1
|
Ren P, Lu L, Cai S, Chen J, Lin W, Han F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol 2021; 12:713540. [PMID: 34484216 PMCID: PMC8416054 DOI: 10.3389/fimmu.2021.713540] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It affects nearly 95% of all protein-coding genes and occurs in nearly all human organs. Aberrant alternative splicing can lead to various neurological diseases and cancers and is responsible for aging, infection, inflammation, immune and metabolic disorders, and so on. Though aberrant alternative splicing events and their regulatory mechanisms are widely recognized, the association between autoimmune disease and alternative splicing has not been extensively examined. Autoimmune diseases are characterized by the loss of tolerance of the immune system towards self-antigens and organ-specific or systemic inflammation and subsequent tissue damage. In the present review, we summarized the most recent reports on splicing events that occur in the immunopathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role that splicing events play in regulating autoimmune disease progression. We also identified the changes that occur in splicing factor expression. The foregoing information might improve our understanding of autoimmune diseases and help develop new diagnostic and therapeutic tools for them.
Collapse
Affiliation(s)
- Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Luying Lu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shasha Cai
- Department of Nephrology, The First People's Hospital of Wenling, Taizhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y, Sun D, Chen YX, Hong J, Chen H, Zou W, Fang JY. LncRNA GClnc1 Promotes Gastric Carcinogenesis and May Act as a Modular Scaffold of WDR5 and KAT2A Complexes to Specify the Histone Modification Pattern. Cancer Discov 2016; 6:784-801. [PMID: 27147598 DOI: 10.1158/2159-8290.cd-15-0921] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Long noncoding RNAs (lncRNA) play a role in carcinogenesis. However, the function of lncRNAs in human gastric cancer remains largely unknown. In this study, we identified a novel lncRNA, GClnc1, which was upregulated and associated with tumorigenesis, tumor size, metastasis, and poor prognosis in gastric cancer. GClnc1 affected gastric cancer cell proliferation, invasiveness, and metastasis in multiple gastric cancer models. Mechanistically, GClnc1 bound WDR5 (a key component of histone methyltransferase complex) and KAT2A histone acetyltransferase, acted as a modular scaffold of WDR5 and KAT2A complexes, coordinated their localization, specified the histone modification pattern on the target genes, including SOD2, and consequently altered gastric cancer cell biology. Thus, GClnc1 is mechanistically, functionally, and clinically oncogenic in gastric cancer. Targeting GClnc1 and its pathway may be meaningful for treating patients with gastric cancer. SIGNIFICANCE This report documents a novel lncRNA, GClnc1, which may act as a scaffold to recruit the WDR5 and KAT2A complex and modify the transcription of target genes. This study reveals that GClnc1 is an oncogenic lncRNA in human gastric cancer. Cancer Discov; 6(7); 784-801. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Tian-Tian Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jie He
- Department of Gastroenterology and Guangzhou Key Laboratory of Digestive Disease, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Liang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Lin-Lin Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ting-Ting Yan
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ta-Chung Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jia-Yin Tang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yu-Jie Bao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ye Hu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanwei Lin
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China. Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Danfeng Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China. Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Ying-Xuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
3
|
Novel 5' fusion partners of ETV1 and ETV4 in prostate cancer. Neoplasia 2014; 15:720-6. [PMID: 23814484 DOI: 10.1593/neo.13232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/17/2022] Open
Abstract
Gene fusions involving the erythroblast transformation-specific (ETS) transcription factors ERG, ETV1, ETV4, ETV5, and FLI1 are a common feature of prostate carcinomas (PCas). The most common upstream fusion partner described is the androgen-regulated prostate-specific gene TMPRSS2, most frequently with ERG, but additional 5' fusion partners have been described. We performed 5' rapid amplification of cDNA ends in 18 PCas with ETV1, ETV4, or ETV5 outlier expression to identify the 5' fusion partners. We also evaluated the exon-level expression profile of these ETS genes in 14 cases. We identified and confirmed by fluorescent in situ hybridization (FISH) and reverse transcription-polymerase chain reaction the two novel chimeric genes OR51E2-ETV1 and UBTF-ETV4 in two PCas. OR51E2 encodes a G-protein-coupled receptor that is overexpressed in PCas, whereas UBTF is a ubiquitously expressed gene encoding an HMG-box DNA-binding protein involved in ribosome biogenesis. We additionally describe two novel gene fusion combinations of previously described genes, namely, SLC45A3-ETV4 and HERVK17-ETV4. Finally, we found one PCa with TMPRSS2-ETV1, one with C15orf21-ETV1, one with EST14-ETV1, and two with 14q133-q21.1-ETV1. In nine PCas (eight ETV1 and one ETV5), exhibiting ETS outlier expression and genomic rearrangement detected by FISH, no 5' fusion partner was found. Our findings contribute significantly to characterize the heterogeneous group of ETS gene fusions and indicate that all genes described as 5' fusion partners with one ETS gene can most likely be rearranged with any of the other ETS genes involved in prostate carcinogenesis.
