1
|
Li GJ, Yang QH, Yang GK, Yang G, Hou Y, Hou LJ, Li ZX, Du LJ. MiR-125b and SATB1-AS1 might be shear stress-mediated therapeutic targets. Gene 2023; 857:147181. [PMID: 36623676 DOI: 10.1016/j.gene.2023.147181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The aim of the study was to explore the potential molecular mechanism associated with shear stress on abdominal aortic aneurysm (AAA) progression. This study performed RNA sequencing on AAA patients (SQ), AAA patients after endovascular aneurysm repair (EVAR, SH), and normal controls (NC). Furthermore, we identified the differentially expressed microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNA (cirRNAs) and constructed competing endogenous RNA (ceRNA) networks. Finally, 164 differentially expressed miRNAs, 179 co-differentially expressed lncRNAs, and 440 co-differentially expressed circRNAs among the three groups were obtained. The differentially expressed miRNAs mainly enriched in 325 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Target genes associated with co-differentially expressed genes among the group of SH, SQ, and NC mainly enriched in 66 KEGG pathways. LncRNA-miRNA-mRNA interactions, including 15 lncRNAs, 63 miRNAs and 57 mRNAs, was constructed. CircRNA-miRNA-mRNA ceRNA network included 79 circRNAs, 21 miRNAs, and 49 mRNAs. Among them, KLRC2 and CSTF1, targeted by miR-125b, participated in cell-mediated immunity regulation. MiR-320-related circRNAs and SATB1-AS1 serving as the sponge of miRNAs, such as has-circ-0129245, has-circ-0138746, and has-circ-0139786, were hub genes in ceRNA network. In conclusion, AAA patients might be benefit from EVAR based on various pathways and some molecules, such as miR-125b and SATB1-AS1, related with shear stress.
Collapse
Affiliation(s)
- Guo-Jian Li
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Qiong-Hui Yang
- Department of Pharmaceutical, The Third People's Hospital of Yunnan Province, Kunming 650011, Yunnan, China
| | - Guo-Kai Yang
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Guang Yang
- Department of Radiology, the First People's Hospital of Anning, China
| | - Yi Hou
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Li-Juan Hou
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Zhao-Xiang Li
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Ling-Juan Du
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China.
| |
Collapse
|
2
|
Barwinska D, El-Achkar TM, Melo Ferreira R, Syed F, Cheng YH, Winfree S, Ferkowicz MJ, Hato T, Collins KS, Dunn KW, Kelly KJ, Sutton TA, Rovin BH, Parikh SV, Phillips CL, Dagher PC, Eadon MT. Molecular characterization of the human kidney interstitium in health and disease. SCIENCE ADVANCES 2021; 7:7/7/eabd3359. [PMID: 33568476 PMCID: PMC7875540 DOI: 10.1126/sciadv.abd3359] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/23/2020] [Indexed: 05/23/2023]
Abstract
The gene expression signature of the human kidney interstitium is incompletely understood. The cortical interstitium (excluding tubules, glomeruli, and vessels) in reference nephrectomies (N = 9) and diabetic kidney biopsy specimens (N = 6) was laser microdissected (LMD) and sequenced. Samples underwent RNA sequencing. Gene signatures were deconvolved using single nuclear RNA sequencing (snRNAseq) data derived from overlapping specimens. Interstitial LMD transcriptomics uncovered previously unidentified markers including KISS1, validated with in situ hybridization. LMD transcriptomics and snRNAseq revealed strong correlation of gene expression within corresponding kidney regions. Relevant enriched interstitial pathways included G-protein coupled receptor. binding and collagen biosynthesis. The diabetic interstitium was enriched for extracellular matrix organization and small-molecule catabolism. Cell type markers with unchanged expression (NOTCH3, EGFR, and HEG1) and those down-regulated in diabetic nephropathy (MYH11, LUM, and CCDC3) were identified. LMD transcriptomics complements snRNAseq; together, they facilitate mapping of interstitial marker genes to aid interpretation of pathophysiology in precision medicine studies.
