSM methodology (Böhm et al., 1995) was used to statistically distinguish fragile from nonfragile sites. These analyses indicated that the APC-induced fragile sites are not ubiquitous but vary extensively among individuals; the per-individual number of fragile sites ranged from as few as seven to as many as 20. Of the 45 different sites identified as fragile, 19 (42%) occurred in more than half of the individuals, but only two sites (3p14 and 16q23) were fragile in all of the individuals; 12 (27% of the total) were fragile in single individuals only. Although these analyses provide statistical confirmation (and initial estimates of population variation) for 43 of the 88 APC-inducible fragile sites currently recognized as occurring among humans, they are consistent with the hypothesis that many of the currently recognized human CFSs have been erroneously identified. These results indicate the need for per-individual statistical identification of CFSs for larger samples of individuals and that studies of particular fragile sites should be conducted on individuals documented to be fragile at the loci under consideration.
Collapse
Affiliation(s)
- S R Denison
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|
27
|
Arlt MF, Casper AM, Glover TW. Common fragile sites. Cytogenet Genome Res 2004; 100:92-100. [PMID: 14526169 DOI: 10.1159/000072843] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 01/17/2003] [Indexed: 11/19/2022] Open
Abstract
Aphidicolin-induced common fragile sites are site-specific gaps or breaks seen on metaphase chromosomes after partial inhibition of DNA synthesis. These fragile sites were first recognized during the early studies of the fragile X syndrome and are induced by the same conditions of folate or thymidylate stress used to induce the fragile X site. Common fragile sites are normally stable in cultured human cells. However, following induction with replication inhibitors, they display a number of characteristics of unstable and highly recombinogenic DNA. From the many studies that have cloned and characterized fragile sites, it is now known that these sites extend over large regions, are associated with genes, exhibit late or delayed replication, and contain regions of high flexibility but are otherwise unremarkable in sequence. Studies showing that fragile sites and their associated genes are frequently deleted or rearranged in cancer cells have clearly demonstrated their importance in genome instability in tumorigenesis. Yet until recently, very little was known about the molecular mechanisms involved in their stability. Recent findings showing that the key checkpoint genes ATR and BRCA1 are critical for genome stability at fragile sites have shed new light on these mechanisms and on the biological significance of common fragile sites.
Collapse
Affiliation(s)
- M F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | |
Collapse
|
28
|
Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R, Levi A, Scherer SW, Margalit H, Kerem B. Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 2003; 23:7143-51. [PMID: 14517285 PMCID: PMC230307 DOI: 10.1128/mcb.23.20.7143-7151.2003] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.
Collapse
Affiliation(s)
- Eitan Zlotorynski
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel 91904
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fang JM, Arlt MF, Burgess AC, Dagenais SL, Beer DG, Glover TW. Translocation breakpoints in FHIT and FRA3B in both homologs of chromosome 3 in an esophageal adenocarcinoma. Genes Chromosomes Cancer 2001; 30:292-8. [PMID: 11170287 DOI: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1095>3.0.co;2-f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Common fragile sites have been proposed to play a mechanistic role in chromosome translocations and other rearrangements in cancer cells in vivo based on their behavior in vitro and their co-localization with cancer translocation breakpoints. This hypothesis has been the subject of controversy, because associations have been made at the chromosomal level and because of the large number of both fragile sites and cancer chromosome breakpoints. Tests of this hypothesis at the molecular level are now possible with the cloning of common fragile site loci and the use of fragile site clones in the analysis of rearranged chromosomes. FRA3B, the most frequently seen common fragile site, lies within the large FHIT gene. It is now well established that this region is the site of frequent, large intragenic deletions and aberrant transcripts in a number of tumors and tumor cell lines. In contrast, only one tumor-associated translocation involving the FHIT gene has been reported. We have found translocations in both homologs of chromosome 3 in an early-passage esophageal adenocarcinoma cell line. This cell line showed no normal FHIT transcripts by reverse transcription polymerase chain reaction. Subsequent chromosome analysis showed translocations of the short arms of both homologs of chromosome 3: t(3;16) and t(3;4). The breakpoints of both translocations were shown by fluorescence in situ hybridization and polymerase chain reaction to be in the FHIT gene, at or near the center of the fragile site region. Using rapid amplification of cDNA ends with FHIT primers, a noncoding chimeric transcript resulting from t(3;16) was identified. These data provide direct support for the hypothesis that FRA3B, and likely other common fragile sites, may be "hot spots" for translocations in certain cancers, as they are for deletions, and that such translocations have the potential to form abnormal chimeric transcripts. In addition, the results suggest selection for loss of a functional FHIT gene by the translocation events.
