1
|
Taguchi-Shiobara F, Takahashi K, Yano R, Suzuki R, Yokota Y, Yamazaki T, Yamada T, Sayama T, Yamada N, Oki N, Anai T, Kaga A, Ishimoto M. A single-nucleotide insertion in Rxp confers durable resistance to bacterial pustule in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:254. [PMID: 39441215 DOI: 10.1007/s00122-024-04743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines. In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix-loop-helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.
Collapse
Affiliation(s)
- Fumio Taguchi-Shiobara
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan.
- Headquarters, NARO, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Koji Takahashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Ryoichi Yano
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Rintaro Suzuki
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuko Yokota
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Tetsuya Yamada
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Research Center for Agricultural Information Technology, NARO, Tsukuba, Ibaraki, 305-0856, Japan
| | - Takashi Sayama
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Tohoku Agricultural Research Center, NARO, Daisen, Akita, 019-2112, Japan
| | - Naohiro Yamada
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Nagano Agricultural Experiment Station, Suzaka, Nagano, 382-0072, Japan
| | - Nobuhiko Oki
- Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, 861-1192, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga, Saga, 840-8502, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
2
|
Possamai T, Scota L, Velasco R, Migliaro D. A Sustainable Strategy for Marker-Assisted Selection (MAS) Applied in Grapevine ( Vitis spp.) Breeding for Resistance to Downy ( Plasmopara Viticola) and Powdery ( Erysiphe Necator) Mildews. PLANTS (BASEL, SWITZERLAND) 2024; 13:2001. [PMID: 39065527 PMCID: PMC11280485 DOI: 10.3390/plants13142001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Plant breeders utilize marker-assisted selection (MAS) to identify favorable or unfavorable alleles in seedlings early. In this task, they need methods that provide maximum information with minimal input of time and economic resources. Grape breeding aimed at producing cultivars resistant to pathogens employs several resistance loci (Rpv, Ren, and Run) that are ideal for implementing MAS. In this work, a sustainable MAS protocol was developed based on non-purified DNA (crude), multiplex PCR of SSR markers, and capillary electrophoresis, and its application on grapevine seedlings to follow some main resistance loci was described. The optimized protocol was utilized on 8440 samples and showed high efficiency, reasonable throughput (2-3.2 min sample), easy handling, flexibility, and tolerable costs (reduced by at least 3.5 times compared to a standard protocol). The Rpv, Ren, and Run allelic data analysis did not show limitations to loci combination and pyramiding, but segregation distortions were frequent and displayed both low (undesired) and high rates of inheritance. The protocol and results presented are useful tools for grape breeders and beyond, and they can address sustainable changes in MAS. Several progenies generated have valuable pyramided resistance and will be the subject of new studies and implementation in the breeding program.
Collapse
Affiliation(s)
| | | | | | - Daniele Migliaro
- CREA—Research Center for Viticulture and Enology, 31015 Conegliano, Italy; (L.S.); (R.V.)
| |
Collapse
|
3
|
Wilson RE, Boyd WS, Sonsthagen SA, Ward DH, Clausen P, Dickson KM, Ebbinge BS, Gudmundsson GA, Sage GK, Rearick JR, Derksen DV, Talbot SL. Where east meets west: Phylogeography of the high Arctic North American brant goose. Ecol Evol 2024; 14:e11245. [PMID: 38601857 PMCID: PMC11004662 DOI: 10.1002/ece3.11245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Genetic variation in Arctic species is often influenced by vicariance during the Pleistocene, as ice sheets fragmented the landscape and displaced populations to low- and high-latitude refugia. The formation of secondary contact or suture zones during periods of ice sheet retraction has important consequences on genetic diversity by facilitating genetic connectivity between formerly isolated populations. Brant geese (Branta bernicla) are a maritime migratory waterfowl (Anseriformes) species that almost exclusively uses coastal habitats. Within North America, brant geese are characterized by two phenotypically distinct subspecies that utilize disjunct breeding and wintering areas in the northern Pacific and Atlantic. In the Western High Arctic of Canada, brant geese consist of individuals with an intermediate phenotype that are rarely observed nesting outside this region. We examined the genetic structure of brant geese populations from each subspecies and areas consisting of intermediate phenotypes using mitochondrial DNA (mtDNA) control region sequence data and microsatellite loci. We found a strong east-west partition in both marker types consistent with refugial populations. Within subspecies, structure was also observed at mtDNA while microsatellite data suggested the presence of only two distinct genetic clusters. The Western High Arctic (WHA) appears to be a secondary contact zone for both Atlantic and Pacific lineages as mtDNA and nuclear genotypes were assigned to both subspecies, and admixed individuals were observed in this region. The mtDNA sequence data outside WHA suggests no or very restricted intermixing between Atlantic and Pacific wintering populations which is consistent with published banding and telemetry data. Our study indicates that, although brant geese in the WHA are not a genetically distinct lineage, this region may act as a reservoir of genetic diversity and may be an area of high conservation value given the potential of low reproductive output in this species.
Collapse
Affiliation(s)
- Robert E. Wilson
- School of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Nebraska State MuseumUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - W. Sean Boyd
- Environment and Climate Change CanadaScience and Technology BranchDeltaBritish ColumbiaCanada
| | - Sarah A. Sonsthagen
- U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - David H. Ward
- U.S. Geological SurveyAlaska Science CenterAnchorageAlaskaUSA
| | | | - Kathryn M. Dickson
- Canadian Wildlife ServiceEnvironment and Climate Change CanadaOttawaOntarioCanada
| | | | | | - George K. Sage
- Far Northwestern Institute of Art and ScienceAnchorageAlaskaUSA
| | | | - Dirk V. Derksen
- U.S. Geological SurveyAlaska Science CenterAnchorageAlaskaUSA
| | - Sandra L. Talbot
- Far Northwestern Institute of Art and ScienceAnchorageAlaskaUSA
- Alaska Center for Conservation ScienceUniversity of AlaskaAnchorageAlaskaUSA
| |
Collapse
|
4
|
Freitas I, Velo-Antón G, Lopes S, Muñoz-Merida A, Martínez-Freiría F. Isolation and characterization of polymorphic microsatellite loci for the three Iberian vipers, Vipera aspis, V. Latastei and V. seoanei by Illumina MiSeq sequencing. Mol Biol Rep 2024; 51:294. [PMID: 38334910 PMCID: PMC10857953 DOI: 10.1007/s11033-024-09263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND European vipers (genus Vipera) are a well-studied taxonomic group, but the low resolution of nuclear sanger-sequenced regions has precluded thorough studies at systematic, ecological, evolutionary and conservation levels. In this study, we developed novel microsatellite markers for the three Iberian vipers, Vipera aspis, V. latastei and V. seoanei, and assessed their polymorphism in north-central Iberian populations. METHODS AND RESULTS Genomic libraries were developed for each species using an Illumina Miseq sequencing approach. From the 70 primer pairs initially tested, 48 amplified reliably and were polymorphic within species. Cross-species transferability was achieved for 31 microsatellites loci in the three target species and four additional loci that were transferable to one species only. The 48 loci amplified in average seven alleles, and detected average expected and observed heterozygosities of 0.7 and 0.55, in the three genotyped populations/species (26 V. aspis, 20 V. latastei and 10 V. seoanei). CONCLUSIONS Our study provides a selection of 48 polymorphic microsatellite markers that will contribute significantly to current knowledge on genetic diversity, gene flow, population structure, demographic dynamics, systematics, reproduction and heritability in these species, and potentially in other congeneric taxa.
Collapse
Affiliation(s)
- Inês Freitas
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, 4099-002, Portugal.
| | - Guillermo Velo-Antón
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Facultad de Biología, Edificio de Ciencias Experimentales, Universidad de Vigo, Bloque B, Planta 2, Laboratorio 39 (Grupo GEA), Vigo, E-36310, Spain
| | - Susana Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Antonio Muñoz-Merida
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Fernando Martínez-Freiría
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
| |
Collapse
|
5
|
Ching YH, Kuo YC, Su MC, Wang SC, Lin CF, Tu WC, Lin MD. Genetic Differentiation of the Bloodsucking Midge Forcipomyia taiwana (Diptera: Ceratopogonidae): Implication of the Geographic Isolation by the Central Mountain Ranges in Taiwan. INSECTS 2024; 15:23. [PMID: 38249029 PMCID: PMC10817045 DOI: 10.3390/insects15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Forcipomyia (Lasiohelea) taiwana, a small bloodsucking midge, thrives in moderately moist habitats and is commonly found in grassy and bushy areas at an elevation below 250 m. This species exhibits a diurnal biting pattern and shows a marked preference for human blood. Although not known to transmit arthropod-borne diseases, the bites of F. taiwana can induce severe allergic reactions in some individuals. As a significant nuisance in Taiwan, affecting both daily life and the tourism industry, comprehensive studies on its population genetics across different geographical regions remain scarce. The central mountain ranges in Taiwan, comprising more than two hundred peaks above 3000 m in elevation, extend from the north to the south of the island, creating distinct eastern and western geographical divisions. This study utilizes microsatellite markers to explore the genetic differentiation of F. taiwana populations located in the eastern and western regions of the mountain ranges. Our findings reveal substantial genetic differentiation among populations inhabiting Taiwan's western region compared to those in the eastern region. This indicates that the topographical barriers presented by the mountain ranges significantly restrict gene flow, particularly given the species' limited active flight ability and habitat preferences. Although passive dispersal mechanisms, like wind or human activity, could contribute, this study concludes that the gene flow of F. taiwana between the western and eastern regions is primarily influenced by topographical constraints.
Collapse
Affiliation(s)
- Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (Y.-H.C.); (Y.-C.K.); (M.-C.S.); (S.-C.W.)
| | - Yuan-Chen Kuo
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (Y.-H.C.); (Y.-C.K.); (M.-C.S.); (S.-C.W.)
| | - Ming-Ching Su
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (Y.-H.C.); (Y.-C.K.); (M.-C.S.); (S.-C.W.)
| | - Szu-Chieh Wang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (Y.-H.C.); (Y.-C.K.); (M.-C.S.); (S.-C.W.)