Collapse
Affiliation(s)
- Daria Barwinska
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tarek M El-Achkar
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Roudebush Veteran Affairs Medical Center, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ricardo Melo Ferreira
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ying-Hua Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Seth Winfree
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael J Ferkowicz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kimberly S Collins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth W Dunn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katherine J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush Veteran Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Timothy A Sutton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad H Rovin
- Division of Nephrology, Department of Medicine, Ohio State University Wexner Medical Center, OH 433210, USA
| | - Samir V Parikh
- Division of Nephrology, Department of Medicine, Ohio State University Wexner Medical Center, OH 433210, USA
| | - Carrie L Phillips
- Division of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pierre C Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush Veteran Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
4
|
Kaiser JL, Bland CL, Klinke DJ. Identifying causal networks linking cancer processes and anti-tumor immunity using Bayesian network inference and metagene constructs. Biotechnol Prog 2016; 32:470-9. [PMID: 26785356 DOI: 10.1002/btpr.2230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/13/2016] [Indexed: 12/17/2022]
Abstract
Cancer arises from a deregulation of both intracellular and intercellular networks that maintain system homeostasis. Identifying the architecture of these networks and how they are changed in cancer is a pre-requisite for designing drugs to restore homeostasis. Since intercellular networks only appear in intact systems, it is difficult to identify how these networks become altered in human cancer using many of the common experimental models. To overcome this, we used the diversity in normal and malignant human tissue samples from the Cancer Genome Atlas (TCGA) database of human breast cancer to identify the topology associated with intercellular networks in vivo. To improve the underlying biological signals, we constructed Bayesian networks using metagene constructs, which represented groups of genes that are concomitantly associated with different immune and cancer states. We also used bootstrap resampling to establish the significance associated with the inferred networks. In short, we found opposing relationships between cell proliferation and epithelial-to-mesenchymal transformation (EMT) with regards to macrophage polarization. These results were consistent across multiple carcinomas in that proliferation was associated with a type 1 cell-mediated anti-tumor immune response and EMT was associated with a pro-tumor anti-inflammatory response. To address the identifiability of these networks from other datasets, we could identify the relationship between EMT and macrophage polarization with fewer samples when the Bayesian network was generated from malignant samples alone. However, the relationship between proliferation and macrophage polarization was identified with fewer samples when the samples were taken from a combination of the normal and malignant samples. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:470-479, 2016.
Collapse
Affiliation(s)
- Jacob L Kaiser
- Dept. of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 25606
| | - Cassidy L Bland
- Dept. of Chemical Engineering, West Virginia University, Morgantown, WV, 25606
| | - David J Klinke
- Dept. of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 25606.,Dept. of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University Morgantown, WV, 25606
| |
Collapse
|
5
|
Diao H, Wang L, Huang J, Jiang M, Zhou H, Li X, Chen Q, Jiang Z, Feng H. BRCA1-mediated inflammation and growth activated & inhibited transition mechanisms between no-tumor hepatitis/cirrhotic tissues and HCC. J Cell Biochem 2014; 115:641-50. [PMID: 24151232 DOI: 10.1002/jcb.24699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022]
Abstract
To understand breast cancer 1 early onset (BRCA1)-mediated inflammation and growth activated and inhibited transition mechanisms between no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) and human hepatocellular carcinoma (HCC), BRCA1-activated different complete (all no positive correlation, Pearson correlation coefficient <0.25) and uncomplete (partly no positive correlation except BRCA1, Pearson <0.25) networks were identified in higher HCC compared with lower no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) from the corresponding BRCA1-stimulated (Pearson ≥0.25) or inhibited (Pearson ≤-0.25) overlapping molecules of Pearson and GRNInfer, respectively. This result was verified by the corresponding scatter matrix. As visualized by GO, KEGG, GenMAPP, BioCarta, and disease database integration, we proposed mainly that BRCA1-stimulated different complete network was involved in BRCA1 activation with integral to membrane killer cell lectin-like receptor C to nucleus interferon regulatory factor 5-induced inflammation, whereas the corresponding inhibited network participated in BRCA1 repression with matrix roundabout axon guidance receptor homolog 1 to plasma membrane versican-induced growth in lower no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection). However, BRCA1-stimulated network contained BRCA1 activation with endothelium-specific to lysosomal transmembrane and carbamoyl synthetase to tastin, histone cluster and cyclin-induced growth, whereas the corresponding inhibited different complete network included BRCA1 repression with ovalbumin, thyroid stimulating hormone beta and Hu antigen C to cytochrome P450 to transducin-induced inflammation in higher HCC. Our BRCA1 different networks were verified by BRCA1-activated or -inhibited complete and uncomplete networks within and between no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) or (and) HCC.
Collapse
Affiliation(s)
- Haizhen Diao
- Bioinformatics Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
7
|
Biassoni R, Bottino C, Cantoni C, Moretta A. Human natural killer receptors and their ligands. ACTA ACUST UNITED AC 2008; Chapter 14:14.10.1-14.10.23. [PMID: 18432872 DOI: 10.1002/0471142735.im1410s46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human Natural Killer Receptors and Their Ligands (Roberto Biassoni and Cristina Bottino, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy; Claudia Cantoni, Universita degli Studi di Genova, Istituto Giannina Gaslini, Genova, Italy; Alessandro Moretta, Universita degli Studi di Genova, Genova, Italy). Natural killer (NK) cells are a lymphocyte subpopulation that are important effectors of innate immune responses against infectious pathogens. They are thought to play an important role in host defense, not only against virally infected cells, but also in killing of tumor cells. Recent progress indicates that NK cells express an array of receptors, some of them clonally distributed, able to modulate the natural cytotoxicity. Three NK-specific activating receptors have been characterized; they belong to a novel receptor family called natural cytotoxicity receptors (NCR) and are represented by NKp46, NKp44, and NKp30. These receptors, upon engagement by their specific ligands, induce a strong activation of NK-mediated cytotoxic activity. This overview discusses the receptors (both activating and inhibitory) expressed by NK cells and their ligands. Finally, the dysfunction of one of these molecules occurring in a genetically inherited immunodeficiency is discussed.
