1
|
Vecchio-Pagán B, Blackman SM, Lee M, Atalar M, Pellicore MJ, Pace RG, Franca AL, Raraigh KS, Sharma N, Knowles MR, Cutting GR. Deep resequencing of CFTR in 762 F508del homozygotes reveals clusters of non-coding variants associated with cystic fibrosis disease traits. Hum Genome Var 2016; 3:16038. [PMID: 27917292 PMCID: PMC5121184 DOI: 10.1038/hgv.2016.38] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
Extensive phenotypic variability is commonly observed in individuals with Mendelian disorders, even among those with identical genotypes in the disease-causing gene. To determine whether variants within and surrounding CFTR contribute to phenotypic variability in cystic fibrosis (CF), we performed deep sequencing of CFTR in 762 patients homozygous for the common CF-causing variant, F508del. In phase 1, ~200 kb encompassing CFTR and extending 10 kb 5' and 5 kb 3' of the gene was sequenced in 486 F508del homozygotes selected from the extremes of sweat chloride concentration. In phase 2, a 510 kb region, which included the entire topologically associated domain of CFTR, was sequenced in 276 F508del homozygotes drawn from extremes of lung function. An additional 163 individuals who carried F508del and a different CF-causing variant were sequenced to inform haplotype construction. Region-based burden testing of both common and rare variants revealed seven regions of significance (α=0.01), five of which overlapped known regulatory elements or chromatin interactions. Notably, the -80 kb locus known to interact with the CFTR promoter was associated with variation in both CF traits. Haplotype analysis revealed a single rare recombination event (1.9% frequency) in intron 15 of CFTR bearing the F508del variant. Otherwise, the majority of F508del chromosomes were markedly similar, consistent with a single origin of the F508del allele. Together, these high-resolution variant analyses of the CFTR locus suggest a role for non-coding regulatory motifs in trait variation among individuals carrying the common CF allele.
Collapse
Affiliation(s)
- Briana Vecchio-Pagán
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott M Blackman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa Lee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melis Atalar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rhonda G Pace
- Cystic Fibrosis-Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arianna L Franca
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen S Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Knowles
- Cystic Fibrosis-Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Deeb KK, Metcalf JD, Sesock KM, Shen J, Wensel CA, Rippel LI, Smith M, Chapman MS, Zhang S. The c.1364C>A (p.A455E) Mutation in the CFTR Pseudogene Results in an Incorrectly Assigned Carrier Status by a Commonly Used Screening Platform. J Mol Diagn 2015; 17:360-5. [PMID: 25956447 DOI: 10.1016/j.jmoldx.2015.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/07/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most common recessive conditions among whites, with an estimated carrier frequency of 1 in 25 in the United States. Population-based CF carrier screening was implemented in the United States in 2001. The number of mutations screened by each laboratory may vary; however, the 23 most common CF mutations recommended for screening by the American College of Medical Genetics and American College of Obstetricians and Gynecologists are included in all platforms. The c.1364C>A (p.A455E) mutation located in exon 10 of the CFTR gene is one of the 23 mutations. Because CFTR exon 10 and its flanking intronic regions are duplicated and transposed onto several other chromosomes of the human genome during evolution and function as unprocessed pseudogenes, variations in the CFTR pseudogenes may confound CF screening results for mutations located in exon 10 of the CFTR gene. We report an incorrectly identified carrier status for the c.1364C>A (p.A455E) mutation in a healthy individual using the Hologic InPlex CF assay. Further analysis revealed that the mutation resides in one of the CFTR pseudogenes. Because most commercial kits and laboratory-developed tests for CF carrier screening involve a short amplicon encompassing this mutation, this finding suggests that individuals with the c.1364C>A (p.A455E) mutation may require further investigation to avoid a false assignment of CF carrier status.
Collapse
Affiliation(s)
- Kristin K Deeb
- Center for Human Genetics Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - James D Metcalf
- Center for Human Genetics Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Kaitlin M Sesock
- Center for Human Genetics Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Junqing Shen
- Center for Human Genetics Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Christine A Wensel
- Center for Human Genetics Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Larisa I Rippel
- Department of Pathology, Center for Human Genetics, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Michelle Smith
- Center for Human Genetics Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Mark S Chapman
- Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Shulin Zhang
- Center for Human Genetics Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
3
|
Tsui LC, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med 2013; 3:a009472. [PMID: 23378595 DOI: 10.1101/cshperspect.a009472] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The positional cloning of the gene responsible for cystic fibrosis (CF) was the important first step in understanding the basic defect and pathophysiology of the disease. This study aims to provide a historical account of key developments as well as factors that contributed to the cystic fibrosis transmembrane conductance regulator (CFTR) gene identification work. A redefined gene structure based on the full sequence of the gene derived from the Human Genome Project is presented, along with brief reviews of the transcription regulatory sequences for the CFTR gene, the role of mRNA splicing in gene regulation and CF disease, and, various related sequences in the human genome and other species. Because CF mutations and genotype-phenotype correlations are covered by our colleagues (Ferec C, Cutting GR. 2012. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a009480), we only attempt to provide an introduction of the CF mutation database here for reference purposes.