Collapse
Affiliation(s)
- J M Fang
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Luan X, Ramesh KH, Cannizzaro LA. FHIT gene transcript alterations occur frequently in myeloproliferative and myelodysplastic diseases. CYTOGENETICS AND CELL GENETICS 2000; 81:183-8. [PMID: 9730598 DOI: 10.1159/000015025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Twenty-five primary biopsy samples, obtained from patients diagnosed with chronic/acute myeloproliferative disorders, myelodysplastic disorders, in addition to seven cell lines established from patients with leukemias arrested at different stages of myeloid differentiation, were examined for alterations in an alternatively spliced form of the FHIT gene. Transcript alterations of this gene were detected in 80% of the primary biopsies and in two of the cell lines. Reverse transcription PCR (RT-PCR) detected deletions of one or more specific exons in the translated or untranslated portion of the FHIT gene. Point mutations in exons 3, 4, and 5 of the FHIT gene were also detected in 4 patients by single stranded conformational PCR analysis. Transcript alterations were detected in all primary hematopoietic samples which contained chromosome abnormalities, as well as, in hematopoietic disorders which did not show alterations of the 3p14 region. These findings suggest FHIT gene involvement in the transformation of hematopoietic stem cells to leukemia.
Collapse
Affiliation(s)
- X Luan
- Albert Einstein College of Medicine, Montefiore Medical Center, Department of Pathology, Bronx, NY, USA
| | | | | |
Collapse
|
31
|
Hellman A, Rahat A, Scherer SW, Darvasi A, Tsui LC, Kerem B. Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability. Mol Cell Biol 2000; 20:4420-7. [PMID: 10825205 PMCID: PMC85809 DOI: 10.1128/mcb.20.12.4420-4427.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Common fragile sites are specific chromosomal loci that show gaps, breaks, or rearrangements in metaphase chromosomes under conditions that interfere with DNA replication. The mechanism underlying the chromosomal instability at fragile sites was hypothesized to associate with late replication time. Here, we aimed to investigate the replication pattern of the common fragile site FRA7H, encompassing 160 kb on the long arm of human chromosome 7. Using in situ hybridization on interphase nuclei, we revealed that the replication of this region is initiated relatively early, before 30% of S phase is completed. However, a high fraction ( approximately 35%) of S-phase nuclei showed allelic asynchrony, indicating that the replication of FRA7H is accomplished at different times in S phase. This allelic asynchrony is not the result of a specific replication time of each FRA7H allele. Analysis of the replication pattern of adjacent clones along FRA7H by using cell population and two-color fluorescent in situ hybridization analyses showed significant differences in the replication of adjacent clones, under normal growth condition and upon aphidicolin treatment. This pattern significantly differed from that of two nonfragile regions which showed a coordinated replication under both conditions. These results indicate that aphidicolin is enhancing an already existing difference in the replication time along the FRA7H region. Based on our replication analysis of FRA7H and on previous analysis of the common fragile site FRA3B, we suggest that delayed replication is underlying the fragility at aphidicolin-induced common fragile sites.