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (Y.-H.C.); (Y.-C.K.); (M.-C.S.); (S.-C.W.)
- Institute of Medical Science, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
6
|
Fite T, Tefera T, Husemann M, Getaneh G, Villinger J. Genetic Variation and Population Structure of the Old World Bollworm Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae) in Ethiopia. ENVIRONMENTAL ENTOMOLOGY 2022; 51:859-869. [PMID: 35797027 DOI: 10.1093/ee/nvac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 06/15/2023]
Abstract
Helicoverpa armigera is one of the most destructive insect pests of economically valuable crops in the world. Despite its economic importance, the population genetic structure of this insect remains unexplored in Ethiopia. To investigate the genetic diversity and population structure of H. armigera, we sampled 170 individuals from 15 populations throughout Ethiopia. We sequenced a fragment of the mitochondrial cytochrome b (cyt b) gene and five exon-primed intron-crossing (EPIC) markers. Twenty cyt b haplotypes with low-to-moderate haplotype diversity (mean Hd = 0.537) and high nucleotide diversity (mean Pi = 0.00339) were identified. The most frequently observed and widely distributed cyt b haplotype was designated as Hap_1 (67.058%), which is identical to sequences found across the globe. Tajima's D and Fu's F for the cyt b data were negative, supporting a model of population expansion. Within populations, a mean of 2.493 alleles/locus was recorded across the five EPIC loci, ranging from 1.200 to 3.600 alleles/locus. The highest mean effective number of alleles/population was 2.369 and the lowest was 1.178. The mean observed heterozygosity (HO) of the five loci (0-0.289; mean 0.104 ± 0.020) was lower than the expected heterozygosity (HE) (0.095-0.523; mean 0.258 ± 0.028). AMOVA detected significant genetic structure with 61% of the total molecular genetic variation of EPIC genotypes occurring between populations, suggesting a considerable degree of differentiation among populations. STRUCTURE analyses clustered the H. armigera populations into three distinct population groups but very low isolation by distance (R2 = 0.0132, P < 0.05).
Collapse
Affiliation(s)
- Tarekegn Fite
- International Centre of Insect Physiology and Ecology (icipe), Addis Ababa, Ethiopia
- School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Dire Dhawa, Ethiopia
| | - Tadele Tefera
- International Centre of Insect Physiology and Ecology (icipe), Addis Ababa, Ethiopia
| | - Martin Husemann
- Museum der Natur, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Gezahegne Getaneh
- Ethiopian Institute of Agricultural Research, Ambo Plant Protection Research Center, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| |
Collapse
|
7
|
Edillo F, Ymbong RR, Cabahug MM, Labiros D, Suycano MW, Lambrechts L, Sakuntabhai A. Yearly variations of the genetic structure of Aedes aegypti (Linnaeus) (Diptera: Culicidae) in the Philippines (2017-2019). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105296. [PMID: 35526823 DOI: 10.1016/j.meegid.2022.105296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Dengue is the fastest emerging arboviral disease in the world, imposing a substantial health and economic burden in the tropics and subtropics. The mosquito, Aedes aegypti, is the primary vector of dengue in the Philippines. We examined the genetic structure of Ae. aegypti populations collected from the Philippine major islands (Luzon, Visayas and Mindanao), each with highland (Baguio city, Cebu city mountains and Maramag, Bukidnon, respectively) and lowland sites (Quezon city; Liloan, Cebu and Cagayan de Oro [CDO] city, respectively) during the wet (2017-2018 and 2018-2019) and dry seasons (2018 and 2019). Mosquitoes (n = 1800) were reared from field-collected eggs and immatures, and were analyzed using 12 microsatellite loci. Generalized linear model analyses revealed yearly variations between highlands and lowlands in the major islands as supported by Bayesian clustering analyses on: 1) stronger selection (inbreeding coefficient, FIS = 0.52) in 2017-2018 than in 2018-2019 (FIS = 0.32) as influenced by rainfall, 2) the number of non-neutral loci indicating selection, and 3) differences of effective population size although at p = 0.05. Across sites except Baguio and CDO cities: 1) FIS varied seasonally as influenced by relative humidity (RH), and 2) the number of non-neutral loci varied as influenced by RH and rainfall indicating selection. Human-mediated activities and not isolation by distance influenced genetic differentiations of mosquito populations within (FST = 0.04) the major islands and across sites (global FST = 0.16). Gene flow (Nm) and potential first generation migrants among populations were observed between lowlands and highlands within and across major islands. Our results suggest that dengue control strategies in the epidemic wet season are to be changed into whole year-round approach, and water pipelines are to be installed in rural mountains to prevent the potential breeding sites of mosquitoes.
Collapse
Affiliation(s)
- Frances Edillo
- Mosquito Research Laboratory, Department of Biology, University of San Carlos - Talamban campus, Cebu city 6000, Philippines.
| | - Rhoniel Ryan Ymbong
- Mosquito Research Laboratory, Department of Biology, University of San Carlos - Talamban campus, Cebu city 6000, Philippines.
| | - Maureen Mathilde Cabahug
- Mosquito Research Laboratory, Department of Biology, University of San Carlos - Talamban campus, Cebu city 6000, Philippines
| | - Dinesse Labiros
- Mosquito Research Laboratory, Department of Biology, University of San Carlos - Talamban campus, Cebu city 6000, Philippines
| | - Mark Windy Suycano
- Mosquito Research Laboratory, Department of Biology, University of San Carlos - Talamban campus, Cebu city 6000, Philippines
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| |
Collapse
|
8
|
Elnour MAB, Gloria-Soria A, Azrag RS, Alkhaibari AM, Powell JR, Salim B. Population Genetic Analysis of Aedes aegypti Mosquitoes From Sudan Revealed Recent Independent Colonization Events by the Two Subspecies. Front Genet 2022; 13:825652. [PMID: 35251133 PMCID: PMC8889412 DOI: 10.3389/fgene.2022.825652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Increases in arbovirus outbreaks in Sudan are vectored by Aedes aegypti, raising the medical importance of this mosquito. We genotyped 12 microsatellite loci in four populations of Ae. aegypti from Sudan, two from the East and two from the West, and analyzed them together with a previously published database of 31 worldwide populations to infer population structure and investigate the demographic history of this species in Sudan. Our results revealed the presence of two genetically distinct subspecies of Ae. aegypti in Sudan. These are Ae. aegypti aegypti in Eastern Sudan and Ae. aegypti formosus in Western Sudan. Clustering analysis showed that mosquitoes from East Sudan are genetically homogeneous, while we found population substructure in West Sudan. In the global context our results indicate that Eastern Sudan populations are genetically closer to Asian and American populations, while Western Sudan populations are related to East and West African populations. Approximate Bayesian Computation Analysis supports a scenario in which Ae. aegypti entered Sudan in at least two independent occasions nearly 70–80 years ago. This study provides a baseline database that can be used to determine the likely origin of new introductions for this invasive species into Sudan. The presence of the two subspecies in the country should be consider when designing interventions, since they display different behaviors regarding epidemiologically relevant parameters, such as blood feeding preferences and ability to transmit disease.
Collapse
Affiliation(s)
- Mohammed-Ahmed B. Elnour
- Department of Parasitology and Medical Entomology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Andrea Gloria-Soria
- Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Rasha S. Azrag
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abeer M. Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Jeffrey R. Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Bashir Salim,
| |
Collapse
|
9
|
Krejsa DM, Talbot SL, Sage GK, Sonsthagen SA, Jung TS, Magoun AJ, Cook JA. Dynamic landscapes in northwestern North America structured populations of wolverines (Gulo gulo). J Mammal 2021. [DOI: 10.1093/jmammal/gyab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Cyclic climatic and glacial fluctuations of the Late Quaternary produced a dynamic biogeographic history for high latitudes. To refine our understanding of this history in northwestern North America, we explored geographic structure in a wide-ranging carnivore, the wolverine (Gulo gulo). We examined genetic variation in populations across mainland Alaska, coastal Southeast Alaska, and mainland western Canada using nuclear microsatellite genotypes and sequence data from the mitochondrial DNA (mtDNA) control region and Cytochrome b (Cytb) gene. Data from maternally inherited mtDNA reflect stable populations in Northwest Alaska, suggesting the region harbored wolverine populations since at least the Last Glacial Maximum (LGM; 21 Kya), consistent with their persistence in the fossil record of Beringia. Populations in Southeast Alaska are characterized by minimal divergence, with no genetic signature of long-term refugial persistence (consistent with the lack of pre-Holocene fossil records there). The Kenai Peninsula population exhibits mixed signatures depending on marker type: mtDNA data indicate stability (i.e., historical persistence) and include a private haplotype, whereas biparentally inherited microsatellites exhibit relatively low variation and a lack of private alleles consistent with a more recent Holocene colonization of the peninsula. Our genetic work is largely consistent with the early 20th century taxonomic hypothesis that wolverines on the Kenai Peninsula belong to a distinct subspecies. Our finding of significant genetic differentiation of wolverines inhabiting the Kenai Peninsula, coupled with the peninsula’s burgeoning human population and the wolverine’s known sensitivity to anthropogenic impacts, provides valuable foundational data that can be used to inform conservation and management prescriptions for wolverines inhabiting these landscapes.