Collapse
|
8
|
Marusina AI, Burgess SJ, Pathmanathan I, Borrego F, Coligan JE. Regulation of human DAP10 gene expression in NK and T cells by Ap-1 transcription factors. THE JOURNAL OF IMMUNOLOGY 2008; 180:409-17. [PMID: 18097042 DOI: 10.4049/jimmunol.180.1.409] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human NKG2D/DAP10 is an activation receptor expressed by NK and subsets of T cells, whose ligands include MHC class I chain-related (MIC) protein A and protein B and UL16-binding proteins that are often up-regulated by stress or pathological conditions. DAP10 is required for NKG2D/DAP10 cell surface expression and signaling capacity. Little is known about the mechanisms that regulate DAP10 gene expression. We describe the existence of multiple transcriptional start sites upstream of DAP10 exon 1 and identify the location of the basic promoter upstream of these starting sites. The promoter is active in NK and CD8+ T cells, but not in CD4+ T cells. We demonstrate TCR-mediated up-regulation of DAP10 transcription and found that a 40 bp region within the DAP10 promoter, containing an Ap-1 binding site, is largely responsible for this increased transcription. Using pull-down and chromatin immunoprecipitation assays, we show that the DAP10 promoter interacts with Ap-1 transcription factors in primary CD8+ T and NK cells in vitro and in vivo. Overexpression of c-Jun or c-Fos in NK and T cells led to enhanced DAP10 promoter activity and DAP10 protein expression. Taken together, our data indicate that Ap-1 is an important transcription factor for regulating DAP10 gene expression in human NK and T cells, and that Ap-1 plays a key role in the transactivation of DAP10 promoter following TCR stimulation.
Collapse
Affiliation(s)
- Alina I Marusina
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852-1742, USA
| | | | | | | | | |
Collapse
|
9
|
Graham CM, Christensen JR, Thomas DB. Differential induction of CD94 and NKG2 in CD4 helper T cells. A consequence of influenza virus infection and interferon-gamma? Immunology 2007; 121:238-47. [PMID: 17462078 PMCID: PMC2265943 DOI: 10.1111/j.1365-2567.2007.02563.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus causes worldwide epidemics and pandemics and the investigation of memory T helper (Th) cells that help maintain serological memory following infection is important for vaccine design. In this study we investigated CD94 and NKG2 gene expression in memory CD4 T-cell clones established from the spleens of C57BL/10 (H-2(b)) and BALB/c (H-2(d)) mice infected with influenza A virus (H3N2). CD94 and NKG2A/C/E proteins form heterodimeric membrane receptors that are involved in virus recognition. CD94 and NKG2 expression have been well characterized in natural killer (NK) and cytotoxic T cells. Despite CD94 being potentially an important marker for Th1 cells involved in virus infection, however, there has been little investigation of its expression or function in the CD4 T-cell lineage and no studies have looked at in-vivo-generated Th cells or memory cells. We show in this study that in-vivo-generated CD4 Th1 cells, but not Th2 cells, exhibited full-length CD94 and NKG2A gene expression following activation with viral peptide. For NKG2A, a novel 'short' (possibly redundant) truncated isoform was detectable in a Th2 cell clone. Another member of the NK receptor family, NKG2D, but not NKG2C or E, was also differentially expressed in Th1 cells. We show here that CD94 and NKG2A may exist as multiple isoforms with the potential to distinguish helper T-cell subsets.
Collapse
Affiliation(s)
- Christine M Graham
- Division of Virology, MRC National Institute for Medical Research, Mill Hill, UK.
| | | | | |
Collapse
|
10
|
Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 2007; 35:263-78. [PMID: 17172651 DOI: 10.1385/ir:35:3:263] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Immune responses must be tightly regulated to avoid hyporesponsiveness on one hand or excessive inflammation and the development of autoimmunity (hyperresponsiveness) on the other hand. This balance is attained through the throttling of activating signals by inhibitory signals that ideally leads to an adequate immune response against an invader without excessive and extended inflammatory signals that promote the development of autoimmunity. The CD94/NKG2 family of receptors is composed of members with activating or inhibitory potential. These receptors are expressed predominantly on NK cells and a subset of CD8+ T cells, and they have been shown to play an important role in regulating responses against infected and tumorigenic cells. In this review, we discuss the current knowledge about this family of receptors, including ligand and receptor interaction, signaling, membrane dynamics, regulation of gene expression and their roles in disease regulation, infections, and cancer, and bone marrow transplantation.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
11
|
Du Z, Gjertson DW, Reed EF, Rajalingam R. Receptor-ligand analyses define minimal killer cell Ig-like receptor (KIR) in humans. Immunogenetics 2006; 59:1-15. [PMID: 17103212 DOI: 10.1007/s00251-006-0168-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/15/2006] [Indexed: 01/06/2023]
Abstract
Interactions between inhibitory killer cell immunoglobulin-like receptors (iKIR) and human leukocyte antigen (HLA) class I molecules regulate natural killer (NK) cell responses to eliminate infected and transformed cells while maintaining tolerance to healthy cells. Unlinked polymorphic gene families encode KIR receptors and HLA class I ligands and their independent segregation results in a variable number and type of iKIR + HLA pairs inherited in individuals. The diversity in the co-inheritance of iKIR + HLA pairs and activating KIR (aKIR) genes in 759 unrelated individuals from four ethnic populations was analyzed. Every individual studied inherited a minimum of one iKIR + HLA pair; suggesting that major histocompatibility complex class I-dependent inhibitory KIR signaling is essential for human NK cell function. In contrast, 13.4% of the study group lacked all aKIR genes. Twenty percent of the study group carried only one of the four iKIR + HLA pairs. Interestingly, 3% of the study group carrying only KIR2DL3 + HLA-C1 as an iKIR + HLA pair lacked aKIR genes. These data suggest that a single iKIR can constitute the minimal KIR repertoire for human NK cells. Genotypes carrying an equal number of iKIR + HLA pairs and aKIR genes represented 20% of the study group. The remaining individuals had either a dominant inhibitory KIR genotype (iKIR + HLA > aKIR) or a dominant activating KIR genotype (iKIR + HLA < aKIR). Genotypes encoding these imbalanced inhibitory and activating interactions may contribute to susceptibility or resistance to human diseases.