Collapse
|
4
|
Sharma A, Costantini S, Colonna G. The protein-protein interaction network of the human Sirtuin family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1998-2009. [PMID: 23811471 DOI: 10.1016/j.bbapap.2013.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/31/2013] [Accepted: 06/18/2013] [Indexed: 12/15/2022]
Abstract
Protein-protein interaction networks are useful for studying human diseases and to look for possible health care through a holistic approach. Networks are playing an increasing and important role in the understanding of physiological processes such as homeostasis, signaling, spatial and temporal organizations, and pathological conditions. In this article we show the complex system of interactions determined by human Sirtuins (Sirt) largely involved in many metabolic processes as well as in different diseases. The Sirtuin family consists of seven homologous Sirt-s having structurally similar cores but different terminal segments, being rather variable in length and/or intrinsically disordered. Many studies have determined their cellular location as well as biological functions although molecular mechanisms through which they act are actually little known therefore, the aim of this work was to define, explore and understand the Sirtuin-related human interactome. As a first step, we have integrated the experimentally determined protein-protein interactions of the Sirtuin-family as well as their first and second neighbors to a Sirtuin-related sub-interactome. Our data showed that the second-neighbor network of Sirtuins encompasses 25% of the entire human interactome, and exhibits a scale-free degree distribution and interconnectedness among top degree nodes. Moreover, the Sirtuin sub interactome showed a modular structure around the core comprising mixed functions. Finally, we extracted from the Sirtuin sub-interactome subnets related to cancer, aging and post-translational modifications for information on key nodes and topological space of the subnets in the Sirt family network.
Collapse
Affiliation(s)
- Ankush Sharma
- Biochemistry, Biophysics and General Pathology Department, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
5
|
Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, Peterson LE, Wang H, Yang XF. Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. J Allergy Clin Immunol 2005; 114:1463-70. [PMID: 15577853 PMCID: PMC3902068 DOI: 10.1016/j.jaci.2004.09.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alternative splicing is important for increasing the complexity of the human proteome from a limited genome. Previous studies have shown that for some autoantigens, there is differential immunogenicity among alternatively spliced isoforms. OBJECTIVES Herein, we tested the hypothesis that alternative splicing is a common feature for transcripts of autologous proteins that are autoantigens. The corollary hypothesis tested was that nonautoantigen transcripts have a lower frequency of alternative splicing. METHODS The extent of alternative splicing within 45 randomly selected self-proteins associated with autoimmune diseases was compared with 9554 randomly selected proteins in the human genome by using bioinformatics analyses. Isoform-specific regions that resulted from alternative splicing were studied for their potential to be epitopes for antibodies or T-cell receptors. RESULTS Alternative splicing occurred in 100% of the autoantigen transcripts. This was significantly higher than the approximately 42% rate of alternative splicing observed in the 9554 randomly selected human gene transcripts ( P < .001). Within the isoform-specific regions of the autoantigens, 92% and 88% encoded MHC class I and class II-restricted T-cell antigen epitopes, respectively, and 70% encoded antibody binding domains. Furthermore, 80% of the autoantigen transcripts underwent noncanonical alternative splicing, which is also significantly higher than the less than 1% rate in randomly selected gene transcripts ( P < .001). CONCLUSION These studies suggest that noncanonical alternative splicing may be an important mechanism for the generation of untolerized epitopes that may lead to autoimmunity. Furthermore, the product of a transcript that does not undergo alternative splicing is unlikely to be a target antigen in autoimmunity.