Collapse
Affiliation(s)
- Dianna M Krejsa
- Department of Biology and Angelo State Natural History Collections, Angelo State University, ASU Station 10890, San Angelo, TX 76909-0890, USA
| | - Sandra L Talbot
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | - George K Sage
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | | | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, YT, Y1A 2C6, Canada
| | - Audrey J Magoun
- Wildlife Research and Management, 3680 Non Road, Fairbanks, AK 99709, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Reichardt S, Budahn H, Lamprecht D, Riewe D, Ulrich D, Dunemann F, Kopertekh L. The carrot monoterpene synthase gene cluster on chromosome 4 harbours genes encoding flavour-associated sabinene synthases. HORTICULTURE RESEARCH 2020; 7:190. [PMID: 33328444 PMCID: PMC7705728 DOI: 10.1038/s41438-020-00412-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 05/03/2023]
Abstract
In plants, low molecular weight terpenes produced by terpene synthases (TPS) contribute to multiple ecologically and economically important traits. The present study investigates a carrot terpene synthase gene cluster on chromosome 4 associated with volatile monoterpene production. Two carrot mutants, yellow and cola, which are contrasting in the content of low molecular weight terpenes, were crossed to develop an F2 mapping population. The mapping analysis revealed overlapping QTLs on chromosome 4 for sabinene, α-thujene, α-terpinene, γ-terpinene, terpinen-4-ol and 4-carene. The genomic region of this locus includes a cluster of five terpene synthase genes (DcTPS04, DcTPS26, DcTPS27, DcTPS54 and DcTPS55). DcTPS04 and DcTPS54 displayed genotype- and tissue-specific variation in gene expression. Based on the QTL mapping results and the gene expression patterns, DcTPS04 and DcTPS54 were selected for functional characterization. In vitro enzyme assays showed that DcTPS54 is a single-product enzyme catalysing the formation of sabinene, whereas DcTPS04 is a multiple-product terpene synthase producing α-terpineol as a major product and four additional products including sabinene, β-limonene, β-pinene and myrcene. Furthermore, we developed a functional molecular marker that could discriminate carrot genotypes with different sabinene content in a set of 85 accessions.
Collapse
Affiliation(s)
- Sven Reichardt
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany.
| | - Holger Budahn
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Dominic Lamprecht
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - David Riewe
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Detlef Ulrich
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Frank Dunemann
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Lilya Kopertekh
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| |
Collapse
|
11
|
Hemming-Schroeder E, Zhong D, Machani M, Nguyen H, Thong S, Kahindi S, Mbogo C, Atieli H, Githeko A, Lehmann T, Kazura JW, Yan G. Ecological drivers of genetic connectivity for African malaria vectors Anopheles gambiae and An. arabiensis. Sci Rep 2020; 10:19946. [PMID: 33203917 PMCID: PMC7673128 DOI: 10.1038/s41598-020-76248-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Anopheles gambiae and An. arabiensis are major malaria vectors in sub-Saharan Africa. Knowledge of how geographical factors drive the dispersal and gene flow of malaria vectors can help in combatting insecticide resistance spread and planning new vector control interventions. Here, we used a landscape genetics approach to investigate population relatedness and genetic connectivity of An. gambiae and An. arabiensis across Kenya and determined the changes in mosquito population genetic diversity after 20 years of intensive malaria control efforts. We found a significant reduction in genetic diversity in An. gambiae, but not in An. arabiensis as compared to prior to the 20-year period in western Kenya. Significant population structure among populations was found for both species. The most important ecological driver for dispersal and gene flow of An. gambiae and An. arabiensis was tree cover and cropland, respectively. These findings highlight that human induced environmental modifications may enhance genetic connectivity of malaria vectors.
Collapse
Affiliation(s)
- Elizabeth Hemming-Schroeder
- Department of Ecology and Evolutionary Biology and Program in Public Health, University of California, Irvine, CA, 92617, USA.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daibin Zhong
- Department of Ecology and Evolutionary Biology and Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Maxwell Machani
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Hoan Nguyen
- Department of Ecology and Evolutionary Biology and Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Sarah Thong
- Department of Ecology and Evolutionary Biology and Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Samuel Kahindi
- School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - Charles Mbogo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Harrysone Atieli
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Andrew Githeko
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guiyun Yan
- Department of Ecology and Evolutionary Biology and Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
12
|
Rubio B, Lalanne-Tisné G, Voisin R, Tandonnet JP, Portier U, Van Ghelder C, Lafargue M, Petit JP, Donnart M, Joubard B, Bert PF, Papura D, Le Cunff L, Ollat N, Esmenjaud D. Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC PLANT BIOLOGY 2020; 20:213. [PMID: 32398088 PMCID: PMC7218577 DOI: 10.1186/s12870-020-2310-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Muscadine (Muscadinia rotundifolia) is known as a resistance source to many pests and diseases in grapevine. The genetics of its resistance to two major grapevine pests, the phylloxera D. vitifoliae and the dagger nematode X. index, vector of the Grapevine fanleaf virus (GFLV), was investigated in a backcross progeny between the F1 resistant hybrid material VRH8771 (Vitis-Muscadinia) derived from the muscadine R source 'NC184-4' and V. vinifera cv. 'Cabernet-Sauvignon' (CS). RESULTS In this pseudo-testcross, parental maps were constructed using simple-sequence repeats markers and single nucleotide polymorphism markers from a GBS approach. For the VRH8771 map, 2271 SNP and 135 SSR markers were assembled, resulting in 19 linkage groups (LG) and an average distance between markers of 0.98 cM. Phylloxera resistance was assessed by monitoring root nodosity number in an in planta experiment and larval development in a root in vitro assay. Nematode resistance was studied using 10-12 month long tests for the selection of durable resistance and rating criteria based on nematode reproduction factor and gall index. A major QTL for phylloxera larval development, explaining more than 70% of the total variance and co-localizing with a QTL for nodosity number, was identified on LG 7 and designated RDV6. Additional QTLs were detected on LG 3 (RDV7) and LG 10 (RDV8), depending on the in planta or in vitro experiments, suggesting that various loci may influence or modulate nodosity formation and larval development. Using a Bulked Segregant Analysis approach and a proportion test, markers clustered in three regions on LG 9, LG 10 and LG 18 were shown to be associated to the nematode resistant phenotype. QTL analysis confirmed the results and QTLs were thus designated respectively XiR2, XiR3 and XiR4, although a LOD-score below the significant threshold value was obtained for the QTL on LG 18. CONCLUSIONS Based on a high-resolution linkage map and a segregating grapevine backcross progeny, the first QTLs for resistance to D. vitifoliae and to X. index were identified from a muscadine source. All together these results open the way to the development of marker-assisted selection in grapevine rootstock breeding programs based on muscadine derived resistance to phylloxera and to X. index in order to delay GFLV transmission.
Collapse
Affiliation(s)
- Bernadette Rubio
- INRAE, UMR EGFV, 33883, Villenave d'Ornon, France
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | - Guillaume Lalanne-Tisné
- INRAE, UMR EGFV, 33883, Villenave d'Ornon, France
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | - Roger Voisin
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | | | - Ulysse Portier
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Cyril Van Ghelder
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | | | | | | | | | | | | | - Loïc Le Cunff
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | | | - Daniel Esmenjaud
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| |
Collapse
|
13
|
Mapping of the New Fertility Restorer Gene Rf-PET2 Close to Rf1 on Linkage Group 13 in Sunflower ( Helianthus annuus L.). Genes (Basel) 2020; 11:genes11030269. [PMID: 32121545 PMCID: PMC7140827 DOI: 10.3390/genes11030269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023] Open
Abstract
The PET2-cytoplasm represents a well characterized new source of cytoplasmic male sterility (CMS) in sunflower. It is distinct from the PET1-cytoplasm, used worldwide for commercial hybrid breeding, although it was, as PET1, derived from an interspecific cross between Helianthus. petiolaris and H. annuus. Fertility restoration is essential for the use of CMS PET2 in sunflower hybrid breeding. Markers closely linked to the fertility restorer gene are needed to build up a pool of restorer lines. Fertility-restored F1-hybrids RHA 265(PET2) × IH-51 showed pollen viability of 98.2% ± 1.2, indicating a sporophytic mode of fertility restoration. Segregation analyses in the F2-population of the cross RHA 265(PET2) × IH-51 revealed that this cross segregated for one major restorer gene Rf-PET2. Bulked-segregant analyses investigating 256 amplified fragment length polymorphism (AFLP) primer combinations revealed a high degree of polymorphism in this cross. Using a subset of 24 AFLP markers, three sequence-tagged site (STS) markers and three microsatellite markers, Rf-PET2 could be mapped to the distal region of linkage group 13 between ORS1030 and ORS630. Three AFLP markers linked to Rf-PET2 were cloned and sequenced. Homology search against the sunflower genome sequence of HanXRQ v1r1 confirmed the physical location of Rf-PET2 close to the restorer gene Rf1 for CMS PET1. STS markers were mapped that can now be used for marker-assisted selection.
Collapse
|
14
|
Development and characterization of polymorphic microsatellite markers in northern fulmar, Fulmarus glacialis (Procellariiformes), and cross-species amplification in eight other seabirds. Genes Genomics 2019; 41:1015-1026. [PMID: 31134591 DOI: 10.1007/s13258-019-00819-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND In the North Pacific, northern fulmar (Fulmarus glacialis) forms extensive colonies in few locales, which may lead to limited gene flow and locale-specific population threats. In the Atlantic, there are thousands of colonies of varying sizes and in Europe the species is considered threatened. Prior screens and classical microsatellite development in fulmar failed to provide a suite of markers adequate for population genetics studies. OBJECTIVES The objective of this study was to isolate a suite of polymorphic microsatellite loci with sufficient variability to quantify levels of gene flow, population affinity, and identify familial relationships in fulmar. We also performed a cross-species screening of these markers in eight other species. METHODS We used shotgun sequencing to isolate 26 novel microsatellite markers in fulmar to screen for variability using individuals from two distinct regions: the Pacific (Chagulak Island, Alaska) and the Atlantic (Hafnarey Island, Iceland). RESULTS Polymorphism was present in 24 loci in Chagulak and 23 in Hafnarey, while one locus failed to amplify in either colony. Polymorphic loci exhibited moderate levels of genetic diversity and this suite of loci uncovered genetic structuring between the regions. Among the other species screened, polymorphism was present in one to seven loci. CONCLUSION The loci yielded sufficient variability for use in population studies and estimation of familial relationships; as few as five loci provide resolution to determine individual identity. These markers will allow further insight into the global population dynamics and phylogeography of fulmars. We also demonstrated some markers are transferable to other species.