Collapse
Affiliation(s)
- Zeying Du
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, 1000 Veteran Avenue, Room No. 1-536, Los Angeles, CA 90095-1652, USA
| | | | | | | |
Collapse
|
12
|
Mesci A, Ljutic B, Makrigiannis AP, Carlyle JR. NKR-P1 biology: from prototype to missing self. Immunol Res 2006; 35:13-26. [PMID: 17003506 DOI: 10.1385/ir:35:1:13] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cells represent lymphocytes of the innate immune system capable of recognizing and destroying a broad array of target cells, including tumors, virus-infected cells, antibodycoated cells, foreign transplants, and "stressed" cells. NK cells eliminate their targets through two main effector mechanisms, cytokine secretion and cell-mediated cytotoxicity, which in turn depend on detection of target cells through a complex integration of stimulatory and inhibitory receptor-ligand interactions. The NKR-P1 molecules were the first family of NK cell receptors identified, yet they have remained enigmatic in their contribution to self-nonself discrimination until recently. Here, we outline a brief history of the NKR-P1 receptor family, then examine recent data providing insight into their genetic regulation, signaling function, cognate ligands, and gene organization and diversity.
Collapse
Affiliation(s)
- Aruz Mesci
- Department of Immunology, University of Toronto, Sunnybrook & Women's Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | | | | | | |
Collapse
|
13
|
Plougastel BFM, Yokoyama WM. Extending missing-self? Functional interactions between lectin-like NKrp1 receptors on NK cells with lectin-like ligands. Curr Top Microbiol Immunol 2006; 298:77-89. [PMID: 16323412 DOI: 10.1007/3-540-27743-9_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The functions of natural killer (NK) cells are clearly regulated by major histocompatibility complex (MHC) class I molecules on their cellular targets. In mice, this is due to the action of MHC-specific inhibitory receptors belonging to the Ly49 family oflectin-like molecules. The Ly49 receptors are encoded in the NK gene complex (NKC) that contains clusters of genes for other lectin-like receptors on NK cells and other hematopoietic cells. Interestingly, recent studies have shown that some of these lectin-like receptors, belonging to the Nkrpl family, can recognize other lectin-like molecules, termed Clr, also encoded in the NKC. These genetically linked loci for receptor-ligand pairs suggest a genetic strategy to preserve this interaction and show several other contrasts with Ly49-MHC interactions. In this review, we discuss these issues and summarize recent developments concerning this non-MHC-dependent regulation of NK cell function.
Collapse
Affiliation(s)
- B F M Plougastel
- Rheumatology Division, Department of Medicine, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
14
|
Abstract
The stochastic expression of individual members of NK cell receptor gene families on subsets of NK cells has attracted considerable interest in the transcriptional regulation of these genes. Each receptor gene can contain up to three separate promoters with distinct properties. The recent discovery that an upstream promoter can function as a probabilistic switch element in the Ly49 gene family has revealed a novel mechanism of variegated gene expression. An important question to be answered is whether or not the other NK cell receptor gene families contain probabilistic switches. The promoter elements currently identified in the Ly49, NKR-P1, CD94, NKG2A, and KIR gene families are described.