Collapse
Affiliation(s)
- Lap-Chee Tsui
- The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| | | |
Collapse
|
4
|
Solyom S, Ewing AD, Hancks DC, Takeshima Y, Awano H, Matsuo M, Kazazian HH. Pathogenic orphan transduction created by a nonreference LINE-1 retrotransposon. Hum Mutat 2011; 33:369-71. [PMID: 22095564 DOI: 10.1002/humu.21663] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/10/2011] [Indexed: 11/08/2022]
Abstract
Long INterspersed Element-1 (LINE-1) retrotransposons comprise 17% of the human genome, and move by a potentially mutagenic "copy and paste" mechanism via an RNA intermediate. Recently, the retrotransposition-mediated insertion of a new transcript was described as a novel cause of genetic disease, Duchenne muscular dystrophy, in a Japanese male. The inserted sequence was presumed to derive from a single-copy, noncoding RNA transcribed from chromosome 11q22.3 that retrotransposed into the dystrophin gene. Here, we demonstrate that a nonreference full-length LINE-1 is situated in the proband and maternal genome at chromosome 11q22.3, directly upstream of the sequence, whose copy was inserted into the dystrophin gene. This LINE-1 is highly active in a cell culture assay. LINE-1 insertions are often associated with 3' transduction of adjacent genomic sequences. Thus, the likely explanation for the mutagenic insertion is a LINE-1-mediated 3' transduction with severe 5' truncation. This is the first example of LINE-1-induced human disease caused by an "orphan" 3' transduction.
Collapse
Affiliation(s)
- Szilvia Solyom
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|
6
|
El-Seedy A, Dudognon T, Bilan F, Pasquet MC, Reboul MP, Iron A, Kitzis A, Ladeveze V. Influence of the duplication of CFTR exon 9 and its flanking sequences on diagnosis of cystic fibrosis mutations. J Mol Diagn 2009; 11:488-93. [PMID: 19710401 DOI: 10.2353/jmoldx.2009.090005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The DNA sequences of seven regions in the human genome were examined for sequence identity with exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is mutated in cystic fibrosis, and its intronic boundaries. These sequences were 95% to 96% homologous. Based on this nucleotide sequence similarity, PCR primers for CFTR exon 9 can potentially anneal with other homologous sequences in the human genome. Sequence alignment analysis of the CFTR exon 9 homologous sequences revealed that five registered mutations in the Cystic Fibrosis Mutation Database may be due to the undesired annealing of primers to a homologous sequence, resulting in inappropriate PCR amplification. For this reason, we propose that certain pseudomutations may result from the similarity between CFTR exon 9 (and its flanking introns) and related sequences in the human genome. Here we show that two mutations previously described in the CFTR database (c.1392 + 6insC; c.1392 + 12G>A) were inappropriately attributed to two individuals who sought carrier testing. A more detailed study by either direct sequencing or subcloning and sequencing of PCR products using specially designed primers revealed that these apparent mutations were not, in fact, present in CFTR. In addition, we present new PCR conditions that permit specific amplification of CFTR exon 9 and its flanking regions.
Collapse
Affiliation(s)
- Ayman El-Seedy
- Institut de Physiologie et Biologie Cellulaires, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6187, Université de Poitiers, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kojima KK, Okada N. mRNA retrotransposition coupled with 5' inversion as a possible source of new genes. Mol Biol Evol 2009; 26:1405-20. [PMID: 19289598 DOI: 10.1093/molbev/msp050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human long interspersed nuclear element-1 (L1) occupies one-sixth of our genome and has contributed to genome evolution in various ways. Approximately 10% of human L1 copies are composed of two L1 segments; the 5' segment and 3' segment are in head-to-head (i.e., 5'-inverted) orientation. Besides mediating their own retrotransposition, L1 has the ability to mobilize mRNA "in trans," and the number of retrotransposed mRNA sequences (retrocopies) is estimated to be >6,000. In this study, we identified 48 human-specific retrocopies and 95 chimpanzee-specific retrocopies by comparing the human and chimpanzee genomes. Among these retrocopies, 12 were 5'-inverted. The characteristics of these 5'-inverted retrocopies were similar to those of 5'-inverted L1 copies, indicating that the 5' inversion is generated by the same mechanism. With these findings, we examined the possibility that 5' inversion of the retrocopy generates a new gene that codes for a peptide with a different N terminus. We identified several potential 5'-inverted retrogenes, including those of thymopoietin beta (TMPO) and eukaryotic translation initiation factor 3 subunit 5 (EIF3F). The most interesting candidate was the 5'-inverted retrocopy of small nuclear ribonucleoprotein polypeptide N (SNRPN). This retrocopy was transcribed in the reverse orientation in several organs, had multiple transcript variants, and encoded a protein containing a peptide fragment derived from the N-terminal portion of SNRPN. Our results suggest that mRNA retrotransposition coupled with 5' inversion may be a mechanism to generate new genes distinct from parental genes.