Collapse
|
15
|
Pinho C, Cardoso V, Hey J. A population genetic assessment of taxonomic species: The case of Lake Malawi cichlid fishes. Mol Ecol Resour 2019; 19:1164-1180. [PMID: 31012255 PMCID: PMC6764894 DOI: 10.1111/1755-0998.13027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Organisms sampled for population‐level research are typically assigned to species by morphological criteria. However, if those criteria are limited to one sex or life stage, or the organisms come from a complex of closely related forms, the species assignments may misdirect analyses. The impact of such sampling can be assessed from the correspondence of genetic clusters, identified only from patterns of genetic variation, to the species identified using only phenotypic criteria. We undertook this protocol with the rock‐dwelling mbuna cichlids of Lake Malawi, for which species within genera are usually identified using adult male coloration patterns. Given high local endemism of male colour patterns, and considerable allele sharing among species, there persists considerable taxonomic uncertainty in these fishes. Over 700 individuals from a single transect were photographed, genotyped and separately assigned: (a) to morphospecies using photographs; and (b) to genetic clusters using five widely used methods. Overall, the correspondence between clustering methods was strong for larger clusters, but methods varied widely in estimated number of clusters. The correspondence between morphospecies and genetic clusters was also strong for larger clusters, as well as some smaller clusters for some methods. These analyses generally affirm (a) adult male‐limited sampling and (b) the taxonomic status of Lake Malawi mbuna, as the species in our study largely appear to be well‐demarcated genetic entities. More generally, our analyses highlight the challenges for clustering methods when the number of populations is unknown, especially in cases of highly uneven sample sizes.
Collapse
Affiliation(s)
- Catarina Pinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Vera Cardoso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Jody Hey
- Rutgers, the State University of New Jersey, Piscataway, New Jersey.,CCGG, Center for Computational Genetics and Genomics, Department of Biology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Biswas S, Li R, Yuan Z, Zhang D, Zhao X, Shi J. Development of methods for effective identification of CRISPR/Cas9-induced indels in rice. PLANT CELL REPORTS 2019; 38:503-510. [PMID: 30783736 DOI: 10.1007/s00299-019-02392-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/02/2019] [Indexed: 05/07/2023]
Abstract
Two methods, PCR and amplicon labeling based, were developed and successfully applied to reliably detect CRISPR/Cas9 induced indels in rice. The use of CRISPR/Cas9 has emerged as a powerful nuclease-based genome editing tool in several model organisms including plants for mutagenesis by inducing precise gene editing through efficient double strand DNA breaks (DSBs) at the target site and subsequent error-prone non-homologous end joining (NHEJ) repair, leading to indel mutations. Different molecular methods including enzymatic mismatch cleavage (EMC), high-resolution melting curve analysis (HRMA) and conventional polymerase chain reaction (PCR) combined with ligation detection reaction (LDR) have been developed to quick identify CRISPR/Cas9 induced mutations. However, their intrinsic drawbacks limit their application in the identification of indel mutants in plants. Here we present two methods (one simple PCR based and the other amplicon labeling based) for effective and sensitive detection of CRISPR/Cas9 induced indels in rice. In PCR-based method, targets were amplified using two pairs of primers for each target locus and visualized on gel electrophoresis, while in amplicon labeling-based method, targets were amplified using tri-primers (with one a universal 6-FAM 5'-labelled) and detected by DNA capillary electrophoresis. Both methods can accurately define indel sizes down to ± 1 bp, and are amenable for high throughput analysis, therefore, will significantly facilitate the identification of indel mutants generated by CRISPR/Cas9 for further functional analysis and breeding in rice and other plants.
Collapse
Affiliation(s)
- Sukumar Biswas
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rong Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China
| | - Xiangxiang Zhao
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China.
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
An RNA Sequencing Transcriptome Analysis and Development of EST-SSR Markers in Chinese Hawthorn through Illumina Sequencing. FORESTS 2019. [DOI: 10.3390/f10020082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chinese hawthorn (Crataegus pinnatifida) is an important ornamental and economic horticultural plant. However, the lack of molecular markers has limited the development and utilization of hawthorn germplasm resources. Simple sequence repeats (SSRs) derived from expressed sequence tags (ESTs) allow precise and effective cultivar characterization and are routinely used for genetic diversity analysis. Thus, we first reported the development of polymorphic EST-SSR markers in C. pinnatifida with perfect repeats using Illumina RNA-Seq technique. In total, we investigated 14,364 unigenes, from which 5091 EST-SSR loci were mined. Di-nucleotides (2012, 39.52%) were the most abundant SSRs, followed by mono- (1989, 39.07%), and tri-nucleotides (1024, 20.11%). On the basis of these EST-SSRs, a total of 300 primer pairs were designed and used for polymorphism analysis in 70 accessions collected from different geographical regions of China. Of 239 (79.67%) pairs of primer-generated amplification products, 163 (54.33%) pairs of primers showed polymorphism. Finally, 33 primers with high polymorphism were selected for genetic diversity analysis and tested on 70 individuals with low-cost fluorescence-labeled M13 primers using capillary electrophoresis genotyping platform. A total of 108 alleles were amplified by 33 SSR markers, with the number of alleles (Na) ranging from 2 to 14 per locus (mean: 4.939), and the effective number of alleles (Ne) ranging from 1.258 to 3.214 (mean: 2.221). The mean values of gene diversity (He), observed heterozygosity (Ho), and polymorphism information content (PIC) were 0.524 (range 0.205–0.689), 0.709 (range 0.132–1.000), and 0.450 (range 0.184–0.642), respectively. Furthermore, the dendrogram constructed based on the EST-SSR separated the cultivars into two main clusters. In sum, our study was the first comprehensive study on the development and analysis of a large set of SSR markers in hawthorn. The results suggested that the use of NGS techniques for SSR development represented a powerful tool for genetic studies. Additionally, fluorescence-labeled M13 markers proved to be a valuable method for genotyping. All of these EST-SSR markers have agronomic potential and constitute a scientific basis for future studies on the identification, classification, and innovation of hawthorn germplasms.
Collapse
|
18
|
Corner S, Yuzbasiyan-Gurkan V, Agnew D, Venta PJ. Development of a 12-plex of new microsatellite markers using a novel universal primer method to evaluate the genetic diversity of jaguars (Panthera onca) from North American zoological institutions. CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-1070-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Gadissa F, Tesfaye K, Dagne K, Geleta M. Genetic diversity and population structure analyses of Plectranthus edulis (Vatke) Agnew collections from diverse agro-ecologies in Ethiopia using newly developed EST-SSRs marker system. BMC Genet 2018; 19:92. [PMID: 30309314 PMCID: PMC6182789 DOI: 10.1186/s12863-018-0682-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/03/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Plectranthus edulis (Vatke) Agnew (locally known as Ethiopian dinich or Ethiopian potato) is one of the most economically important edible tuber crops indigenous to Ethiopia. Evaluating the extent of genetic diversity within and among populations is one of the first and most important steps in breeding and conservation measures. Hence, this study was aimed at evaluating the genetic diversity and population structure of this crop using collections from diverse agro-ecologies in Ethiopia. RESULTS Twenty polymorphic expressed sequence tag based simple sequence repeat (EST-SSRs) markers were developed for P. edulis based on EST sequences of P. barbatus deposited in the GenBank. These markers were used for genetic diversity analyses of 287 individual plants representing 12 populations, and a total of 128 alleles were identified across the entire loci and populations. Different parameters were used to estimate the genetic diversity within populations; and gene diversity index (GD) ranged from 0.31 to 0.39 with overall mean of 0.35. Hierarchical analysis of molecular variance (AMOVA) showed significant but low population differentiation with only 3% of the total variation accounted for variation among populations. Likewise, cluster and STRUCTURE analyses did not group the populations into sharply distinct clusters, which could be attributed to historical and contemporary gene flow and the reproductive biology of the crop. CONCLUSIONS These newly developed EST-SSR markers are highly polymorphic within P. edulis and hence are valuable genetic tools that can be used to evaluate the extent of genetic diversity and population structure of not only P. edulis but also various other species within the Lamiaceae family. Among the 12 populations studied, populations collected from Wenbera, Awi and Wolaita showed a higher genetic diversity as compared to other populations, and hence these areas can be considered as hot spots for in-situ conservation as well as for identification of genotypes that can be used in breeding programs.
Collapse
Affiliation(s)
- Fekadu Gadissa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Box 1176, Addis Ababa, Ethiopia. .,Department of Biology, Madda Walabu University, Box 247, Bale Robe, Ethiopia.
| | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Box 1176, Addis Ababa, Ethiopia.,Ethiopian Biotechnology Institute, Ministry of Science and Technology, Box 32853, Addis Ababa, Ethiopia
| | - Kifle Dagne
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Box 1176, Addis Ababa, Ethiopia
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden
| |
Collapse
|
20
|
Lu T, Bao H, Bau T. Genetic diversity and population structure of endemic mushroom Leucocalocybe mongolicain Mongolian Plateau uncovered by EST-SSR markers. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1510743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Tie Lu
- Institute of Mycology, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, PR China
| | - Haiying Bao
- Institute of Mycology, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, PR China
| | - Tolgor Bau
- Institute of Mycology, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
21
|
Gravley MC, Sage GK, Talbot SL, Carlson ML. Development and characterization of 12 polymorphic microsatellite loci in the sea sandwort, Honckenya peploides. JOURNAL OF PLANT RESEARCH 2018; 131:879-885. [PMID: 29687245 DOI: 10.1007/s10265-018-1036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Codominant marker systems are better suited to analyze population structure and assess the source of an individual in admixture analyses. Currently, there is no codominant marker system using microsatellites developed for the sea sandwort, Honckenya peploides (L.) Ehrh., an early colonizer in island systems. We developed and characterized novel microsatellite loci from H. peploides, using reads collected from whole genome shotgun sequencing on a 454 platform. The combined output from two shotgun runs yielded a total of 62,669 reads, from which 58 loci were screened. We identified 12 polymorphic loci that amplified reliably and exhibited disomic inheritance. Microsatellite data were collected and characterized for the 12 polymorphic loci in two Alaskan populations of H. peploides: Fossil Beach, Kodiak Island (n = 32) and Egg Bay, Atka Island (n = 29). The Atka population exhibited a slightly higher average number of alleles (3.9) and observed heterozygosity (0.483) than the Kodiak population (3.3 and 0.347, respectively). The overall probability of identity values for both populations was PID = 2.892e-6 and PIDsib = 3.361e-3. We also screened the 12 polymorphic loci in Wilhelmsia physodes (Fisch. ex Ser.) McNeill, the most closely related species to H. peploides, and only one locus was polymorphic. These microsatellite markers will allow future investigations into population genetic and colonization patterns of the beach dune ruderal H. peploides on new and recently disturbed islands.
