1
|
Jespersgaard C, Damgaard IN, Cornelius N, Bache I, Knabe N, Miranda MJ, Tümer Z. Proximal 21q deletion as a result of a de novo unbalanced t(12;21) translocation in a patient with dysmorphic features, hepatomegaly, thick myocardium and delayed psychomotor development. Mol Cytogenet 2016; 9:11. [PMID: 26855673 PMCID: PMC4743331 DOI: 10.1186/s13039-016-0220-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Background IInterstitial 21q deletions can cause a wide spectrum of symptoms depending on the size and the location of the deletion. It has previously been suggested that the long arm of chromosome 21 can be divided into three regions based on the clinical severity of the patients and deletion of the region from 32.3 Mb to 37.1 Mb was more crucial than the deletion of other regions. Case Presentation In this study we describe a female patient with dysmorphic features, hepatomegaly, thick myocardium and psychomotor delay. Conventional karyotyping was initially interpreted as full monosomy 21, but subsequent chromosome microarray analysis suggested an approximately 18 Mb partial monosomy. Re-evaluation of the karyotype and fluorescence in situ hybridization revealed deletion of the proximal 21q11.2-q22.11 segment and insertion of 21q22.11-qter to 12qter. The deletion of the present case overlaps with two of the proposed regions including part of the proposed crucial region. Conclusions This report emphasizes the relevance of investigating suspected full monosomies with high resolution methods and FISH in order to investigate the extent of the deletion and the presence of more complex rearrangements.
Collapse
Affiliation(s)
- Cathrine Jespersgaard
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Ida N Damgaard
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark
| | - Nanna Cornelius
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Iben Bache
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark ; Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Knabe
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark
| | - Maria J Miranda
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
2
|
Fukai R, Hiraki Y, Nishimura G, Nakashima M, Tsurusaki Y, Saitsu H, Matsumoto N, Miyake N. A de novo 1.4-Mb deletion at 21q22.11 in a boy with developmental delay. Am J Med Genet A 2014; 164A:1021-8. [PMID: 24458657 DOI: 10.1002/ajmg.a.36377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/20/2013] [Indexed: 01/15/2023]
Abstract
Monosomy 21 is a very rare chromosomal abnormality. At least 45 patients with partial deletion involving 21q11 have been reported. Here, we report a Japanese boy who presented with pre- and postnatal growth delays, psychomotor developmental delay, microcephaly, and iris coloboma. Cytogenetic analysis revealed a de novo 1.4-Mb deletion at 21q22.11 containing 19 protein-coding RefSeq genes. We compared the clinical phenotypes between the present patient and 16 previously reported patients with a deleted region associated with postnatal growth delay and psychomotor developmental delay. Interestingly, ITSN1 was the only gene deleted or disrupted in all cases; this gene is known to be associated with intellectual disability. Microcephaly and brain structural abnormalities including polymicrogyria and agenesis/hypoplasia of the corpus callosum may also result from haploinsufficiency of ITSN1, highlighting its clinical significance for the neurological features of patients with monosomy 21.
Collapse
Affiliation(s)
- Ryoko Fukai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Hannachi H, Mougou-Zerelli S, BenAbdallah I, Mama N, Hamdi I, Labalme A, Elghezal H, Sanlaville D, Saad A. Clinical and Molecular Characterization of a Combined 17p13.3 Microdeletion with Partial Monosomy 21q21.3 in a 26-Year-Old Man. Cytogenet Genome Res 2011; 135:102-10. [DOI: 10.1159/000330880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
4
|
Katzaki E, Morin G, Pollazzon M, Papa FT, Buoni S, Hayek J, Andrieux J, Lecerf L, Popovici C, Receveur A, Mathieu-Dramard M, Renieri A, Mari F, Philip N. Syndromic mental retardation with thrombocytopenia due to 21q22.11q22.12 deletion: Report of three patients. Am J Med Genet A 2010; 152A:1711-7. [PMID: 20578134 DOI: 10.1002/ajmg.a.33478] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the last few years, an increasing number of microdeletion/microduplication syndromes have been delineated. This rapid evolution is mainly due to the availability of microarray technology as a routine diagnostic tool. Microdeletions of the 21q22.11q22.12 region encompassing the RUNX1 gene have been reported in nine patients presenting with syndromic thrombocytopenia and mental retardation. RUNX1 gene is responsible for an autosomal dominant platelet disorder with predisposition to acute myelogenous leukemia. We report on three novel patients with an overlapping "de novo" interstitial deletion involving the band 21q22 characterized by array-CGH. All our patients presented with severe developmental delay, dysmorphic features, behavioral problems, and thrombocytopenia. Comparing the clinical features of our patients with the overlapping ones already reported two potential phenotypes related to 21q22 microdeletion including RUNX1 were highlighted: thrombocytopenia with +/- mild dysmorphic features and syndromic thrombocytopenia with growth and developmental delay.