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
8
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
| | | |
Collapse
|
9
|
Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA elements in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:2-19. [PMID: 18046749 DOI: 10.1002/ajpa.20722] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee-gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
10
|
Lebo RV, Grody WW. Variable penetrance and expressivity of the splice altering 5T sequence in the cystic fibrosis gene. ACTA ACUST UNITED AC 2007; 11:32-44. [PMID: 17394391 DOI: 10.1089/gte.2006.9997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This manuscript reviews the frequencies, symptoms, testing, and reporting of genotypes with the 5T polythymidine tract which reduces splicing efficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in congenital bilateral absence of the vas deferens (CBAVD) patients and in patients and fetuses with cystic fibrosis-like symptoms. The 5T sequence has not been included in the American College of Medical Genetics (ACMG) CFTR mutation panel recommended for screening pregnant women for an increased fetal risk of cystic fibrosis (CF; MIM 219700) because finding this allele would raise concern for possible CFTR gene-related symptoms in many fetuses, even though only a fraction inheriting 5T and another major CFTR mutation would develop CF-like symptoms. In contrast, 40-80% of the symptomatic patients with CBAVD (MIM 277180) are compound heterozygotes for the 5T sequence. This submission provides template report summaries for CBAVD patient results for the 5T allele when tested along with the 23 most common ACMG mutation panel. If CBAVD patients were also tested with the remaining 16 most common reported mutations in CBAVD, the derived proportion of patients with at least one CFTR mutant allele is predicted to increase from 63% to 97%. Testing for the 5T sequence in symptomatic patients and reflex 5T testing in fetuses found to carry a major CF allele are discussed because finding the 5T sequence in these patients lowers the risk of typical severe symptoms. Additional reflex testing for the number of TG repeats adjacent to a 5T allele further modifies the predicted long-term severity of disease symptoms in patients and fetuses that are compound heterozygotes for a major CF mutation and the 5T sequence. Even though patient advice can be modified currently based upon the adjacent TG-repeat number, the final most accurate risk frequencies with different 5T + TG-repeat alleles are likely to become available only after a statistically robust study of a substantially larger patient population is completed with multiple well-defined clinical and mutation categories.
Collapse
Affiliation(s)
- Roger V Lebo
- Department of Pathology, Akron Children's Hospital, Akron, OH 44308-1062, USA.
| | | |
Collapse
|
11
|
Xing J, Wang H, Belancio VP, Cordaux R, Deininger PL, Batzer MA. Emergence of primate genes by retrotransposon-mediated sequence transduction. Proc Natl Acad Sci U S A 2006; 103:17608-13. [PMID: 17101974 PMCID: PMC1693794 DOI: 10.1073/pnas.0603224103] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Indexed: 02/06/2023] Open
Abstract
Gene duplication is one of the most important mechanisms for creating new genes and generating genomic novelty. Retrotransposon-mediated sequence transduction (i.e., the process by which a retrotransposon carries flanking sequence during its mobilization) has been proposed as a gene duplication mechanism. L1 exon shuffling potential has been reported in cell culture assays, and two potential L1-mediated exon shuffling events have been identified in the genome. SVA is the youngest retrotransposon family in primates and is capable of 3' flanking sequence transduction during retrotransposition. In this study, we examined all of the full-length SVA elements in the human genome to assess the frequency and impact of SVA-mediated 3' sequence transduction. Our results showed that approximately 53 kb of genomic sequences have been duplicated by 143 different SVA-mediated transduction events. In particular, we identified one group of SVA elements that duplicated the entire AMAC gene three times in the human genome through SVA-mediated transduction events, which happened before the divergence of humans and African great apes. In addition to the original AMAC gene, the three transduced AMAC copies contain intact ORFs in the human genome, and at least two are actively transcribed in different human tissues. The duplication of entire genes and the creation of previously undescribed gene families through retrotransposon-mediated sequence transduction represent an important mechanism by which mobile elements impact their host genomes.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803; and
| | - Hui Wang
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803; and
| | - Victoria P. Belancio
- Tulane Cancer Center SL-66, Department of Environmental Health Sciences, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Richard Cordaux
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803; and
| | - Prescott L. Deininger
- Tulane Cancer Center SL-66, Department of Environmental Health Sciences, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Mark A. Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803; and
| |
Collapse
|
12
|
Ayala YM, Pagani F, Baralle FE. TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Lett 2006; 580:1339-44. [PMID: 16458894 DOI: 10.1016/j.febslet.2006.01.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 01/18/2006] [Accepted: 01/19/2006] [Indexed: 10/25/2022]
Abstract
CFTR exon 9 presents a 3' splice site polymorphism, (UG)mU(n), whose composition influences splicing. TDP43 specifically binds the UG tract of the transcript and inhibits splicing in vitro. We report that depletion of TDP43 through RNA interference removes splicing inhibition caused by unfavorable (UG)mU(n) sequences, indicating that TDP43 exerts a potent inhibitory effect in vivo. We also show that the UG-TDP43 interaction has a dominant role over other exon 9 splicing regulatory elements. These results suggest that TDP43 association near a splice site has determined the evolution of positive splicing regulatory elements to contrast this inhibition.