Collapse
Affiliation(s)
- Meg C Gravley
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA.
- Biological Sciences Department, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA.
| | - George K Sage
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Sandra L Talbot
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Matthew L Carlson
- Biological Sciences Department, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA
- University of Alaska Anchorage, Alaska Center for Conservation Science, 3211 Providence Drive, Anchorage, AK, 99508, USA
| |
Collapse
|
22
|
Duan QQ, Lu SQ, Hu YX, Shen SN, Xi BS, Wang XN, Sun WP. A Multiplex PCR Assay Mediated by Universal Primer for the Diagnosis of Human Meningitis Caused by Six Common Bacteria. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Identification of novel microsatellite markers in okra (Abelmoschus esculentus (L.) Moench) through next-generation sequencing and their utilization in analysis of genetic relatedness studies and cross-species transferability. J Genet 2018. [DOI: 10.1007/s12041-018-0893-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Fujii K, Sayama T, Takagi K, Kosuge K, Okano K, Kaga A, Ishimoto M. Identification and dissection of single seed weight QTLs by analysis of seed yield components in soybean. BREEDING SCIENCE 2018; 68:177-187. [PMID: 29875601 PMCID: PMC5982185 DOI: 10.1270/jsbbs.17098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/23/2017] [Indexed: 05/20/2023]
Abstract
Single seed weight (SSW), or seed size, is a seed yield components (SYC) in soybean, and it is suggested that the genetic factors regulating SSW are involved in the control of other SYCs. The quantitative trait loci (QTLs) for SSW and their effects on the other SYCs were investigated using a recombinant inbred line population derived from typical small- and large-seeded cultivars that were cultivated in two different environments. QTL analysis detected four environmentally stable QTLs for SSW, two of which coincided with the defined loci, qSw17-1 and Ln. The effects of the other loci, qSw12-1 and qSw13-1, were confirmed by analyzing residual heterozygous line progenies derived from the recombinant population. These four QTL regions were also involved in the control of an additional SYC, namely the large-seeded allele at each locus that reduced either the number of pods per plant or the number of ovules per pod. These results suggest the presence of at least two different regulatory mechanisms for SSW. Isolation of genes responsible for these QTLs provides an important tool in the understanding and utilization of SSW diversity for soybean breeding.
Collapse
Affiliation(s)
- Kenichiro Fujii
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Takashi Sayama
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Kyoko Takagi
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Kazumasa Kosuge
- Plant Biotechnology Institute, Ibaraki Agriculture Center,
3165-1 Ago, Kasama, Ibaraki 319-0206,
Japan
| | - Katsunori Okano
- Plant Biotechnology Institute, Ibaraki Agriculture Center,
3165-1 Ago, Kasama, Ibaraki 319-0206,
Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
25
|
Zannella C, Carucci F, Aversano R, Prohaska T, Vingiani S, Carputo D, Adamo P. Genetic and geochemical signatures to prevent frauds and counterfeit of high-quality asparagus and pistachio. Food Chem 2017; 237:545-552. [DOI: 10.1016/j.foodchem.2017.05.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/27/2022]
|
26
|
Husseneder C, Park JS, Werle CT, Adamczyk JJ. Development of Microsatellites for Population Genetic Analyses of the Granulate Ambrosia Beetle (Coleoptera: Curculionidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1107-1112. [PMID: 28369479 DOI: 10.1093/jee/tox094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 06/07/2023]
Abstract
Limited male dispersal and local mating in ambrosia beetles are expected to result in extreme inbreeding and highly structured populations. In this study, we developed microsatellite markers for the granulate ambrosia beetle, Xylosandrus crassiusculus (Motschulsky), for use in future studies into population and family structure of this invasive pest species. We employed de novo next-generation sequencing to generate whole genome shotgun sequences for the characterization of microsatellite loci. Approximately 6% of the 84,024 contigs generated from Hi-Seq Illumina 2x250bp sequencing contained microsatellites with at least four repeats of di-, tri-, tetra-, penta-, and hexamers. Primers were synthesized for 40 microsatellite loci with trimer repeat units. Twenty-four primer pairs yielded consistent PCR products of unique loci and were validated for population genetic application using three sample groups each containing 20 X. crassiusculus individuals from Mississippi. Thirteen loci were found to be polymorphic with up to five alleles per population. The two beetle sample groups from Pearl River County (Poplarville and McNeill) belonged genetically to the same population. The population from Lamar County (Purvis) was genetically distinct, separated by a moderate genetic distance (FST = 0.11) and five unique alleles (with >5% frequency). Consistent with the perceived mating structure (incest of females with flightless males), the populations showed homozygote excess at most loci, as indicated by the coefficients of inbreeding (FIT = 0.45 and FIS = 0.37) and high mean relatedness among individuals (r = 0.15).
Collapse
Affiliation(s)
- Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 ( ; ; )
- Corresponding author, e-mail:
| | - Jong-Seok Park
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 ( ; ; )
- S1-5 204b, Chungbuk National University, 1Chungdae-ro, Seowon-gu, Chengju, Chungbuk, 28644, South Korea
| | - Christopher T Werle
- USDA-ARS, Thad Cochran Southern Horticultural Lab, 810 Hwy 26 W, Poplarville, MS 39470 (; )
| | - John J Adamczyk
- USDA-ARS, Thad Cochran Southern Horticultural Lab, 810 Hwy 26 W, Poplarville, MS 39470 (; )
| |
Collapse
|
27
|
Li L, Chen Y, Jiao X, Jin C, Jiang D, Tanwar M, Ma Z, Huang L, Ma X, Sun W, Chen J, Ma Y, M'hamdi O, Govindarajan G, Cabrera PE, Li J, Gupta N, Naeem MA, Khan SN, Riazuddin S, Akram J, Ayyagari R, Sieving PA, Riazuddin SA, Hejtmancik JF. Homozygosity Mapping and Genetic Analysis of Autosomal Recessive Retinal Dystrophies in 144 Consanguineous Pakistani Families. Invest Ophthalmol Vis Sci 2017; 58:2218-2238. [PMID: 28418496 PMCID: PMC5397137 DOI: 10.1167/iovs.17-21424] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The Pakistan Punjab population has been a rich source for identifying genes causing or contributing to autosomal recessive retinal degenerations (arRD). This study was carried out to delineate the genetic architecture of arRD in the Pakistani population. Methods The genetic origin of arRD in a total of 144 families selected only for having consanguineous marriages and multiple members affected with arRD was examined. Of these, causative mutations had been identified in 62 families while only the locus had been identified for an additional 15. The remaining 67 families were subjected to homozygosity exclusion mapping by screening of closely flanking microsatellite markers at 180 known candidate genes/loci followed by sequencing of the candidate gene for pathogenic changes. Results Of these 67 families subjected to homozygosity mapping, 38 showed homozygosity for at least one of the 180 regions, and sequencing of the corresponding genes showed homozygous cosegregating mutations in 27 families. Overall, mutations were detected in approximately 61.8 % (89/144) of arRD families tested, with another 10.4% (15/144) being mapped to a locus but without a gene identified. Conclusions These results suggest the involvement of unmapped novel genes in the remaining 27.8% (40/144) of families. In addition, this study demonstrates that homozygosity mapping remains a powerful tool for identifying the genetic defect underlying genetically heterogeneous arRD disorders in consanguineous marriages for both research and clinical applications.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 2Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yabin Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chongfei Jin
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 3Department of Medicine, Brookdale University Hospital and Medical Center, New York, New York, United States
| | - Dan Jiang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mukesh Tanwar
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 4Department of Genetics, Maharshi Dayanand University Rohtak, Haryana, India
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Li Huang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 5State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyin Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 6Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenmin Sun
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 5State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianjun Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 7Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Yan Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Oussama M'hamdi
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gowthaman Govindarajan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Patricia E Cabrera
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jiali Li
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 5State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nikhil Gupta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan 9Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan 10National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan 10National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California-San Diego, La Jolla, California, United States
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States 14McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
28
|
Chen J, Wang Q, Cabrera PE, Zhong Z, Sun W, Jiao X, Chen Y, Govindarajan G, Naeem MA, Khan SN, Ali MH, Assir MZ, Rahman FU, Qazi ZA, Riazuddin S, Akram J, Riazuddin SA, Hejtmancik JF. Molecular Genetic Analysis of Pakistani Families With Autosomal Recessive Congenital Cataracts by Homozygosity Screening. Invest Ophthalmol Vis Sci 2017; 58:2207-2217. [PMID: 28418495 PMCID: PMC5397132 DOI: 10.1167/iovs.17-21469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify the genetic origins of autosomal recessive congenital cataracts (arCC) in the Pakistani population. Methods Based on the hypothesis that most arCC patients in consanguineous families in the Punjab areas of Pakistan should be homozygous for causative mutations, affected individuals were screened for homozygosity of nearby highly informative microsatellite markers and then screened for pathogenic mutations by DNA sequencing. A total of 83 unmapped consanguineous families were screened for mutations in 33 known candidate genes. Results Patients in 32 arCC families were homozygous for markers near at least 1 of the 33 known CC genes. Sequencing the included genes revealed homozygous cosegregating sequence changes in 10 families, 2 of which had the same variation. These included five missense, one nonsense, two frame shift, and one splice site mutations, eight of which were novel, in EPHA2, FOXE3, FYCO1, TDRD7, MIP, GALK1, and CRYBA4. Conclusions The above results confirm the usefulness of homozygosity mapping for identifying genetic defects underlying autosomal recessive disorders in consanguineous families. In our ongoing study of arCC in Pakistan, including 83 arCC families that underwent homozygosity mapping, 3 mapped using genome-wide linkage analysis in unpublished data, and 30 previously reported families, mutations were detected in approximately 37.1% (43/116) of all families studied, suggesting that additional genes might be responsible in the remaining families. The most commonly mutated gene was FYCO1 (14%), followed by CRYBB3 (5.2%), GALK1 (3.5%), and EPHA2 (2.6%). This provides the first comprehensive description of the genetic architecture of arCC in the Pakistani population.