Collapse
Affiliation(s)
- Bernard Ng
- Biology of Inflammation Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
| | - Fan Yang
- Biology of Inflammation Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
| | - David P. Huston
- Biology of Inflammation Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
- Department of Immunology, Baylor College of Medicine
| | - Yan Yan
- Biology of Inflammation Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
| | - Yu Yang
- Biology of Inflammation Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
| | - Zeyu Xiong
- Biology of Inflammation Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
| | - Leif E. Peterson
- Epidemiology and Biostatistics, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
| | - Hong Wang
- Department of Medicine, Baylor College of Medicine
| | - Xiao-Feng Yang
- Biology of Inflammation Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine
- Department of Immunology, Baylor College of Medicine
| |
Collapse
|
7
|
Dühr S, Torres-Montaner A, Astola A, García-Cozar FJ, Pendón C, Bolívar J, Valdivia MM. Molecular analysis of the 5' region of human ribosomal transcription factor UBF. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:267-72. [PMID: 11916260 DOI: 10.3109/10425170109025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Upstream binding factor, UBF, is a nucleolar autoantigen involved in the transcription of ribosomal DNA genes. Previously, human genomic clones served to demonstrate that an alternative pre-mRNA splicing of a single gene is used to form UBF1 and UBF2. Here, to complete characterizing the 5'end genomic organization of this nucleolar transcription factor, lambda clones containing the human UBF gene were isolated from a human placenta genomic library using a hamster UBF cDNA as a probe. An additional PCR product was isolated from HeLa genomic DNA to cover the first translated 60 nt of the gene containing the ATG initiation codon. We have also determined the transcription start site of the gene by primer extension analysis at nt 188 upstream from the start ATG codon. It served first, to identify an untranslated initial exon on the UBF gene covering the first 121 nt of human UBF cDNA, and also to establish the sequence of the proximal promoter. The human UBF promoter lacks a TATA and CAAT boxes but contains multiple binding sites for SP1, AP1, AP2, TFIID, NF-1 and a single site for NFAT-1. Consequently we have defined the first five exons of the human UBF gene covering 7.5kb. The complete gene now consists of 20 exons with intervening sequences and spans approximately 15kb of DNA.
Collapse
Affiliation(s)
- S Dühr
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Dai Q, Deubler DA, Maxwell TM, Zhu XL, Cui J, Rohr LR, Stephenson RA, Brothman AR. A common deletion at chromosomal region 17q21 in sporadic prostate tumors distal to BRCA1. Genomics 2001; 71:324-9. [PMID: 11170749 DOI: 10.1006/geno.2000.6436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostate cancer is the most common cancer in males in the United States, yet the etiology of this disease is still poorly understood. In previous work from our laboratory, one or more deleted regions were found in prostate tumors distal to the breast and ovarian cancer susceptibility gene (BRCA1) on chromosome 17. This suggested that genes at 17q21 may play a pivotal role in prostate cancer progression, and there may be new tumor suppressor genes at this locus. We now present a physical map built with P1, P1 artificial chromosome, and bacterial artificial chromosome clones encompassing a DNA sequence anchored by multiple STS markers. The analysis of prostate tumors indicated an 85-kb novel commonly deleted interval flanked by D17S1184-D17S183-D17S1203-D17S1860, which is at least 470 kb distal to the BRCA1 gene. Fifty-four of 126 prostrate cancer cases (43%) showed a deletion by a direct FISH technique using P1 probes in this region. Searching with clone end sequences in the sequence database BLAST, the deleted clone covered genomic DNA sequence that contained upstream binding factor (UBF), EPB3 genes, SHCL1, ASB-4-like sequence, and acidic protein-like sequence. PCR for the ESTs confirmed that these genes or ESTs are within the deletion region. Our results will be helpful for finding candidate tumor suppressor genes in prostate cancer.
Collapse
Affiliation(s)
- Q Dai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|