Collapse
Affiliation(s)
- S K Anderson
- Basic Research Program, SAIC-Frederick, National Cancer Institute-Frederick, Bldg. 560, Rm. 31-93, Frederick, MD 21702-1201, USA.
| |
Collapse
|
15
|
Marusina AI, Kim DK, Lieto LD, Borrego F, Coligan JE. GATA-3 Is an Important Transcription Factor for Regulating Human NKG2A Gene Expression. THE JOURNAL OF IMMUNOLOGY 2005; 174:2152-9. [PMID: 15699146 DOI: 10.4049/jimmunol.174.4.2152] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD94/NKG2A is an inhibitory receptor expressed by most human NK cells and a subset of T cells that recognizes HLA-E on potential target cells. To study the transcriptional regulation of the human NKG2A gene, we cloned a 3.9-kb genomic fragment that contains a 1.65-kb region upstream of the exon 1, as well as exon 1 (untranslated), intron 1 and exon 2. Using deletion mutants, we identified a region immediately upstream from the most upstream transcriptional initiation site that led to increased transcriptional activity from a luciferase reporter construct in YT-Indy (NKG2A positive) cells relative to Jurkat and K562 (both NKG2A negative) cells. We also localized a DNase I hypersensitivity site to this region. Within this 80-bp segment, we identified two GATA binding sites. Mutation of GATA binding site II (-2302 bp) but not GATA binding site I (-2332 bp) led to decreased transcriptional activity. Pull-down assays revealed that GATA-3 could bind oligonucleotide probes containing the wild type but not a mutated GATA site II. Using chromatin immunoprecipitation assays, we showed that GATA-3 specifically binds to the NKG2A promoter in situ in NKL and primary NK cells, but not in Jurkat T cells. Moreover, coexpression of human GATA-3 with an NKG2A promoter construct in K562 cells led to enhanced promoter activity, and transfection of NKL cells with small interfering RNA specific for GATA-3 reduced NKG2A cell surface expression. Taken together, our data indicate that GATA-3 is an important transcription factor for regulating NKG2A gene expression.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Cells, Cultured
- DNA Mutational Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Deoxyribonuclease I/metabolism
- GATA3 Transcription Factor
- Gene Expression Regulation/immunology
- Humans
- Jurkat Cells
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily C
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Protein Binding/genetics
- RNA, Small Interfering/genetics
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Alina I Marusina
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
16
|
Ljutic B, Carlyle JR, Zúñiga-Pflücker JC. Identification of upstream cis-acting regulatory elements controlling lineage-specific expression of the mouse NK cell activation receptor, NKR-P1C. J Biol Chem 2003; 278:31909-17. [PMID: 12813047 DOI: 10.1074/jbc.m212869200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mouse NKR-P1C (NK1.1) is a homodimeric type II transmembrane protein expressed on natural killer (NK) cells, NKT cells, and on CD117+ progenitor thymocytes capable of giving rise to cells of the T and NK lineages. Although its physiological ligands remain unknown, NKR-P1C engagement with a monoclonal antibody (mAb) leads to interferon-gamma (IFN-gamma) production and the directed release of cytotoxic granules from NK cells. We have cloned and sequenced a approximately 10-kb genomic fragment corresponding to the 5'-flanking region of the C57Bl/6 mouse NKR-P1C gene. A transcriptional initiation site has been mapped in NK cells and an NK1.1+ T cell line by primer extension and rapid amplification of 5'-cDNA ends (5'-RACE) techniques. Although the 5'-flanking region of NKR-P1C is TATA-less, we have identified an initiator region and a downstream promoter element, which together constitute the principal minimal functional promoter. Computational analysis of the 10-kb 5'-flanking region revealed potential regulatory factor binding sites. DNaseI hypersensitivity assays identified a single hypersensitive site (HS) about a 9-kb upstream of the transcriptional initiation site. This site, termed HS1, was able to act as a transcriptional enhancer element in an NK cell line, while minimally affecting transcription in non-NK cell lines. Moreover, the HS1 element was shown to function as a promoter, with a transcript detected only in fetal NK1.1+ cells. An additional promoter and two non-coding exons were also characterized. These results identify the minimal upstream cis-acting elements, and point to a complex regulatory mechanism involved in the lineage-specific control of NKR-P1C expression in NK lymphocytes.
Collapse
Affiliation(s)
- Belma Ljutic
- Department of Immunology, University of Toronto, Sunnybrook and Women's Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | | | | |
Collapse
|
17
|
Hikami K, Tsuchiya N, Yabe T, Tokunaga K. Variations of human killer cell lectin-like receptors: common occurrence of NKG2-C deletion in the general population. Genes Immun 2003; 4:160-7. [PMID: 12618865 DOI: 10.1038/sj.gene.6363940] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD94 and NKG2 are members of the NK cell receptor families, and are encoded in the natural killer gene complex (NKC) on human chromosome 12p12-13, one of the candidate chromosomal regions for rheumatic diseases. To examine a possible association between variations in CD94 and NKG2 genes and genetic susceptibility to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), we carried out a systematic polymorphism screening of NKG2-A (KLRC1), NKG2-C (KLRC2) and CD94 (KLRD1) genes on a population basis. In NKG2-A, previously considered to be highly conserved, 10 polymorphisms in the noncoding region and introns, as well as one rare variation leading to an amino acid substitution within the transmembrane region, c.238T>A (Cys80Ser), were detected. In NKG2-C, in addition to the previously described two nonsynonymous substitutions, c.5G>A (Ser2Asn) and c.305C>T (Ser102Phe), two polymorphisms were newly detected in the noncoding region. In CD94, only one single nucleotide substitution was identified in the 5' untranslated region. When the patients and healthy individuals were genotyped for these variations, no significant association was observed. However, although statistically not significant, NKG2-A c.238T>A (Cys80Ser) was observed in three patients with RA, but in none of the healthy individuals and the patients with SLE. Unexpectedly, in the process of polymorphism screening, we identified homozygous deletion of NKG2-C in approximately 4.3% of healthy donors; under the assumption of Hardy-Weinberg equilibrium, the allele frequency of NKG2-C deletion was estimated to be 20.7%. These results demonstrated that, although human NKG2-A, -C and CD94 are generally conserved with respect to amino acid sequences, NKG2-A is polymorphic in the noncoding region, and that the number of genes encoded in the human NKC is variable among individuals, as previously shown for the leukocyte receptor complex (LRC), HLA and Fcgamma receptor (FCGR) regions.