Collapse
Affiliation(s)
- Jianjun Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 2Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Qiwei Wang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 3State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Patricia E Cabrera
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Zilin Zhong
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 2Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Wenmin Sun
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 3State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yabin Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gowthaman Govindarajan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | | - Fawad Ur Rahman
- Layton Rahmatulla Benevolent Trust Hospital, Lahore, Pakistan
| | | | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan 5Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan 7National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan 7National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States 9McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
29
|
Tomioka S, Kondoh T, Sato-Okoshi W, Ito K, Kakui K, Kajihara H. Cosmopolitan or Cryptic Species? A Case Study of Capitella teleta (Annelida: Capitellidae). Zoolog Sci 2017; 33:545-554. [PMID: 27715419 DOI: 10.2108/zs160059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Capitella teleta Blake et al., 2009 is an opportunistic capitellid originally described from Massachusetts (USA), but also reported from the Mediterranean, NW Atlantic, and North Pacific, including Japan. This putatively wide distribution had not been tested with DNA sequence data; intraspecific variation in morphological characters diagnostic for the species had not been assessed with specimens from non-type localities, and the species status of the Japanese population(s) was uncertain. We examined the morphology and mitochondrial COI (cytochrome c oxidase subunit I) gene sequences of Capitella specimens from two localities (Ainan and Gamo) in Japan. Specimens from Ainan and Gamo differed from C. teleta from Massachusetts in methyl-green staining pattern, shape of the genital spines, and shape of the capillary chaetae; we concluded that these characters vary intraspecifically. Species delimitation analyses of COI sequences suggested that worms from Ainan and Massachusetts represent C. teleta; these populations share a COI haplotype. The specimens from Gamo may represent a distinct species and comprise a sister group to C. teleta s. str.; we refer to the Gamo population as Capitella aff. teleta. The average Kimura 2-parameter (K2P) distance between C. teleta s. str. and C. aff. teleta was 3.7%. The COI data indicate that C. teleta actually occurs in both the NW Atlantic and NW Pacific. Given the short planktonic larval duration of C. teleta, this broad distribution may have resulted from anthropogenic dispersal.
Collapse
Affiliation(s)
- Shinri Tomioka
- 1 Department of Natural History Sciences, Graduate School of Science, Hokkaido University,N10 W8, Sapporo 060-0810, Japan
| | - Tomohiko Kondoh
- 2 Laboratory of Biological Oceanography, Graduate School of Agricultural Science,Tohoku University, Sendai 981-8555, Japan
| | - Waka Sato-Okoshi
- 2 Laboratory of Biological Oceanography, Graduate School of Agricultural Science,Tohoku University, Sendai 981-8555, Japan
| | - Katsutoshi Ito
- 3 National Research Institute of Fisheries and Environment of Inland Sea, FisheriesResearch Agency, Maruishi 2-17-5, Hatsukaichi 739-0452, Japan
| | - Keiichi Kakui
- 1 Department of Natural History Sciences, Graduate School of Science, Hokkaido University,N10 W8, Sapporo 060-0810, Japan
| | - Hiroshi Kajihara
- 1 Department of Natural History Sciences, Graduate School of Science, Hokkaido University,N10 W8, Sapporo 060-0810, Japan
| |
Collapse
|
30
|
Akria L, Chezar J, Zisman-Rozen S, Scheinman EJ, Zonis Z, Hoffmann Y, Falik-Zaccai T, Kalfon L, Weiss M, Braester A, Suriu C, Barhoum M, Kuperman A, Shaoul E. A Puzzling "Switch" in Blood Type Following Blood Transfusion. Ann Lab Med 2017; 37:293-295. [PMID: 28224781 PMCID: PMC5339107 DOI: 10.3343/alm.2017.37.3.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 11/23/2022] Open
Affiliation(s)
- Luiza Akria
- Blood Bank and Molecular Hematology Laboratory, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.
| | - Judith Chezar
- Blood Bank and Molecular Hematology Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Simona Zisman-Rozen
- Blood Bank and Molecular Hematology Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Eyal J Scheinman
- Blood Bank and Molecular Hematology Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Zeev Zonis
- Pediatric Intensive Care Unit, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Yoav Hoffmann
- Pediatric Intensive Care Unit, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Tzipora Falik-Zaccai
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Cytogenetic Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Cytogenetic Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Michael Weiss
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Surgery, Galilee Medical Center, Nahariya, Israel
| | - Andrei Braester
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Hematology, Galilee Medical Center, Nahariya, Israel
| | - Celia Suriu
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Hematology, Galilee Medical Center, Nahariya, Israel
| | - Masad Barhoum
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Hematology, Galilee Medical Center, Nahariya, Israel
| | - Amir Kuperman
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Pediatrics, Galilee Medical Center, Nahariya, Israel
| | - Ety Shaoul
- Blood Bank and Molecular Hematology Laboratory, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| |
Collapse
|
31
|
Yano R, Takagi K, Takada Y, Mukaiyama K, Tsukamoto C, Sayama T, Kaga A, Anai T, Sawai S, Ohyama K, Saito K, Ishimoto M. Metabolic switching of astringent and beneficial triterpenoid saponins in soybean is achieved by a loss-of-function mutation in cytochrome P450 72A69. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:527-539. [PMID: 27775214 DOI: 10.1111/tpj.13403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 05/24/2023]
Abstract
Triterpenoid saponins are major components of secondary metabolites in soybean seeds and are divided into two groups: group A saponins, and 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins. The aglycone moiety of group A saponins consists of soyasapogenol A (SA), which is an oxidized β-amyrin product, and the aglycone moiety of the DDMP saponins consists of soyasapogenol B (SB). Group A saponins produce a bitter and astringent aftertaste in soy products, whereas DDMP saponins have known health benefits for humans. We completed map-based cloning and characterization of the gene Sg-5, which is responsible for SA biosynthesis. The naturally occurring sg-5 mutant lacks group A saponins and has a loss-of-function mutation (L164*) in Glyma15g39090, which encodes the cytochrome P450 enzyme, CYP72A69. An enzyme assay indicated the hydroxylase activity of recombinant CYP72A69 against SB, which also suggested the production of SA. Additionally, induced Glyma15g39090 mutants (R44* or S348P) lacked group A saponins similar to the sg-5 mutant, indicating that Glyma15g39090 corresponds to Sg-5. Endogenous levels of DDMP saponins were higher in the sg-5 mutant than in the wild-type lines due to the loss of the enzyme activity that converts SB to SA. Interestingly, the genomes of palaeopolyploid soybean and the closely related common bean carry multiple Sg-5 paralogs in a genomic region syntenic to the soybean Sg-5 region. However, SA did not accumulate in common bean samples, suggesting that Sg-5 activity evolved after gene duplication event(s). Our results demonstrate that metabolic switching of undesirable saponins with beneficial saponins can be achieved in soybean by disabling Sg-5.
Collapse
Affiliation(s)
- Ryoichi Yano
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kyoko Takagi
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoshitake Takada
- Western Region Agricultural Research Center, NARO, 1-3-1 Senyu, Zentsuji, Kagawa, 765-8508, Japan
| | - Kyosuke Mukaiyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Chigen Tsukamoto
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Takashi Sayama
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Akito Kaga
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Genetic Resources Center, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Toyoaki Anai
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University, Honjyo-machi 1, Saga, 840-8502, Japan
| | - Satoru Sawai
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiyoshi Ohyama
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Oh-okayama 2-12-1, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Masao Ishimoto
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| |
Collapse
|
32
|
Dias EF, Moura M, Schaefer H, Silva L. Geographical distance and barriers explain population genetic patterns in an endangered island perennial. AOB PLANTS 2017; 8:plw072. [PMID: 27742648 PMCID: PMC5206333 DOI: 10.1093/aobpla/plw072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/02/2016] [Indexed: 05/14/2023]
Abstract
Island plants are frequently used as model systems in evolutionary biology to understand factors that might explain genetic diversity and population differentiation levels. Theory suggests that island plants should have lower levels of genetic diversity than their continental relatives, but this hypothesis has been rejected in several recent studies. In the Azores, the population level genetic diversity is generally low. However, like in most island systems, there are high levels of genetic differentiation between different islands. The Azores lettuce, Lactuca watsoniana, is an endangered Asteraceae with small population sizes. Therefore, we expect to find a lower level of genetic diversity than in the other more common endemic Asteraceae. The intra- and interpopulation genetic structure and diversity of L. watsoniana was assessed using eight newly developed microsatellite markers. We included 135 individuals, from all 13 known populations in the study. Because our microsatellite results suggested that the species is tetraploid, we analysed the microsatellite data (i) in codominant format using PolySat (Principal Coordinate Analysis, PCoA) and SPAgedi (genetic diversity indexes) and (ii) in dominant format using Arlequin (AMOVA) and STRUCTURE (Bayesian genetic cluster analysis). A total of 129 alleles were found for all L. watsoniana populations. In contrast to our expectations, we found a high level of intrapopulation genetic diversity (total heterozigosity = 0.85; total multilocus average proportion of private alleles per population = 26.5 %, Fis = -0.19). Our results show the existence of five well-defined genetic groups, one for each of the three islands São Miguel, Terceira and Faial, plus two groups for the East and West side of Pico Island (Fst = 0.45). The study revealed the existence of high levels of genetic diversity, which should be interpreted taking into consideration the ploidy level of this rare taxon.
