Pohlers M, Truss M, Frede U, Scholz A, Strehle M, Kuban RJ, Hoffmann B, Morkel M, Birchmeier C, Hagemeier C. A role for E2F6 in the restriction of male-germ-cell-specific gene expression.
Curr Biol 2005;
15:1051-7. [PMID:
15936277 DOI:
10.1016/j.cub.2005.04.060]
[Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 04/10/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022]
Abstract
E2F transcription factors play a pivotal role in the regulation of cellular proliferation and can be subdivided into activating and repressing family members [1]. Like other E2Fs, E2F6 binds to E2F consensus sites, but in contrast to E2F1-5, it lacks an Rb binding domain and functions as an Rb-independent transcriptional repressor [2, 3, 4 and 5]. Instead, E2F6 has been shown to complex with Polycomb (PcG) group proteins [6 and 7], which have a well-established role in gene silencing. Here, we show that E2F6 plays an unexpected and essential role in the tissue specificity of gene expression. E2F6-deficient mice ubiquitously express the alpha-tubulin 3 and 7 genes, which are expressed strictly testis-specifically in control mice. Like an additional E2F6 target gene, Tex12, that we identified, tubulin 3 and 7 are normally expressed in male germ cells only. The promoters of the alpha-tubulin and Tex12 genes share a perfectly conserved E2F site, which E2F6 binds to. Mechanistically, E2F6-mediated repression involves CpG hypermethylation locking target promoters in an inactive state. Thus, E2F6 is essential for the long-term somatic silencing of certain male-germ-cell-specific genes, but it is dispensable for cell-cycle regulation.
Collapse