Collapse
Affiliation(s)
- A Hellman
- Department of Genetics, Systematics and Evolution, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Chromosomal fragile sites are loci that are especially prone to forming gaps or breaks on metaphase chromosomes when cells are cultured under conditions that inhibit DNA replication or repair. The relationship of "rare" folate sensitive fragile sites with (CCG)n expansion and, in some cases, genetic disease is well established. Although they comprise the vast majority of fragile sites, much less is known at the molecular level about the "common" fragile sites. These fragile sites may be seen on all chromosomes as a constant feature. In addition to forming fragile sites on metaphase chromosomes, they have been shown to display a number of characteristics of unstable and highly recombinogenic DNA in vitro, including chromosome rearrangements, sister chromatid exchanges and, more recently, intrachromosomal gene amplification. Only one such fragile site, FRA3B at 3p14.2, has been extensively investigated at the molecular level. It extends over a broad region of possibly 500 kb, and no trinucleotide or other simple repeat motifs have been identified in the region. FRA3B has recently been shown to lie within the FHIT gene locus. This region and the FHIT gene are unstable in a number of tumors and tumor cell lines. It thus appears that common fragile sites are also associated with unstable regions of DNA in vivo, at least in some tumor cells, and may cause this instability. Current challenges include determining the mechanism of fragile site expression and instability, and both the environmental and genetic factors that influence this process. Candidate factors include those genes involved in DNA repair and cell cycle and common carcinogens such as those in cigarette smoke.
Collapse
Affiliation(s)
- T W Glover
- Department of Pediatrics, University of Michigan, Ann Arbor 48109-0618, USA
| |
Collapse
|
33
|
Abstract
Common fragile sites form gaps at characteristic chromosome bands in metaphases from normal cells after aphidicolin induction. The distribution of common fragile sites parallels the positions of neoplasia-associated chromosomal rearrangements, prompting the proposal that fragility disposes to chromosomal rearrangements. Implicit in this hypothesis is that genes at fragile sites are altered by chromosome rearrangement and thus contribute to neoplastic growth. Chromosome band 3p14.2, encompassing the most inducible common fragile region, FRA3B, has been cloned and the FHIT gene, straddling FRA3B, characterized. The gene is inactivated by deletions in cancer-derived cell lines and primary tumors and Fhit protein is absent or reduced in lung, stomach, kidney, and cervical carcinomas, consistent with function as a tumor suppressor. FRA3B thus fulfills the prophecy that fragile site alterations contribute to the neoplastic process through inactivation of a tumor suppressor gene.
Collapse
Affiliation(s)
- K Huebner
- Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennslvania 19107, USA.
| | | | | | | |
Collapse
|
34
|
Huang H, Reed CP, Mordi A, Lomberk G, Wang L, Shridhar V, Hartmann L, Jenkins R, Smith DI. Frequent deletions within FRA7G at 7q31.2 in invasive epithelial ovarian cancer. Genes Chromosomes Cancer 1999. [DOI: 10.1002/(sici)1098-2264(199901)24:1<48::aid-gcc7>3.0.co;2-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
35
|
Hughes SJ, Glover TW, Zhu XX, Kuick R, Thoraval D, Orringer MB, Beer DG, Hanash S. A novel amplicon at 8p22-23 results in overexpression of cathepsin B in esophageal adenocarcinoma. Proc Natl Acad Sci U S A 1998; 95:12410-5. [PMID: 9770500 PMCID: PMC22845 DOI: 10.1073/pnas.95.21.12410] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1998] [Accepted: 08/21/1998] [Indexed: 01/02/2023] Open
Abstract
Cathepsin B (CTSB) is overexpressed in tumors of the lung, prostate, colon, breast, and stomach. However, evidence of primary genomic alterations in the CTSB gene during tumor initiation or progression has been lacking. We have found a novel amplicon at 8p22-23 that results in CTSB overexpression in esophageal adenocarcinoma. Amplified genomic NotI-HinfI fragments were identified by two-dimensional DNA electrophoresis. Two amplified fragments (D4 and D5) were cloned and yielded unique sequences. Using bacterial artificial chromosome clones containing either D4 or D5, fluorescent in situ hybridization defined a single region of amplification involving chromosome bands 8p22-23. We investigated the candidate cancer-related gene CTSB, and potential coamplified genes from this region including farnesyl-diphosphate farnesyltransferase (FDFT1), arylamine N-acetyltransferase (NAT-1), lipoprotein lipase (LPL), and an uncharacterized expressed sequence tag (D8S503). Southern blot analysis of 66 esophageal adenocarcinomas demonstrated only CTSB and FDFT1 were consistently amplified in eight (12.1%) of the tumors. Neither NAT-1 nor LPL were amplified. Northern blot analysis showed overexpression of CTSB and FDFT1 mRNA in all six of the amplified esophageal adenocarcinomas analyzed. CTSB mRNA overexpression also was present in two of six nonamplified tumors analyzed. However, FDFT1 mRNA overexpression without amplification was not observed. Western blot analysis confirmed CTSB protein overexpression in tumor specimens with CTSB mRNA overexpression compared with either normal controls or tumors without mRNA overexpression. Abundant extracellular expression of CTSB protein was found in 29 of 40 (72. 5%) of esophageal adenocarcinoma specimens by using immunohistochemical analysis. The finding of an amplicon at 8p22-23 resulting in CTSB gene amplification and overexpression supports an important role for CTSB in esophageal adenocarcinoma and possibly in other tumors.