Collapse
Affiliation(s)
- Youhna M Ayala
- Department of Molecular Pathology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy
| | | | | |
Collapse
|
13
|
Chen JM, Stenson PD, Cooper DN, Férec C. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 2005; 117:411-27. [PMID: 15983781 DOI: 10.1007/s00439-005-1321-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Diverse long interspersed element-1 (LINE-1 or L1)-dependent mutational mechanisms have been extensively studied with respect to L1 and Alu elements engineered for retrotransposition in cultured cells and/or in genome-wide analyses. To what extent the in vitro studies can be held to accurately reflect in vivo events in the human genome, however, remains to be clarified. We have attempted to address this question by means of a systematic analysis of recent L1-mediated retrotranspositional events that have caused human genetic disease, with a view to providing a more complete picture of how L1-mediated retrotransposition impacts upon the architecture of the human genome. A total of 48 such mutations were identified, including those described as L1-mediated retrotransposons, as well as insertions reported to contain a poly(A) tail: 26 were L1 trans-driven Alu insertions, 15 were direct L1 insertions, four were L1 trans-driven SVA insertions, and three were associated with simple poly(A) insertions. The systematic study of these lesions, when combined with previous in vitro and genome-wide analyses, has strengthened several important conclusions regarding L1-mediated retrotransposition in humans: (a) approximately 25% of L1 insertions are associated with the 3' transduction of adjacent genomic sequences, (b) approximately 25% of the new L1 inserts are full-length, (c) poly(A) tail length correlates inversely with the age of the element, and (d) the length of target site duplication in vivo is rarely longer than 20 bp. Our analysis also suggests that some 10% of L1-mediated retrotranspositional events are associated with significant genomic deletions in humans. Finally, the identification of independent retrotranspositional events that have integrated at the same genomic locations provides new insight into the L1-mediated insertional process in humans.
Collapse
Affiliation(s)
- Jian-Min Chen
- INSERM U613-Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang-Bretagne, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, 29220, France.
| | | | | | | |
Collapse
|
14
|
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is a form of infertility with an autosomal recessive genetic background in otherwise healthy males. CBAVD is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations on both alleles in approximately 80% of cases. Striking CFTR genotypic differences are observed in cystic fibrosis (CF) and in CBAVD. The 5T allele is a CBAVD mutation with incomplete penetrance. Recent evidence confirmed that a second polymorphic locus exists and is a major CFTR modifier. The development of minigene models have led to results suggesting that CFTR exon 9 is skipped in humans because of unusual suboptimal 5' splice sites. An extremely rare T3 allele has been reported and it has recently been confirmed that the T3 allele dramatically increases exon 9 skipping and should be considered as a 'CF' mutation. Routine testing for the most prevalent mutations in the CF Caucasian population will miss most CFTR gene alterations, which can be detected only through exhaustive scanning of CFTR sequences. Finally, a higher than expected frequency of CFTR mutations and/or polymorphisms is now found in a growing number of monosymptomatic disorders, which creates a dilemma for setting nosologic boundaries between CF and diseases related to CFTR.