Collapse
|
5
|
Lindstrand A, Malmgren H, Sahlén S, Schoumans J, Nordgren A, Ergander U, Holm E, Anderlid BM, Blennow E. Detailed molecular and clinical characterization of three patients with 21q deletions. Clin Genet 2009; 77:145-54. [PMID: 19863549 DOI: 10.1111/j.1399-0004.2009.01289.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have investigated three patients with 21q deletions, two with developmental delay, dysmorphic features and internal organ malformations, and one with cognitive function within the normal range but with some deficits in gross and fine motor development. All aberrations were characterized by array-comparative genomic hybridization (array-CGH). In addition, extensive fluorescence in situ hybridization (FISH) mapping on metaphase chromosomes and mechanically stretched chromosomes was performed on patient 1 who had an extremely complex intrachromosomal rearrangement with 16 breakpoints, four deletions and four duplications. Patients 2 and 3 had interstitial deletions comprising 21q21.1-21q22.11 and 21q11.2-21q21.3, respectively. Partial deletions of 21q are rare and these patients display a highly variable phenotype depending on the size and position of the deletion. A review of the literature identified 38 cases with pure 21q deletions. Twenty-three of these had reliable mapping data. The combined information of present and previous cases suggests that the ITSN1 gene is involved in severe mental retardation in patients with 21q deletion. In addition, a critical region of 0.56 Mb containing four genes, KCNE1, DSCR1, CLIC6 and RUNX1, is associated with severe congenital heart defects, and deletions of the most proximal 15-17 Mb of 21q is associated with mild or no cognitive impairment, but may lead to problems with balance and motor function.
Collapse
Affiliation(s)
- A Lindstrand
- Department of Molecular Medicine and Surgery, Clinical Genetics Unit, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lyle R, Béna F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L, Doco-Fenzy M, Cornillet-Lefèbvre P, Pelet A, Lyonnet S, Toutain A, Colleaux L, Horst J, Kennerknecht I, Wakamatsu N, Descartes M, Franklin JC, Florentin-Arar L, Kitsiou S, Aït Yahya-Graison E, Costantine M, Sinet PM, Delabar JM, Antonarakis SE. Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 2008; 17:454-66. [PMID: 19002211 DOI: 10.1038/ejhg.2008.214] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype-phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within approximately 85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.
Collapse
Affiliation(s)
- Robert Lyle
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ehling D, Kennerknecht I, Junge A, Prager B, Exeler R, Behre B, Horst J, Schmitt-John T, Bartsch O, Wirth J. Mild phenotype in two unrelated patients with a partial deletion of 21q22.2-q22.3 defined by FISH and molecular studies. Am J Med Genet A 2005; 131:265-72. [PMID: 15534873 DOI: 10.1002/ajmg.a.30361] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe two unrelated patients with cytogenetically visible deletions of 21q22.2-q22.3 and mild phenotypes. Both patients presented minor dysmorphic features including thin marfanoid build, facial asymmetry, downward-slanting palpebral fissures, depressed nasal bridge, small nose with bulbous tip, and mild mental retardation (MR). FISH and molecular studies indicated common deleted areas but different breakpoints. In patient 1, the breakpoint was fine mapped to a 5.2 kb interval between exon 5 and exon 8 of the ETS2 gene. The subtelomeric FISH probe was absent on one homologue 21 indicating a terminal deletion spanning approximately 7.9 Mb in size. In patient 2, the proximal breakpoint was determined to be 300-700 kb distal to ETS2, and the distal breakpoint 2.5-0.3 Mb from the 21q telomere, indicating an interstitial deletion sized approximately 4.7-7.3 Mb. The 21q- syndrome is rare and typically associated with a severe phenotype, but different outcomes depending on the size and location of the deleted area have been reported. Our data show that monosomy 21q of the area distal to the ETS2 gene, representing the terminal 7.9 Mb of 21q, may result in mild phenotypes comprising facial anomalies, thin marfanoid build, and mild MR, with or without signs of holoprosencephaly.