Collapse
Affiliation(s)
- Elisabete F Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, Ponta Delgada, 9501-801 Açores, Portugal
| | - M Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, Ponta Delgada, 9501-801 Açores, Portugal
| | - H Schaefer
- Plant Biodiversity Research, Technische Universität München, 85354 Freising, Germany
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, Ponta Delgada, 9501-801 Açores, Portugal
| |
Collapse
|
33
|
Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, Coetzee M, Elahee KB, Fernandez-Salas I, Kamal HA, Kamgang B, Khater EIM, Kramer LD, Kramer V, Lopez-Solis A, Lutomiah J, Martins A, Micieli MV, Paupy C, Ponlawat A, Rahola N, Rasheed SB, Richardson JB, Saleh AA, Sanchez-Casas RM, Seixas G, Sousa CA, Tabachnick WJ, Troyo A, Powell JR. Global genetic diversity of Aedes aegypti. Mol Ecol 2016; 25:5377-5395. [PMID: 27671732 DOI: 10.1111/mec.13866] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.
Collapse
Affiliation(s)
| | - Diego Ayala
- Laboratory MIVEGEC, Institut de Recherche pour le Développement, Montpellier, 34394, France.,Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Ambicadutt Bheecarry
- Vector Biology and Control Division, Ministry of Health and Quality of Life, Mauritius, Mauritius
| | - Olger Calderon-Arguedas
- Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Dave D Chadee
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad, WI
| | - Marina Chiappero
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - Maureen Coetzee
- School of Pathology, Wits Research Institute for Malaria, University of Witwatersrand, Johannesburg, South Africa
| | - Khouaildi Bin Elahee
- Vector Biology and Control Division, Ministry of Health and Quality of Life, Mauritius, Mauritius
| | | | - Hany A Kamal
- Dallah Establishment, Pest Control Projects, Jeddah, Kingdom of Saudi Arabia
| | - Basile Kamgang
- Research Unit Liverpool School of Tropical Medicine, Oganisation de Coordination pour la lute contre les Endemies en Afrique Centrale, Yaounde, Cameroon
| | - Emad I M Khater
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Vicki Kramer
- Vector Borne Disease Section, California Department of Public Health, Sacramento, CA, USA
| | - Alma Lopez-Solis
- Centro Regional de Investigación en Salud Pública INSP, Tapachula, Chiapas, Mexico
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fever Laboratory, Center for Virus Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54628-00200, Nairobi, Kenya
| | - Ademir Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC-FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria Victoria Micieli
- Centro de Estudios Parasitológicos y de Vectores, CONICET, La Plata, Buenos Aires, Argentina
| | - Christophe Paupy
- Laboratory MIVEGEC, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | | | - Nil Rahola
- Laboratory MIVEGEC, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Syed Basit Rasheed
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| | | | - Amag A Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rosa Maria Sanchez-Casas
- School of Veterinary Medicine, Escobedo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Gonçalo Seixas
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Carla A Sousa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Walter J Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, IFAS, Vero Beach, FL, USA
| | - Adriana Troyo
- Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Jeffrey R Powell
- Yale University, 21 Sachem Street, New Haven, CT, 06520-8105, USA
| |
Collapse
|
34
|
Vieira MLC, Santini L, Diniz AL, Munhoz CDF. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 2016; 39:312-28. [PMID: 27561112 PMCID: PMC5004837 DOI: 10.1590/1678-4685-gmb-2016-0027] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022] Open
Abstract
Microsatellites or Single Sequence Repeats (SSRs) are extensively employed in plant genetics studies, using both low and high throughput genotyping approaches. Motivated by the importance of these sequences over the last decades this review aims to address some theoretical aspects of SSRs, including definition, characterization and biological function. The methodologies for the development of SSR loci, genotyping and their applications as molecular markers are also reviewed. Finally, two data surveys are presented. The first was conducted using the main database of Web of Science, prospecting for articles published over the period from 2010 to 2015, resulting in approximately 930 records. The second survey was focused on papers that aimed at SSR marker development, published in the American Journal of Botany's Primer Notes and Protocols in Plant Sciences (over 2013 up to 2015), resulting in a total of 87 publications. This scenario confirms the current relevance of SSRs and indicates their continuous utilization in plant science.
Collapse
Affiliation(s)
- Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Luciane Santini
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Augusto Lima Diniz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Carla de Freitas Munhoz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de
Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| |
Collapse
|
35
|
Granata BX, Parera VE, Batlle A, Rossetti MV. Haplotype Study in Argentinean Variegate Porphyria Patients. Hum Hered 2016; 80:139-43. [PMID: 27216491 DOI: 10.1159/000445749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The porphyrias are genetically heterogeneous diseases, and each mutation is exclusive to one or two families. Among the mutations responsible for variegate porphyria in our country, c.1042_1043insT stands out, since it was described only in Argentina and is present in about 40% of genetically diagnosed families. Thus, we hypothesized the possible existence of a common ancestor for the mutation in our population. METHODS We conducted a study based on microsatellite (short tandem repeats) haplotypes. RESULTS We found a common haplotype in all of the patients carrying the common mutation. The age of the mutation was estimated to be about 375 years. CONCLUSION There is a recent founder effect in our population for this particular genetic alteration in variegate porphyria.
Collapse
Affiliation(s)
- Bárbara Xoana Granata
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP) CONICET, Hospital de Clx00ED;nicas Josx00E9; de San Martx00ED;n - UBA, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
36
|
Wasowicz P, Pauwels M, Pasierbinski A, Przedpelska-Wasowicz EM, Babst-Kostecka AA, Saumitou-Laprade P, Rostanski A. Phylogeography of Arabidopsis halleri (Brassicaceae) in mountain regions of Central Europe inferred from cpDNA variation and ecological niche modelling. PeerJ 2016; 4:e1645. [PMID: 26835186 PMCID: PMC4734066 DOI: 10.7717/peerj.1645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to investigate phylogeographical patterns present within A. halleri in Central Europe. 1,281 accessions sampled from 52 populations within the investigated area were used in the study of genetic variation based on chloroplast DNA. Over 500 high-quality species occurrence records were used in ecological niche modelling experiments. We evidenced the presence of a clear phylogeographic structure within A. halleri in Central Europe. Our results showed that two genetically different groups of populations are present in western and eastern part of the Carpathians. The hypothesis of the existence of a glacial refugium in the Western Carpathians adn the Bohemian Forest cannot be rejected from our data. It seems, however, that the evidence collected during the present study is not conclusive. The area of Sudetes was colonised after LGM probably by migrants from the Bohemian Forest.
Collapse
Affiliation(s)
- Pawel Wasowicz
- Icelandic Institute of Natural History, Iceland
- Faculty of Biology and Environmental Protection, Department of Botany and Nature Protection, University of Silesia, Katowice, Poland
| | - Maxime Pauwels
- Unité Evo-Eco-Paléo (EEP)—UMR 8198, Université de Lille—Sciences et Technologies, CNRS, Villeneuve d’Ascq, France
| | - Andrzej Pasierbinski
- Faculty of Biology and Environmental Protection, Department of Botany and Nature Protection, University of Silesia, Katowice, Poland
| | | | | | - Pierre Saumitou-Laprade
- Unité Evo-Eco-Paléo (EEP)—UMR 8198, Université des Sciences et Technologies de Lille (Lille I), Villeneuve d’Ascq, France
| | - Adam Rostanski
- Faculty of Biology and Environmental Protection, Department of Botany and Nature Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
37
|
Gonçalves DV, Pereira P, Godinho R, Lopes S, Velo-Antón G, Brito JC. Development of 23 microsatellite loci for Boulenger’s agama (Agama boulengeri) with partial cross-amplification in other Agama species. AMPHIBIA-REPTILIA 2016. [DOI: 10.1163/15685381-00003048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patterns of biodiversity and evolutionary processes controlling them are still poorly studied in desert biomes. Fine-scale markers could help answer some of the pressing research questions for desert biomes and Sahara in particular. Such markers are available for some large mammals and crocodiles, but not for small vertebrates. Here we present a battery of microsatellite loci developed for Agama boulengeri, a promising model to study evolutionary and demographic processes in the Sahara-Sahel. Loci were selected by sequencing enriched DNA libraries with 454 pyrosequencing. A total of 23 polymorphic loci were successfully amplified in four multiplex reactions. Cross-amplification of the microsatellite loci in A. agama and A. boueti was partially successful. These markers are a promising tool for assessing genetic diversity, gene-flow dynamics and demographic patterns in this group. Given the genus Agama is distributed throughout Africa, results presented here might also facilitate studies in other regions.
Collapse
Affiliation(s)
- Duarte Vasconcelos Gonçalves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Paulo Pereira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
- Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park 2006, South Africa
| | - Susana Lopes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - José Carlos Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
38
|
Herdegen M, Radwan J, Sobczynska U, Dabert M, Konjević D, Schlichter J, Jurczyszyn M. Population structure of edible dormouse in Poland: the role of habitat fragmentation and implications for conservation. J Zool (1987) 2015. [DOI: 10.1111/jzo.12304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Herdegen
- Institute of Environmental Biology Adam Mickiewicz University Poznań Poland
| | - J. Radwan
- Institute of Environmental Biology Adam Mickiewicz University Poznań Poland
| | - U. Sobczynska
- Molecular Biology Techniques Laboratory Faculty of Biology Adam Mickiewicz University Poznan Poland
| | - M. Dabert
- Molecular Biology Techniques Laboratory Faculty of Biology Adam Mickiewicz University Poznan Poland
| | - D. Konjević
- Department of Veterinary Economics and Epidemiology Faculty of Veterinary Medicine University of Zagreb Zagreb Republic of Croatia
| | - J. Schlichter
- Öko‐log Freilandforschung Heiko Müller‐Stieß Trippstadt Germany
| | - M. Jurczyszyn
- Institute of Environmental Biology Adam Mickiewicz University Poznań Poland
| |
Collapse
|
39
|
Development and characterization of 16 microsatellite markers for Micromeria (Lamiaceae) from Tenerife (Canary Islands, Spain) using 454 sequencing. CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-015-0451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Armani A, Giusti A, Guardone L, Castigliego L, Gianfaldoni D, Guidi A. Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0301-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ross AA, Travers SE. The genetic consequences of rarity in the western prairie fringed orchid (Platanthera praeclara). CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0761-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Kozyra KB, Melosik I, Baraniak E. Genetic diversity and population structure of Polistes nimpha based on DNA microsatellite markers. INSECTES SOCIAUX 2015; 62:423-432. [PMID: 27034509 PMCID: PMC4768218 DOI: 10.1007/s00040-015-0421-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 06/05/2023]
Abstract
The Eurasiatic Polistes nimpha belongs to primitively eusocial wasps for which no data are available on its population's genetic structure and relatedness/relationships of individuals. The purpose of this research is to determine the amplification efficiency in P. nimpha of microsatellite primers developed for P. dominula and using these primers, to explore genetic diversity, population structure and relatedness/relationship of P. nimpha in the context of its reproductive options. Eight out of twelve microsatellite markers analyzed on 59 individuals (pupae and larvae) were polymorphic (mean PIC = 0.545) and mutated following the stepwise mutation model. The Bayesian clustering method gave the probability of >0.898 of there being 10 clusters within the pooled sample of 15 nests. In two or three nest clusters, full- and/or half-siblings and unrelated individuals occurred. A significant correlation between genetic and geographic distances was detected. There are three main possibilities that come into play to explain our genetic results and direct field observations: cooperative nest foundation, visitations, and/or usurpation events. So far there is no conclusive evidence to exclude or support any of these possibilities.