Collapse
Affiliation(s)
- S J Hughes
- Department of Surgery, Section of Thoracic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mishmar D, Rahat A, Scherer SW, Nyakatura G, Hinzmann B, Kohwi Y, Mandel-Gutfroind Y, Lee JR, Drescher B, Sas DE, Margalit H, Platzer M, Weiss A, Tsui LC, Rosenthal A, Kerem B. Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A 1998; 95:8141-6. [PMID: 9653154 PMCID: PMC20943 DOI: 10.1073/pnas.95.14.8141] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement, hypothesized to provide targets for foreign DNA integration. We cloned a simian virus 40 integration site and showed by fluorescent in situ hybridization analysis that the integration event had occurred within a common aphidicolin-induced fragile site on human chromosome 7, FRA7H. A region of 161 kb spanning FRA7H was defined and sequenced. Several regions with a potential unusual DNA structure, including high-flexibility, low-stability, and non-B-DNA-forming sequences were identified in this region. We performed a similar analysis on the published FRA3B sequence and the putative partial FRA7G, which also revealed an impressive cluster of regions with high flexibility and low stability. Thus, these unusual DNA characteristics are possibly intrinsic properties of common fragile sites that may affect their replication and condensation as well as organization, and may lead to fragility.
Collapse
Affiliation(s)
- D Mishmar
- Department of Genetics, The Hebrew University, Jerusalem, Israel 91904, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Renal cell carcinoma (RCC) is an important clinical problem for which an effective treatment has yet to be developed. Importantly, the 5-year survival is below 50%. A better understanding of the underlying biological mechanisms could result in improvements in the prevention and treatment of this disease. The molecular mapping of chromosomal losses in renal cell cancer together with increased resolution of the human gene map will provide targets for therapeutic approaches. In this review, I summarize what is known regarding some tumor suppressor genes and candidate tumor suppressor genes in RCC, with reference to their location and expression.
Collapse
Affiliation(s)
- R Erlandsson
- Department of Medical Genetics, BioMedical Center, University of Uppsala, Sweden
| |
Collapse
|
38
|
Palin AH, Critcher R, Fitzgerald DJ, Anderson JN, Farr CJ. Direct cloning and analysis of DNA sequences from a region of the Chinese hamster genome associated with aphidicolin-sensitive fragility. J Cell Sci 1998; 111 ( Pt 12):1623-34. [PMID: 9601093 DOI: 10.1242/jcs.111.12.1623] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile sites are reproducibly expressed and chemically induced decondensations on mitotic chromosomes observed under cytological conditions. They are classified both on the basis of the frequency with which they occur (rare and common) and in terms of the chemical agent used to induce expression in tissue culture cells. Aphidicolin-sensitive common fragile sites appear to be ubiquitous in humans and other mammals and have been considered as candidates of pathological importance. Recently DNA from FRA3B, the most highly expressed constitutive fragile site in the human genome, has been cloned although as yet the cause of the underlying fragility has not been identified. In this study we describe the isolation, using a direct cloning approach, of DNA from a region of the Chinese hamster genome associated with aphidicolin-inducible fragility. Cells of a human-hamster somatic cell hybrid were transfected with a pSV2HPRT vector while exposed to aphidicolin, an inhibitor of DNA polymerases alpha, delta and epsilon. FISH analysis of stable transfectant clones revealed that the ingoing plasmid DNA had preferentially integrated into fragile site-containing chromosomal bands. Plasmid rescue was used to recover DNA sequences flanking one such integration site in the hamster genome. We demonstrate by FISH analysis of metaphase cells induced with aphidicolin that the rescued DNA is from a region of fragility on Chinese hamster chromosome 2, distal to the DHFR locus. Analysis of the DNA sequences flanking the integration site revealed the overall A+T content of the 3,725 bp region sequenced to be 63.3%, with a highly [A].[T]-rich 156 bp region (86.5%) almost adjacent to the integration site. Computational analyses have identified strong homologies to Saccharomyces cerevisiae autonomous replicating sequences (ARS), polypyrimidine tracts, scaffold attachment site consensus sequences and a 24 bp consensus sequence highly conserved in eukaryotic replication origins, all of which appear to cluster around the [A].[T]-rich sequences. This domain also possesses structural characteristics which are common to both prokaryotic and eukaryotic origins of replications, in particular an unusually straight conformation of low thermal stability flanked either side by highly bent DNA segments. Further isolation and characterisation of DNA sequences from common fragile sites will facilitate studies into the underlying nature of these enigmatic regions of the mammalian genome, leading to a greater understanding of chromatin structure.