Collapse
Affiliation(s)
- K Hikami
- Department of Human Genetics, Graduate School of Mdicine, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Lian RH, Maeda M, Lohwasser S, Delcommenne M, Nakano T, Vance RE, Raulet DH, Takei F. Orderly and nonstochastic acquisition of CD94/NKG2 receptors by developing NK cells derived from embryonic stem cells in vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4980-7. [PMID: 11994449 DOI: 10.4049/jimmunol.168.10.4980] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mice there are two families of MHC class I-specific receptors, namely the Ly49 and CD94/NKG2 receptors. The latter receptors recognize the nonclassical MHC class I Qa-1(b) and are thought to be responsible for the recognition of missing-self and the maintenance of self-tolerance of fetal and neonatal NK cells that do not express Ly49. Currently, how NK cells acquire individual CD94/NKG2 receptors during their development is not known. In this study, we have established a multistep culture method to induce differentiation of embryonic stem (ES) cells into the NK cell lineage and examined the acquisition of CD94/NKG2 by NK cells as they differentiate from ES cells in vitro. ES-derived NK (ES-NK) cells express NK cell-associated proteins and they kill certain tumor cell lines as well as MHC class I-deficient lymphoblasts. They express CD94/NKG2 heterodimers, but not Ly49 molecules, and their cytotoxicity is inhibited by Qa-1(b) on target cells. Using RT-PCR analysis, we also report that the acquisition of these individual receptor gene expressions during different stages of differentiation from ES cells to NK cells follows a predetermined order, with their order of acquisition being first CD94; subsequently NKG2D, NKG2A, and NKG2E; and finally, NKG2C. Single-cell RT-PCR showed coexpression of CD94 and NKG2 genes in most ES-NK cells, and flow cytometric analysis also detected CD94/NKG2 on most ES-NK cells, suggesting that the acquisition of these receptors by ES-NK cells in vitro is nonstochastic, orderly, and cumulative.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cells, Cultured
- Embryo, Mammalian
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunophenotyping
- K562 Cells
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Natural Killer Cell
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- Stochastic Processes
Collapse
Affiliation(s)
- Rebecca H Lian
- Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, 601 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Borrego F, Kabat J, Kim DK, Lieto L, Maasho K, Peña J, Solana R, Coligan JE. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 2002; 38:637-60. [PMID: 11858820 DOI: 10.1016/s0161-5890(01)00107-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells express receptors that are specific for MHC class I molecules. These receptors play a crucial role in regulating the lytic and cytokine expression capabilities of NK cells. In humans, three distinct families of genes have been defined that encode for receptors of HLA class I molecules. The first family identified consists of type I transmembrane molecules belonging to the immunoglobulin (Ig) superfamily and are called killer cell Ig-like receptors (KIR). A second group of receptors belonging to the Ig superfamily, named ILT (for immunoglobulin like transcripts), has more recently been described. ILTs are expressed mainly on B, T and myeloid cells, but some members of this group are also expressed on NK cells. They are also referred to as LIRs (for leukocyte Ig-like receptor) and MIRs (for macrophage Ig-like receptor). The ligands for the KIR and some of the ILT receptors include classical (class Ia) HLA class I molecules, as well as the nonclassical (class Ib) HLA-G molecule. The third family of HLA class I receptors are C-type lectin family members and are composed of heterodimers of CD94 covalently associated with a member of the NKG2 family of molecules. The ligand for most members is the nonclassical class I molecule HLA-E. NKG2D, a member of the NKG2 family, is expressed as a homodimer, along with the adaptor molecule DAP10. The ligands of NKG2D include the human class I like molecules MICA and MICB, and the recently described ULBPs. Each of these three families of receptors has individual members that can recognize identical or similar ligands yet signal for activation or inhibition of cellular functions. This dichotomy correlates with particular structural features present in the transmembrane and intracytoplasmic portions of these molecules. In this review we will discuss the molecular structure, specificity, cellular expression patterns, and function of these HLA class I receptors, as well as the chromosomal location and genetic organization.