Collapse
Affiliation(s)
- Mireille Claustres
- Laboratoire de Génétique Moléculaire et Chromosomique, CHU de Montpellier, Institut Universitaire de Recherche Clinique (IURC), 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
| |
Collapse
|
15
|
Liu X, Li X, Li M, Acimovic YJ, Li Z, Scherer SW, Estivill X, Tsui LC. Characterization of the segmental duplication LCR7-20 in the human genome. Genomics 2004; 83:262-9. [PMID: 14706455 DOI: 10.1016/j.ygeno.2003.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our previous study described the amplification of a genomic sequence containing exon 9 of CFTR in the human genome. Here we report that this CFTR sequence is part of a large duplicated sequence unit, provisionally named LCR7-20. Through successive screening of two human chromosome 7-specific cosmid libraries to construct a cosmid contig, we assembled two sequenced BAC clones into a single contig containing a prototypic LCR7-20 unit. Subsequent searches of existing human genome sequences identified additional six copies of LCR7-20-like sequences with more than 90% sequence homology. Additional genomic clones containing LCR7-20-like sequences were then isolated from total genomic BAC and PAC libraries. Restriction fragment analysis and limited sequencing data indicated that there could be around 30 copies of LCR7-20-like sequences in the human genome and that the average region of homology could extend over 120 kb. As indicated by fluorescence in situ hybridization analysis, LCR7-20-like sequences are dispersed on different chromosomes, mainly in the centromeric and pericentromeric regions, and some may exist in tandem copies. Our study also indicates that many genomic regions containing LCR7-20's either have been misassembled or are missing in current versions of the human genome sequence.
Collapse
Affiliation(s)
- Xiangdong Liu
- The Centre for Applied Genomics, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Schlenke TA, Begun DJ. Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci U S A 2004; 101:1626-31. [PMID: 14745026 PMCID: PMC341797 DOI: 10.1073/pnas.0303793101] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 12/07/2003] [Indexed: 11/18/2022] Open
Abstract
We know little about several important properties of beneficial mutations, including their mutational origin, their phenotypic effects (e.g., protein structure changes vs. regulatory changes), and the frequency and rapidity with which they become fixed in a population. One signature of the spread of beneficial mutations is the reduction of heterozygosity at linked sites. Here, we present population genetic data from several loci across chromosome arm 2R in Drosophila simulans. A 100-kb segment from a freely recombining region of this chromosome shows extremely reduced heterozygosity in a California population sample, yet typical levels of divergence between species, suggesting that at least one episode of strong directional selection has occurred in the region. The 5' flanking sequence of one gene in this region, Cyp6g1 (a cytochrome P450), is nearly fixed for a Doc transposable element insertion. Presence of the insertion is correlated with increased transcript abundance of Cyp6g1, a phenotype previously shown to be associated with insecticide resistance in Drosophila melanogaster. Surveys of nucleotide variation in the same genomic region in an African D. simulans population revealed no evidence for a high-frequency Doc element and no evidence for reduced polymorphism. These data are consistent with the notion that the Doc element is a geographically restricted beneficial mutation. Data from D. simulans Cyp6g1 are paralleled in many respects by data from its sister species D. melanogaster.
Collapse
Affiliation(s)
- Todd A Schlenke
- Section of Evolution and Ecology, Division of Biological Sciences, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
17
|
Szak ST, Pickeral OK, Landsman D, Boeke JD. Identifying related L1 retrotransposons by analyzing 3' transduced sequences. Genome Biol 2003; 4:R30. [PMID: 12734010 PMCID: PMC156586 DOI: 10.1186/gb-2003-4-5-r30] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 03/06/2003] [Accepted: 03/24/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A large fraction of the human genome is attributable to L1 retrotransposon sequences. Not only do L1s themselves make up a significant portion of the genome, but L1-encoded proteins are thought to be responsible for the transposition of other repetitive elements and processed pseudogenes. In addition, L1s can mobilize non-L1, 3'-flanking DNA in a process called 3' transduction. Using computational methods, we collected DNA sequences from the human genome for which we have high confidence of their mobilization through L1-mediated 3' transduction. RESULTS The precursors of L1s with transduced sequence can often be identified, allowing us to reconstruct L1 element families in which a single parent L1 element begot many progeny L1s. Of the L1s exhibiting a sequence structure consistent with 3' transduction (L1 with transduction-derived sequence, L1-TD), the vast majority were located in duplicated regions of the genome and thus did not necessarily represent unique insertion events. Of the remaining L1-TDs, some lack a clear polyadenylation signal, but the alignment between the parent-progeny sequences nevertheless ends in an A-rich tract of DNA. CONCLUSIONS Sequence data suggest that during the integration into the genome of RNA representing an L1-TD, reverse transcription may be primed internally at A-rich sequences that lie downstream of the L1 3' untranslated region. The occurrence of L1-mediated transduction in the human genome may be less frequent than previously thought, and an accurate estimate is confounded by the frequent occurrence of segmental genomic duplications.