Collapse
Affiliation(s)
- A H Palin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- G Sozzi
- Division of Experimental Oncology A, Istituto Nazionale Tumori, Milan, Italy
| | | | | |
Collapse
|
40
|
Huang H, Qian C, Jenkins RB, Smith DI. Fish mapping of YAC clones at human chromosomal band 7q31.2: identification of YACS spanning FRA7G within the common region of LOH in breast and prostate cancer. Genes Chromosomes Cancer 1998; 21:152-9. [PMID: 9491327 DOI: 10.1002/(sici)1098-2264(199802)21:2<152::aid-gcc11>3.0.co;2-t] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of DNA sequences within human chromosomal band 7q31.2 is frequently observed in a number of different solid tumors including breast, prostate, and ovarian cancer. This chromosomal band also contains the common fragile site, FRA7G. Many of the common fragile sites occur within chromosomal regions that are frequently deleted during tumor formation but their precise position, relative to the chromosome breakpoints and deletions, has not been defined for the majority of the fragile sites. Because the frequency of expression of FRA7G is low, we analyzed the expression of FRA7G in a chromosome 7-only somatic cell hybrid (hamster-human). YAC clones defining a contig spanning 7q31.2 were then used as FISH probes against metaphase spreads prepared from the hybrid cells after aphidicolin induction. This analysis quickly revealed whether a specific YAC clone mapped proximal, distal, or actually spanned the region of decondensation/breakage of FRA7G. By using this approach, we have identified several overlapping YAC clones that clearly span FRA7G. Interestingly, these clones map precisely to the common region of LOH in breast cancer and prostate cancer. In addition, the MET oncogene is contained within the three YACs that span FRA7G.
Collapse
Affiliation(s)
- H Huang
- Department of Laboratory Medicine and Pathology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
41
|
Bugert P, Wilhelm M, Kovacs G. FHIT gene and the FRA3B region are not involved in the genetics of renal cell carcinomas. Genes Chromosomes Cancer 1997. [DOI: 10.1002/(sici)1098-2264(199709)20:1<9::aid-gcc2>3.0.co;2-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
van den Berg A, Draaijers TG, Kok K, Timmer T, Van der Veen AY, Veldhuis PM, de Leij L, Gerhartz CD, Naylor SL, Smith DI, Buys CH. Normal FHIT transcripts in renal cell cancer- and lung cancer-derived cell lines, including a cell line with a homozygous deletion in the FRA3B region. Genes Chromosomes Cancer 1997; 19:220-7. [PMID: 9258656 DOI: 10.1002/(sici)1098-2264(199708)19:4<220::aid-gcc3>3.0.co;2-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The recently identified FHIT gene encompasses the FRA3B region and the breakpoint of a constitutive t(3;8) occurring in a family with hereditary renal cell cancer. Occurrence of aberrant transcripts in different types of tumours has led to the suggestion that FHIT might play a critical role in the development of various types of cancer. We have analyzed the gene and its transcripts in lung cancers and renal cell cancer-derived cell lines. A lung adenocarcinoma cell line, GLC-A2, appeared to have a homozygous deletion in intron 5 of FHIT. RT-PCR analysis revealed a normal-sized PCR product in all of the cell lines: Including GLC-A2. A number of them had an additional aberrant product. Analysis of a great number of control cell lines and tissues showed that the majority of these also had aberrant PCR products in addition to a normal-sized PCR product. Different specimens of the same cell type showed variable additional RT-PCR products. Normal-sized PCR products had a sequence identical to the FHIT sequence. PCR products longer than normal had insertions of different sizes at different positions. With three exceptions, PCR products shorter than normal represented FHIT sequences missing one or more entire exons. Thus, the presence of aberrant transcripts is not cancer-specific. Conceivably, sequence responsible for the instability of the FRA3B region are being transcribed into FHIT pre-mRNA and may cause the abnormal splicing and processing of the transcripts.