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Twinbrook II, Room 205, 12441 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shum BP, Flodin LR, Muir DG, Rajalingam R, Khakoo SI, Cleland S, Guethlein LA, Uhrberg M, Parham P. Conservation and variation in human and common chimpanzee CD94 and NKG2 genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:240-52. [PMID: 11751968 DOI: 10.4049/jimmunol.168.1.240] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To assess polymorphism and variation in human and chimpanzee NK complex genes, we determined the coding-region sequences for CD94 and NKG2A, C, D, E, and F from several human (Homo sapiens) donors and common chimpanzees (Pan troglodytes). CD94 is highly conserved, while the NKG2 genes exhibit some polymorphism. For all the genes, alternative mRNA splicing variants were frequent among the clones obtained by RT-PCR. Alternative splicing acts similarly in human and chimpanzee to produce the CD94B variant from the CD94 gene and the NKG2B variant from the NKG2A gene. Whereas single chimpanzee orthologs for CD94, NKG2A, NKG2E, and NKG2F were identified, two chimpanzee paralogs of the human NKG2C gene were defined. The chimpanzee Pt-NKG2CI gene encodes a protein similar to human NKG2C, whereas in the chimpanzee Pt-NKG2CII gene the translation frame changes near the beginning of the carbohydrate recognition domain, causing premature termination. Analysis of a panel of chimpanzee NK cell clones showed that Pt-NKG2CI and Pt-NKG2CII are independently and clonally expressed. Pt-NKG2CI and Pt-NKG2CII are equally diverged from human NKG2C, indicating that they arose by gene duplication subsequent to the divergence of chimpanzee and human ancestors. Genomic DNA from 80 individuals representing six primate species were typed for the presence of CD94 and NKG2. Each species gave distinctive typing patterns, with NKG2A and CD94 being most conserved. Seven different NK complex genotypes within the panel of 48 common chimpanzees were due to differences in Pt-NKG2C and Pt-NKG2D genes.
Collapse
Affiliation(s)
- Benny P Shum
- Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive West, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Das B, Tao SZ, Mushnitsky R, Norin AJ. Genetic identity and differential expression of p38.5 (Haymaker) in human malignant and nonmalignant cells. Int J Cancer 2001; 94:800-6. [PMID: 11745481 DOI: 10.1002/ijc.1555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous studies from our laboratory revealed a novel protein of 38.5 kD on the surface of malignant cell lines of hematopoetic origin that exhibit susceptibility to naive natural killer (NK) cell-mediated lysis. In contrast, p38.5 was not detected on the surface of NK cell-resistant carcinoma cell lines or normal cells. We now report that this protein is differentially expressed, intracellularly, in malignant cell lines of both hematopoetic and epithelial origin compared with nonmalignant cells. To characterize p38.5 further, we used a previously developed antipeptide antibody (anti-11-mer) to probe cDNA expression libraries and subsequently performed 5' extension by rapid amplification of cDNA ends (RACE). Sequence analyses of these cDNA clones reveal open reading frames (ORFs) that include the previously identified 11-mer peptide from purified, native p38.5 and that have identical sequences to a gene of unknown function on chromosome 19. Nucleotide sequence data obtained from these cDNA clones, as well as analysis of the genomic sequence, permitted design of primers for reverse transcriptase-polymerase chain reaction (RT-PCR) that resulted in a cDNA clone encoding an ORF of 361 amino acids; the clone was identical to a sequence encoded by an unpublished mRNA in GenBank. Anti-p38.5 antibody against the 11-mer peptide encoded in exon 5 and against a 25-mer peptide encoded in exon 1 both reacted with the same protein in immunoprecipitation studies, providing further evidence of identity. RT-PCR and Northern blot analyses both demonstrated p38.5 gene transcripts in normal cells, nonmalignant cell lines and malignant cell lines of epithelial as well as hematopoietic origin. Semiquantitative studies revealed a greater level of p38.5 gene transcription in malignant cell lines compared with nonmalignant cells. Immunoblot analyses of protein expression confirmed and extended the latter studies by revealing substantially greater levels of the 38.5 kD protein in whole cell extracts of malignant cell lines compared with nonmalignant cells. Quantitative differences in detection of the 38.5 kD protein and mRNA in NK susceptible- hematopoietic malignancies compared with NK resistant-carcinomas were not observed. These experiments suggest that the p38.5 gene (Haymaker) is widely expressed in human cells of different tissue origins but that elevated expression is associated with the malignant phenotype.