Collapse
Affiliation(s)
- Suzanne T Szak
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Current address: Biogen Inc, Cambridge, MA 02142, USA
| | - Oxana K Pickeral
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Current address: Human Genome Sciences Inc., Rockville, MD 20850, USA
| | - David Landsman
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jef D Boeke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Ackerman H, Udalova I, Hull J, Kwiatkowski D. Evolution of a polymorphic regulatory element in interferon-gamma through transposition and mutation. Mol Biol Evol 2002; 19:884-90. [PMID: 12032244 DOI: 10.1093/oxfordjournals.molbev.a004145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian transposable elements have intrinsic regulatory elements that can activate neighboring genes, and it is speculated that they can also carry extrinsic transactivating DNA sequences to new genomic locations. We have identified a polymorphic segment of the human interferon-gamma promoter region where two adjacent binding sites for NF-kappaB and NFAT originated from the insertion of an Alu element approximately 22-34 MYA. Both binding sites lie outside the Alu consensus sequence but within the boundaries of the insertion, suggesting that this segment of DNA was comobilized when the Alu element moved from another part of the genome. Sequence comparisons and examination of DNA-protein interactions across nine different primate species indicate that the inserted sequence contained the intact NFAT binding site, whereas the ability to bind NF-kappaB evolved through a series of mutations after the insertion. These observations are consistent with the notion that retropseudogenes can comobilize intact regulatory sequences to new locations and thereby influence the evolution of gene regulatory networks; however, the extent to which such events have shaped the evolution of gene regulation remains unknown.
Collapse
Affiliation(s)
- Hans Ackerman
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom. University Department of Paediatrics, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Buratti E, Baralle FE. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 2001; 276:36337-43. [PMID: 11470789 DOI: 10.1074/jbc.m104236200] [Citation(s) in RCA: 518] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Variations in a polymorphic (TG)m sequence near exon 9 of the human CFTR gene have been associated with variable proportions of exon skipping and occurrence of disease. We have recently identified nuclear factor TDP-43 as a novel splicing regulator capable of binding to this element in the CFTR pre-mRNA and inhibiting recognition of the neighboring exon. In this study we report the dissection of the RNA binding properties of TDP-43 and their functional implications in relationship with the splicing process. Our results show that this protein contains two fully functional RNA recognition motif (RRM) domains with distinct RNA/DNA binding characteristics. Interestingly, TDP-43 can bind a minimum number of six UG (or TG) single-stranded dinucleotide stretches, and binding affinity increases with the number of repeats. In particular, the highly conserved Phe residues in the first RRM region play a key role in nucleic acid recognition.
Collapse
Affiliation(s)
- E Buratti
- International Center for Genetic Engineering and Biotechnology (ICGEB) 34012 Trieste, Italy
| | | |
Collapse
|
20
|
Veugelers M, De Cat B, Delande N, Esselens C, Bonk I, Vermeesch J, Marynen P, Fryns JP, David G. A 4-Mb BAC/PAC contig and complete genomic structure of the GPC5/GPC6 gene cluster on chromosome 13q32. Matrix Biol 2001; 20:375-85. [PMID: 11566272 DOI: 10.1016/s0945-053x(01)00143-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The glypicans compose a family of glycosylphosphatidylinositol-anchored heparan sulfate proteoglycans that may play a role in the control of cell division and growth regulation. So far, six members (GPC1-6) of this family are known in vertebrates. We report the construction of a high-resolution 4 Mb sequence-ready BAC/PAC contig of the GPC5/GPC6 gene cluster on chromosome region 13q32. The contig indicates that, like the GPC3/GPC4 genes on Xq26, GPC5 and GPC6 are arranged in tandem array. Both GPC5 and GPC6 are very large genes, with sizes well over 1 Mb. With a size of approximately 2 Mb, GPC5 would be the second largest human gene identified to date. Comparison of the long range gene organisation on 13q and Xq, suggests that these chromosomes share several regions of homology. Mutations and deletions affecting GPC3 are associated with the Simpson-Golabi-Behmel overgrowth syndrome. Mutational analysis of GPC5 and GPC6 in 19 patients with somatic overgrowth failed to reveal pathologic mutations in either of these genes, but identified several coding region polymorphisms.