Collapse
Affiliation(s)
- A van den Berg
- Department of Medical Genetics, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Wang L, Paradee W, Mullins C, Shridhar R, Rosati R, Wilke CM, Glover TW, Smith DI. Aphidicolin-induced FRA3B breakpoints cluster in two distinct regions. Genomics 1997; 41:485-8. [PMID: 9169152 DOI: 10.1006/geno.1997.4690] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The common fragile site at chromosomal band 3p14.2 (FRA3B) is the most sensitive single site in the human genome to induced chromosomal lesions. This fragile site may predispose chromosome 3p to breakage that is commonly observed in lung, renal, and many other cancers. We previously used aphidicolin induction of FRA3B expression in a chromosome 3-only somatic cell hybrid to generate a series of hybrids with breakpoints in the 3p14.2 region. These breakpoints were localized to two distinct clusters, separated by 200 kb, that lie on either side of a region of frequent breakage within FRA3B as observed by FISH analysis. Seven proximal aphidicolin-induced breakpoints were localized at or near the end of a THE element. The THE-1 element is flanked by LINE and Alu repetitive elements. The eight distal aphidicolin-induced breakpoints clustered in a region capable of forming multiple hairpin-like structures. Thus repetitive elements and hairpin-like structures may be responsible for chromosome fragility in this region.
Collapse
Affiliation(s)
- L Wang
- Department of Laboratory Medicine and Pathology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Boldog F, Gemmill RM, West J, Robinson M, Robinson L, Li E, Roche J, Todd S, Waggoner B, Lundstrom R, Jacobson J, Mullokandov MR, Klinger H, Drabkin HA. Chromosome 3p14 homozygous deletions and sequence analysis of FRA3B. Hum Mol Genet 1997; 6:193-203. [PMID: 9063739 DOI: 10.1093/hmg/6.2.193] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Loss of heterozygosity (LOH) involving 3p occurs in many carcinomas but is complicated by the identification of four distinct homozygous deletion regions. One putative target, 3p14.2, contains the common fragile site, FRA3B, a hereditary renal carcinoma-associated 3;8 translocation and the candidate tumor suppressor gene, FHIT. Using a approximately 300 kb comsid/lambda contig, we identified homozygous deletions in cervix, breast, lung and colorectal carcinoma cell lines. The smallest deletion (CC19) was shown not to involve FHIT coding exons and no DNA sequence alterations were present in the transcript. We also detected discontinuous deletions as well as deletions in non-tumor DNAs, suggesting that FHIT is not a selective target. Further, we demonstrate that some reported FHIT aberrations represent normal splicing variation. DNA sequence analysis of 110 kb demonstrated that the region is high in A-T content, LINEs and MER repeats, whereas Alu elements are reduced. We note an intriguing similarity in repeat sequence composition between FRA3B and a 152 kb segment from the Fragile-X region. We also identified similarity between a FRA3B segment and a small polydispersed circular DNA. In contrast to the selective loss of a tumor suppressor gene, we propose an alternative hypothesis, that some putative targets including FRA3B may undergo loss as a consequence of genomic instability. This instability is not due to DNA mismatch repair deficiency, but may correlate in part with p53 inactivation.