Collapse
Affiliation(s)
- K. B. Kozyra
- />Department of Systematic Zoology, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland
| | - I. Melosik
- />Department of Genetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland
| | - E. Baraniak
- />Department of Systematic Zoology, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland
| |
Collapse
|
43
|
Fonzi E, Higa Y, Bertuso AG, Futami K, Minakawa N. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago. PLoS Negl Trop Dis 2015; 9:e0003829. [PMID: 26039311 PMCID: PMC4454683 DOI: 10.1371/journal.pntd.0003829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
Background Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap. Methodology/principal findings Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them. Conclusions/significance The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies. Dengue fever threatens the health of millions in the tropics and its causative agent, dengue virus, is mainly transmitted by the mosquito Aedes aegypti. To control the spread of the virus, insecticides have been abundantly used but Ae. aegypti has developed a genetic resistance to them. Currently, alternative methods are being tested wherein artificially modified mosquitos are released in the wild to interfere with the mating of natural populations. It is important then to understand how the mosquito spreads in the environment. It is known that Ae. aegytpi can be passively transported for long distances by human vehicles, but it was not clear how common this event is, especially in case of marine transportation. In population genetics, a basic assumption says that if populations frequently exchange migrants, they become genetically more similar than relatively isolated populations. We estimated the genetic similarity between Ae. aegypti collected in the Philippines from 15 seaports of different sizes and ship connectivity. The mosquitos from busy ports, even distant ones, were genetically similar, while in the small ports, even close ones, Ae. aegypti were relatively differentiated. It was also suggested that Ae. aegypti's dispersal is affected by cargo shipments more than passenger ships.
Collapse
Affiliation(s)
- Eugenio Fonzi
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail:
| | - Yukiko Higa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Arlene G. Bertuso
- Department of Public Health, University of the Philippines, Manila, Philippines
| | - Kyoko Futami
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
44
|
Yang Z, Steentoft C, Hauge C, Hansen L, Thomsen AL, Niola F, Vester-Christensen MB, Frödin M, Clausen H, Wandall HH, Bennett EP. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 2015; 43:e59. [PMID: 25753669 PMCID: PMC4482057 DOI: 10.1093/nar/gkv126] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 12/16/2022] Open
Abstract
The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis.
Collapse
Affiliation(s)
- Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Camilla Hauge
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Allan Lind Thomsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Francesco Niola
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
45
|
Ranade SS, Ganea LS, Razzak AM, García Gil MR. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.). J Hered 2015; 106:386-94. [PMID: 25890976 DOI: 10.1093/jhered/esv017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134).
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- From the Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, SE 901-83 Umeå, Sweden (Ranade, Ganea, Razzak, and García Gil)
| | - Laura-Stefana Ganea
- From the Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, SE 901-83 Umeå, Sweden (Ranade, Ganea, Razzak, and García Gil)
| | - Abdur M Razzak
- From the Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, SE 901-83 Umeå, Sweden (Ranade, Ganea, Razzak, and García Gil)
| | - M R García Gil
- From the Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, SE 901-83 Umeå, Sweden (Ranade, Ganea, Razzak, and García Gil).
| |
Collapse
|
46
|
Cinget B, Gérardi S, Beaulieu J, Bousquet J. Less pollen-mediated gene flow for more signatures of glacial lineages: congruent evidence from balsam fir cpDNA and mtDNA for multiple refugia in eastern and central North America. PLoS One 2015; 10:e0122815. [PMID: 25849816 PMCID: PMC4388536 DOI: 10.1371/journal.pone.0122815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
The phylogeographic structure and postglacial history of balsam fir (Abies balsamea), a transcontinental North American boreal conifer, was inferred using mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) markers. Genetic structure among 107 populations (mtDNA data) and 75 populations (cpDNA data) was analyzed using Bayesian and genetic distance approaches. Population differentiation was high for mtDNA (dispersed by seeds only), but also for cpDNA (dispersed by seeds and pollen), indicating that pollen gene flow is more restricted in balsam fir than in other boreal conifers. Low cpDNA gene flow in balsam fir may relate to low pollen production due to the inherent biology of the species and populations being decimated by recurrent spruce budworm epidemics, and/or to low dispersal of pollen grains due to their peculiar structural properties. Accordingly, a phylogeographic structure was detected using both mtDNA and cpDNA markers and population structure analyses supported the existence of at least five genetically distinct glacial lineages in central and eastern North America. Four of these would originate from glacial refugia located south of the Laurentide ice sheet, while the last one would have persisted in the northern Labrador region. As expected due to reduced pollen-mediated gene flow, congruence between the geographic distribution of mtDNA and cpDNA lineages was higher than in other North American conifers. However, concordance was not complete, reflecting that restricted but nonetheless detectable cpDNA gene flow among glacial lineages occurred during the Holocene. As a result, new cpDNA and mtDNA genome combinations indicative of cytoplasmic genome capture were observed.
Collapse
Affiliation(s)
- Benjamin Cinget
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
| | - Jean Beaulieu
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
- Natural Resources Canada, Canadian Wood Fibre Centre, Canadian Wood Fibre Centre, Natural Resources Canada, Québec, Québec, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
47
|
Vartia S, Collins PC, Cross TF, Fitzgerald RD, Gauthier DT, McGinnity P, Mirimin L, Carlsson J. Multiplexing with three-primer PCR for rapid and economical microsatellite validation. Hereditas 2015; 151:43-54. [PMID: 25041267 DOI: 10.1111/hrd2.00044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/20/2014] [Indexed: 02/01/2023] Open
Abstract
The next generation sequencing revolution has enabled rapid discovery of genetic markers, however, development of fully functioning new markers still requires a long and costly process of marker validation. This study reports a rapid and economical approach for the validation and deployment of polymorphic microsatellite markers obtained from a 454 pyrosequencing library of Atlantic cod, Gadus morhua, Linnaeus 1758. Primers were designed from raw reads to amplify specific amplicon size ranges, allowing effective PCR multiplexing. Multiplexing was combined with a three-primer PCR approach using four universal tails to label amplicons with separate fluorochromes. A total of 192 primer pairs were tested, resulting in 73 polymorphic markers. Of these, 55 loci were combined in six multiplex panels each containing between six and eleven markers. Variability of the loci was assessed on G. morhua from the Celtic Sea (n = 46) and the Scotian Shelf (n = 46), two locations that have shown genetic differentiation in previous studies. Multilocus F(ST) between the two samples was estimated at 0.067 (P = 0.001). After three loci potentially under selection were excluded, the global F(ST) was estimated at 0.043 (P = 0.001). Our technique combines three-primer and multiplex PCR techniques, allowing simultaneous screening and validation of relatively large numbers of microsatellite loci.
Collapse
Affiliation(s)
- Salla Vartia
- Carna Research Station, Ryan Institute, National University of Ireland, Galway, Carna, Connemara, Co. Galway, Ireland; Area 52 Research Group, School of Biology & Environment Science, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Inomata N, Hironaka K, Sawada K, Kuriwada T, Yamahira K. Discrepancy in the degree of population differentiation between color-morph frequencies and neutral genetic loci in the damselfly Ischnura senegalensis in Okinawa Island, Japan. Genetica 2015; 143:271-7. [PMID: 25633100 DOI: 10.1007/s10709-015-9821-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/23/2015] [Indexed: 11/29/2022]
Abstract
Evaluation of relative contribution of natural selection and stochastic processes to population differentiation has been of great interest in evolutionary biology. In a damselfly, Ischnura senegalensis, females show color dimorphism (gynochrome vs. androchrome), and color-morph frequencies are known to greatly vary among local populations within Okinawa Island, a small island of Ryukyu Archipelago, Japan. In this study, to examine the effects of natural selection and stochastic processes on the within-island variation in color-morph frequencies, we compared the degree of population differentiation at the color-morph locus with that at a mitochondrial DNA region and ten nuclear microsatellite loci. F ST values at the neutral loci were close to zero, indicating presence of sufficient gene flow (dispersal of adult individuals) between the local populations. In contrast, F ST values at the color-morph locus were significantly different from zero. These results suggest that variation in female color-morph frequencies observed among local populations in Okinawa Island has been caused by divergent selection acting on the phenotype and/or genes tightly linked with the color locus.
Collapse
Affiliation(s)
- Nobuyuki Inomata
- Department of Environmental Science, International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan,
| | | | | | | | | |
Collapse
|
49
|
Ganzhorn SM, Perez-Sweeney B, Thomas WW, Gaiotto FA, Lewis JD. Effects of fragmentation on density and population genetics of a threatened tree species in a biodiversity hotspot. ENDANGER SPECIES RES 2015. [DOI: 10.3354/esr00645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Assessment of genetic diversity of sweet potato in Puerto Rico. PLoS One 2014; 9:e116184. [PMID: 25551388 PMCID: PMC4281141 DOI: 10.1371/journal.pone.0116184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022] Open
Abstract
Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied.
Collapse
|