Collapse
Affiliation(s)
- M Veugelers
- Laboratory for Glycobiology and Developmental Genetics, Center for Human Genetics, University of Leuven, Campus Gasthuisberg O&N6, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Buratti E, Dörk T, Zuccato E, Pagani F, Romano M, Baralle FE. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 2001; 20:1774-84. [PMID: 11285240 PMCID: PMC145463 DOI: 10.1093/emboj/20.7.1774] [Citation(s) in RCA: 487] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alternative splicing of human cystic fibrosis transmembrane conductance regulator (CFTR) exon 9 is regulated by a combination of cis-acting elements distributed through the exon and both flanking introns (IVS8 and IVS9). Several studies have identified in the IVS8 intron 3' splice site a regulatory element that is composed of a polymorphic (TG)m(T)n repeated sequence. At present, no cellular factors have been identified that recognize this element. We have identified TDP-43, a nuclear protein not previously described to bind RNA, as the factor binding specifically to the (TG)m sequence. Transient TDP-43 overexpression in Hep3B cells results in an increase in exon 9 skipping. This effect is more pronounced with concomitant overexpression of SR proteins. Antisense inhibition of endogenous TDP-43 expression results in increased inclusion of exon 9, providing a new therapeutic target to correct aberrant splicing of exon 9 in CF patients. The clinical and biological relevance of this finding in vivo is demonstrated by our characterization of a CF patient carrying a TG10T9(DeltaF508)/TG13T3(wt) genotype leading to a disease-causing high proportion of exon 9 skipping.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Department of Physiology and Pathology, V. A. Fleming 22, University of Trieste, 34012 Trieste, Italy and Institute of Human Genetics, OE6300, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany Corresponding author e-mail:
| | - Thilo Dörk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Department of Physiology and Pathology, V. A. Fleming 22, University of Trieste, 34012 Trieste, Italy and Institute of Human Genetics, OE6300, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany Corresponding author e-mail:
| | - Elisabetta Zuccato
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Department of Physiology and Pathology, V. A. Fleming 22, University of Trieste, 34012 Trieste, Italy and Institute of Human Genetics, OE6300, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany Corresponding author e-mail:
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Department of Physiology and Pathology, V. A. Fleming 22, University of Trieste, 34012 Trieste, Italy and Institute of Human Genetics, OE6300, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany Corresponding author e-mail:
| | - Maurizio Romano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Department of Physiology and Pathology, V. A. Fleming 22, University of Trieste, 34012 Trieste, Italy and Institute of Human Genetics, OE6300, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany Corresponding author e-mail:
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Department of Physiology and Pathology, V. A. Fleming 22, University of Trieste, 34012 Trieste, Italy and Institute of Human Genetics, OE6300, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany Corresponding author e-mail:
| |
Collapse
|
22
|
Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD. Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France. Hum Mutat 2000; 16:143-56. [PMID: 10923036 DOI: 10.1002/1098-1004(200008)16:2<143::aid-humu7>3.0.co;2-j] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Collapse
Affiliation(s)
- M Claustres
- Laboratoire de Génétique Moléculaire, CHU, CNRS UPR 1142, Institut de Biologie, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pagani F, Buratti E, Stuani C, Romano M, Zuccato E, Niksic M, Giglio L, Faraguna D, Baralle FE. Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J Biol Chem 2000; 275:21041-7. [PMID: 10766763 DOI: 10.1074/jbc.m910165199] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In monosymptomatic forms of cystic fibrosis such as congenital bilateral absence of vas deferens, variations in the TG(m) and T(n) polymorphic repeats at the 3' end of intron 8 of the cystic fibrosis transmembrane regulator (CFTR) gene are associated with the alternative splicing of exon 9, which results in a nonfunctional CFTR protein. Using a minigene model system, we have previously shown a direct relationship between the TG(m)T(n) polymorphism and exon 9 splicing. We have now evaluated the role of splicing factors in the regulation of the alternative splicing of this exon. Serine-arginine-rich proteins and the heterogeneous nuclear ribonucleoprotein A1 induced exon skipping in the human gene but not in its mouse counterpart. The effect of these proteins on exon 9 exclusion was strictly dependent on the composition of the TG(m) and T(n) polymorphic repeats. The comparative and functional analysis of the human and mouse CFTR genes showed that a region of about 150 nucleotides, present only in the human intron 9, mediates the exon 9 splicing inhibition in association with exonic regulatory elements. This region, defined as the CFTR exon 9 intronic splicing silencer, is a target for serine-arginine-rich protein interactions. Thus, the nonevolutionary conserved CFTR exon 9 alternative splicing is modulated by the TG(m) and T(n) polymorphism at the 3' splice region, enhancer and silencer exonic elements, and the intronic splicing silencer in the proximal 5' intronic region. Tissue levels and individual variability of splicing factors would determine the penetrance of the TG(m)T(n) locus in monosymptomatic forms of cystic fibrosis.