Collapse
Affiliation(s)
- F Boldog
- Division of Medical Oncology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kok K, Naylor SL, Buys CH. Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res 1997; 71:27-92. [PMID: 9111863 DOI: 10.1016/s0065-230x(08)60096-2] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The concept that cells can become malignant upon the elimination of parts of chromosomes inhibiting cell division dates back to Boveri in 1914. Deletions occurring in tumor cells are therefore considered a first indication of possible locations of tumor suppressor gene. Approaches used to localize and identify the paradigm of tumor suppressors, RB1, have also been applied to localize tumor suppressor genes on 3p, the short arm of chromosome 3. This review discusses the methodological advantages and limitations of the various approaches. From a review of the literature on losses of 3p in different types of solid tumors it appears that some tumor types show involvement of the same region, while between others the regions involved clearly differ. Also discussed are results of functional assays of tumor suppression by transfer of part of chromosome 3 into tumor cell lines. The likelihood that a common region of deletions would contain a tumor suppressor is strongly enhanced by coincidence of that region with a chromosome fragment suppressing tumorigenicity upon introduction in tumor cells. Such a situation exists for a region in 3p21.3 as well as for one or more in 3p12-p14. The former region is considered the location of a lung cancer suppressor. The same gene or a different one in the same region may also play a role in the development of other cancers including renal cell cancer. In the latter cancer, there may be additional roles of the VHL region and/or a 3p12-p14 region. The breakpoint region of a t(3;8) originally found to be constitutively present in a family with hereditary renal cell cancer now seems to be excluded from such a role. Specific genes on 3p have been suggested to act as suppressor genes based on either their location in a common deletion region, a markedly reduced expression or presence of aberrant transcripts, their capacity to suppress tumorigenicity upon transfection in to tumor cells, the presumed function of the gene product, or a combination of several of these criteria. A number of genes are evaluated for their possible role as a tumor suppressor according to these criteria. General agreement on such a role seems to exist only for VHL. Though hMLH1 plays an obvious role in the development of specific mismatch repair-deficient cancers, it cannot revert the tumor phenotype and therefore cannot be considered a proper tumor suppressor. The involvement of VHL and MLH1 also in some specific hereditary cancers allowed to successfully apply linkage analysis for their localization. TGFBR2 might well have a tumor suppressor function. It does reduce tumorigenicity upon transfection. Other 3p genes coding for receptor proteins THRB and RARB, are unlikely candidates for tumor suppression. Present observations on a possible association of FHIT with tumor development leave a number of questions unanswered, so that provisionally it cannot be considered a tumor suppressor. Regions that have been identified as crucial in solid tumor development appear to be at the edge of synteny blocks that have been rearranged through the chromosome evolution which led to the formation of human chromosome 3. Although this may merely represent a chance occurrence, it might also reflect areas of genomic instability.
Collapse
Affiliation(s)
- K Kok
- Department of Medical Genetics, University of Groningen, The Netherlands
| | | | | |
Collapse
|
47
|
Guo SW, Flejter WL. Statistical methods for gene map construction by fluorescence in situ hybridization. Genome Res 1996; 6:1133-50. [PMID: 8973908 DOI: 10.1101/gr.6.12.1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fluorescence in situ hybridization (FISH) provides an efficient and powerful technique for ordering loci both on metaphase chromosomes and in less condensed interphase chromatin. Two-color metaphase FISH can be used to order pairs of loci relative to the centromere; two- and three-color interphase FISH can be used to accurately order trios of loci spaced within 1 Mb relative to one another. Loci separated by a distance > 1-2 Mb exhibit chromatin loops that often give rise to a statistically significant but incorrect order. We derive Bayesian methods for selecting the best locus order based on microscopic evaluation for each of these types of FISH mapping data. We then describe how the results from several two- and three-locus analyses can be combined to evaluate the approximate posterior probability of a given multilocus order within the limits of the technology utilized. These methods directly address the question of interest: What is the probability that the inferred two-, three-, or multilocus order actually is correct? We illustrate our analysis methods by applying them to previously described FISH mapping data of 14 markers in the BRCA1 region on chromosome 17q12-q21. We also propose design strategies to order a group of closely spaced (< 1 Mb) loci, two and three loci at a time, using a bisection strategy for two-color FISH data and a trisection strategy for three-color FISH data. These strategies have the best worst-case performance for ordering a new locus relative to a group of ordered loci and are nearly optimal for ordering a group of loci of unknown order. These, in conjunction with physical mapping strategies, provide efficient and reliable methods for gene map construction by FISH.