Collapse
|
8
|
Orti R, Rachidi M, Vialard F, Toyama K, Lopes C, Taudien S, Rosenthal A, Yaspo ML, Sinet PM, Delabar JM. Characterization of a novel gene, C21orf6, mapping to a critical region of chromosome 21q22.1 involved in the monosomy 21 phenotype and of its murine ortholog, orf5. Genomics 2000; 64:203-10. [PMID: 10729227 DOI: 10.1006/geno.1999.6109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenotypic and molecular analyses of patients with partial chromosome 21 monosomy enabled us to define a region, spanning 2.4 Mb between D21S190 and D21S226, associated with arthrogryposis, mental retardation, hypertonia, and several facial anomalies. The markers of the region were used to screen a total human PAC library (Ioannou, RZPD). We isolated 57 PACs, which formed primary contigs. EST clusters (UNIGENE collection) located in a 6-Mb interval, between D21S260 and D21S263, were mapped in individual bacterial clones. We mapped the WI-17843 cluster to the PAC clone J12100, which contains the two anchor markers LB10T and LA329. The open reading frame extends over 960 bp, with three putative start codons. The 1695-bp cDNA containing a polyadenylation signal should correspond to the full-length cDNA. From the genomic sequence, we deduced that the gene contained five exons and that there was a putative promoter sequence upstream from exon 1. In silico screening of DNA databases revealed similarity with a murine EST. The corresponding cDNA (1757 bp) sequence was very similar (>85%) to the human cDNA and had an open reading frame of 876 nucleotides. Somatic hybrid mapping localized the cDNA to mouse chromosome 16. EST analyses and RT-PCR indicated that the third exon in the human gene (exon 2 in the mouse) undergoes alternative splicing. Northern blot hybridization showed that the gene was ubiquitously expressed in humans and mice. The longest mouse clone was used to generate riboprobes, which were hybridized to murine embryos at stages E-9.5, E-10.5, E-12.5, E-13.5, and E-14.5-15, to study the pattern of expression during development. Ubiquitous labeling was observed, with strong signals restricted to limited areas of the telencephalon, the mesencephalon, and the interrhombomeric regions in the central nervous system, and other regions of the body such as the limb buds, branchial arches, and somites.
Collapse
Affiliation(s)
- R Orti
- UMR 8602 CNRS, UFR Necker Enfants-Malades, 156 rue de Vaugirard, Paris, 75730, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Potier M, Dutriaux A, Orti R, Groet J, Gibelin N, Karadima G, Lutfalla G, Lynn A, Van Broeckhoven C, Chakravarti A, Petersen M, Nizetic D, Delabar J, Rossier J. Two sequence-ready contigs spanning the two copies of a 200-kb duplication on human 21q: partial sequence and polymorphisms. Genomics 1998; 51:417-26. [PMID: 9721212 DOI: 10.1006/geno.1998.5389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical mapping across a duplication can be a tour de force if the region is larger than the size of a bacterial clone. This was the case of the 170- to 275-kb duplication present on the long arm of chromosome 21 in normal human at 21q11.1 (proximal region) and at 21q22.1 (distal region), which we described previously. We have constructed sequence-ready contigs of the two copies of the duplication of which all the clones are genuine representatives of one copy or the other. This required the identification of four duplicon polymorphisms that are copy-specific and nonallelic variations in the sequence of the STSs. Thirteen STSs were mapped inside the duplicated region and 5 outside but close to the boundaries. Among these STSs 10 were end clones from YACs, PACs, or cosmids, and the average interval between two markers in the duplicated region was 16 kb. Eight PACs and cosmids showing minimal overlaps were selected in both copies of the duplication. Comparative sequence analysis along the duplication showed three single-basepair changes between the two copies over 659 bp sequenced (4 STSs), suggesting that the duplication is recent (less than 4 mya). Two CpG islands were located in the duplication, but no genes were identified after a 36-kb cosmid from the proximal copy of the duplication was sequenced. The homology of this chromosome 21 duplicated region with the pericentromeric regions of chromosomes 13, 2, and 18 suggests that the mechanism involved is probably similar to pericentromeric-directed mechanisms described in interchromosomal duplications.
Collapse
Affiliation(s)
- M Potier
- Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique UMR7637, 10 rue Vauquelin, Paris Cedex 5, 75231, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|