Collapse
Affiliation(s)
- F Pagani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99 and IRCCS, Burlo Garofolo, via dell'Istria 65/1, Trieste, TS 34012 Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Furano AV. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:255-94. [PMID: 10697412 DOI: 10.1016/s0079-6603(00)64007-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian LINE-1 (L1) elements belong to the superfamily of autonomously replicating retrotransposable elements that lack the long terminal repeated (LTR) sequences typical of retroviruses and retroviral-like retrotransposons. The non-LTR superfamily is very ancient and L1-like elements are ubiquitous in nature, having been found in plants, fungi, invertebrates, and various vertebrate classes from fish to mammals. L1 elements have been replicating and evolving in mammals for at least the past 100 million years and now constitute 20% or more of some mammalian genomes. Therefore, L1 elements presumably have had a profound, perhaps defining, effect on the evolution, structure, and function of mammalian genomes. L1 elements contain regulatory signals and encode two proteins: one is an RNA-binding protein and the second one presumably functions as an integrase-replicase, because it has both endonuclease and reverse transcriptase activities. This work reviews the structure and biological properties of L1 elements, including their regulation, replication, evolution, and interaction with their mammalian hosts. Although each of these processes is incompletely understood, what is known indicates that they represent challenging and fascinating biological phenomena, the resolution of which will be essential for fully understanding the biology of mammals.
Collapse
Affiliation(s)
- A V Furano
- Section on Genomic Structure and Function, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Abstract
Certain mutations are known to occur with differing frequencies on the leading and lagging strands of DNA. The extent to which these mutational biases affect the sequences of higher eukaryotes has been difficult to ascertain because the positions of most replication origins are not known, making it impossible to distinguish between the leading and lagging strands. To resolve whether strand biases influence the evolution of primate sequences, we compared the substitution patterns in noncoding regions adjacent to an origin of replication identified within the beta-globin complex. Although there was limited asymmetry around the beta-globin origin of replication, patterns of substitutions do not support the existence of a mutational bias between the leading and lagging strands of chromosomal DNA replication in primates.
Collapse
|
26
|
Klein I, Sarkadi B, Váradi A. An inventory of the human ABC proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:237-62. [PMID: 10581359 DOI: 10.1016/s0005-2736(99)00161-3] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently 30 human ABC proteins are represented by full sequences in various databases, and this paper provides a brief overview of these proteins. ABC proteins are composed of transmembrane domains (TMDs), and nucleotide binding domains (NBDs, or ATP-binding cassettes, ABSs). The arrangement of these domains, together with available membrane topology models of the family members, are presented. Based on their sequence similarity scores, the members of the human ABC protein family can be grouped into eight subfamilies. At present the MDR/TAP, the ALD, the MRP/CFTR, the ABC1, the White, the RNAseL inhibitor, the ANSA, and the GCN20 subfamilies are identified. Mutations of many human ABC proteins are known to be causative in inherited diseases, and a short description of the molecular pathology of these ABC gene-related genetic diseases is also provided.
Collapse
Affiliation(s)
- I Klein
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1502, Budapest, Hungary
| | | | | |
Collapse
|
27
|
Niksic M, Romano M, Buratti E, Pagani F, Baralle FE. Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9. Hum Mol Genet 1999; 8:2339-49. [PMID: 10556281 DOI: 10.1093/hmg/8.13.2339] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rate of exon 9 exclusion from the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA is associated with monosymptomatic forms of cystic fibrosis. Exon 9 alternative splicing is modulated by a polymorphic polythymidine tract within its 3' splice site. We have generated a minigene carrying human CFTR exon 9 with its flanking intronic sequences and set up an in vivo model to study the cis-acting DNA elements which modulate its splicing. Transfections into human cell lines showed that T5, but not T9 or T7 alleles, significantly increases the alternative splicing of exon 9. Moreover, we found that another polymorphic locus juxtaposed upstream of the T tract, and constituted by (TG)(n)repeats, can further modulate exon 9 skipping but only when activated by the T5 allele. Then, we extended our studies to the mouse CFTR exon 9 which does not show alternative splicing. Comparison of human and mouse introns 8 and 9 revealed a low homology between the two sequences and the absence of the human polymorphic loci within the mouse intron 3' splice site. We have tested a series of constructs where the whole human exon 9 with its flanking intronic sequences was replaced partially or completely by the murine counterpart. The transfections of these constructs in human and murine cell lines reveal that also sequences of the downstream intron 9 affect exon 9 definition and co-modulate, with the UG/U 3' splice site sequences, the extent of exon 9 skipping in CFTR mRNA.
Collapse
Affiliation(s)
- M Niksic
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012, Trieste, Italy
| | | | | | | | | |
Collapse
|