Collapse
Affiliation(s)
- S W Guo
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor 48109-2029, USA.
| | | |
Collapse
|
48
|
Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, Croce CM, Huebner K. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 1996; 84:587-97. [PMID: 8598045 DOI: 10.1016/s0092-8674(00)81034-x] [Citation(s) in RCA: 731] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 200-300 kb region of chromosome 3p14.2, including the fragile site locus FRA3B, is homozygously deleted in multiple tumor-derived cell lines. Exon amplification from cosmids covering this deleted region allowed identification of the human FHIT gene, a member of ther histidine triad gene family, which encodes a protein with 69% similarity to an S. pombe enzyme, diadenosine 5', 5''' P1, P4-tetraphosphate asymmetrical hydrolase. The FHIT locus is composed of ten exons distributed over at least 500 kb, with three 5' untranslated exons centromeric to the renal carcinoma-associated 3p14.2 breakpoint, the remaining exons telomeric to this translocation breakpoint, and exon 5 within the homozygously deleted fragile region. Aberrant transcripts of the FHIT locus were found in approximately 50% of esophageal, stomach, and colon carcinomas.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Amino Acid Sequence
- Base Sequence
- Chromosome Fragile Sites
- Chromosome Fragility
- Chromosome Mapping
- Chromosomes, Human, Pair 3
- Chromosomes, Human, Pair 8
- Colonic Neoplasms/genetics
- Cosmids/genetics
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Esophageal Neoplasms/genetics
- Exons/genetics
- Gastrointestinal Neoplasms/genetics
- Gene Deletion
- Genes, Neoplasm
- Humans
- Hydrolases
- Kidney Neoplasms/genetics
- Molecular Sequence Data
- Neoplasm Proteins
- Polymerase Chain Reaction
- Proteins/genetics
- RNA, Messenger/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stomach Neoplasms/genetics
- Translocation, Genetic
- Tumor Cells, Cultured/physiology
Collapse
Affiliation(s)
- M Ohta
- Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 1996; 5:187-95. [PMID: 8824874 DOI: 10.1093/hmg/5.2.187] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The common fragile site at 3p14.2 (FRA3B) is the most sensitive site on normal human chromosomes for the formation of gaps and breaks when DNA replication is perturbed by aphidicolin or folate stress. Although rare fragile sites are known to arise through the expansion of CCG repeats, the mechanism responsible for common fragile sites is unknown. Beyond being a basic component of chromosome structure, no biological effects of common fragile sites have been convincingly shown, although suggestions have been made that breakage and recombination at these sites may sometimes be mechanistically involved in deletions observed in many tumors and in constitutional deletions. In an observation related to the high rate of recombination at fragile sites, a number of studies have shown a statistical association between the integration of transforming DNA viruses and chromosomal fragile sites. Using FISH analysis we recently identified a 1.3 Mb YAC spanning both FRA3B and the t(3;8) translocation associated with hereditary RCC. Here we report the further localization of FRA3B within this YAC. Using lambda subclones of the YAC as FISH probes, gaps and breaks were found to occur over a broad region of at least 50 kb. Neither CCG nor CAG repeats were found in this region suggesting a different mechanism for fragility than seen with rare fragile sites. We further show that an area of frequent gaps and breaks within FRA3B, defined by a lambda contig, coincides with a previously characterized site of HPV16 integration in a primary cervical carcinoma. The HPV16 integration event gave rise to a short chromosomal deletion limited to the local FRA3B region within 3p14.2. Interestingly, 3p14.2 lies within the smallest commonly deleted region of 3p in cervical cancers, which are often HPV16 associated. To our knowledge this is the first molecular characterization of an in vivo viral integration event within a confirmed fragile site region, supporting previous cytogenetic observations linking viral integration sites and fragile sites.
Collapse
Affiliation(s)
- C M Wilke
- Department of Pediatrics, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
50
|
Alers JC, van Dekken H. Interphase cytogenetic analysis of solid tumors by non-isotopic DNA in situ hybridization. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1996; 31:1-133. [PMID: 8938812 DOI: 10.1016/s0079-6336(96)80017-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J C Alers
- Department of Pathology, Erasmus University, Rotterdam, The Netherlands
| | | |
Collapse
|