Collapse
Affiliation(s)
- B Das
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
22
|
Uhrberg M, Valiante NM, Young NT, Lanier LL, Phillips JH, Parham P. The repertoire of killer cell Ig-like receptor and CD94:NKG2A receptors in T cells: clones sharing identical alpha beta TCR rearrangement express highly diverse killer cell Ig-like receptor patterns. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3923-32. [PMID: 11238637 DOI: 10.4049/jimmunol.166.6.3923] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Killer cell Ig-like receptor (KIR) and CD94:NKG2A molecules were first defined as human NK cell receptors (NKR), but now are known to be expressed and to function on subpopulations of T cells. Here the repertoires of KIR and CD94:NKG2A expression by T cells from two donors were examined and compared with their previously defined NK cell repertoires. T cell clones generated from peripheral blood of both donors expressed multiple NKR in different combinations and used the range of receptors expressed by NK cells. In both donors alpha beta T cells less frequently expressed the inhibitory receptors CD94:NKG2A and KIR2DL1 than either gamma delta T cells or NK cells. In contrast to NK cells, not all NKR(+) T cells expressed an inhibitory receptor for autologous HLA class I. This lack of specific inhibitory NKR was especially apparent on alpha beta T cells of one donor. Overall, alpha beta T cells exhibited a distinct pattern of NKR expression different from that of gamma delta T and NK cells, which expressed highly similar NKR repertoires. In one donor, analysis of TCR rearrangement revealed a dominant subset of NKR(+) T cells sharing identical TCR alpha- and beta-chains. Remarkably, among 55 T cell clones sharing the same TCR alpha beta rearrangement 18 different KIR phenotypes were seen, suggesting that KIR expression was initiated subsequently to TCR rearrangement.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Base Sequence
- Cell Line
- Clone Cells
- Flow Cytometry
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunoglobulins/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, KIR
- Receptors, KIR2DL1
- Receptors, Natural Killer Cell
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- M Uhrberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
23
|
Barten R, Torkar M, Haude A, Trowsdale J, Wilson MJ. Divergent and convergent evolution of NK-cell receptors. Trends Immunol 2001; 22:52-7. [PMID: 11286693 DOI: 10.1016/s1471-4906(00)01802-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Natural killer (NK)-cell receptors specific for major histocompatibility complex (MHC) class I molecules have been identified in humans and mice. Some of the most important receptors are structurally unrelated in the two species: the murine Ly-49 receptors are C-type lectins, while human killer-cell inhibitory receptors (KIRs) belong to the immunoglobulin superfamily. Here, Roland Barten and colleagues describe the divergent and convergent evolution of NK-cell receptors.
Collapse
Affiliation(s)
- R Barten
- Immunology Division, Dept of Pathology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
24
|
Wilson MJ, Torkar M, Haude A, Milne S, Jones T, Sheer D, Beck S, Trowsdale J. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci U S A 2000; 97:4778-83. [PMID: 10781084 PMCID: PMC18309 DOI: 10.1073/pnas.080588597] [Citation(s) in RCA: 500] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Indexed: 11/18/2022] Open
Abstract
The approximately 1-Mb leukocyte receptor complex at 19q13.4 is a key polymorphic immunoregion containing all of the natural killer-receptor KIR and related ILT genes. When the organization of the leukocyte receptor complex was compared from two haplotypes, the gene content in the KIR region varied dramatically, with framework loci flanking regions of widely variable gene content. The ILT genes were more stable in number except for ILT6, which was present only in one haplotype. Analysis of Alu repeats and comparison of KIR gene sequences, which are over 90% identical, are consistent with a recent origin. KIR genesis was followed by extensive duplication/deletion as well as intergenic sequence exchange, reminiscent of MHC class I genes, which provide KIR ligands.
Collapse
Affiliation(s)
- M J Wilson
- Immunology Division, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Renedo M, Arce I, Montgomery K, Roda-Navarro P, Lee E, Kucherlapati R, Fernández-Ruiz E. A sequence-ready physical map of the region containing the human natural killer gene complex on chromosome 12p12.3-p13.2. Genomics 2000; 65:129-36. [PMID: 10783260 DOI: 10.1006/geno.2000.6163] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We developed a sequence-ready physical map of a part of human chromosome 12p12.3-p13.2 where the natural killer gene complex (NKC) is located. The NKC includes a cluster of genes with structure similar to that of the Ca(2+)-dependent lectin superfamily of glycoproteins that are expressed on the surface of most natural killer (NK) cells and a subset of T cells. These killer cell lectin-like receptors (KLR) are involved in NK target cell recognition, leading to activation or inhibition of NK cell function. We used a number of sequence-tagged site (STS) markers from this region to screen two large insert bacterial artificial chromosome (BAC) libraries and a bacteriophage P1-derived (PAC) chromosome library. The clones were assembled into contiguous sets by STS content analysis. The 72-BAC and 11-PAC contig covers nearly 2 Mb of DNA and provides an average marker resolution of 26 kb. We have precisely localized 17 genes, 5 expressed sequence tags, and 49 STSs within this contig. Of this total number of STS, 30 are newly developed by clone-end sequencing. We established the order of the genes as tel-M6PR-MAFAL (HGMW-approved symbol KLRG1)-A2M-PZP-A2MP-NKRP1A (HGMW-approved symbol KLRB1)-CD69-AICL (HGMW-approved symbol CLECSF2)-KLRF1-OLR1-CD94 (HGMW-approved symbol KLRD1)-NKG2D (HGMW-approved symbol D12S2489E)-PGFL-NKG2F (HGMW-approved symbol KLRC4)-NKG2E (HGMW-approved symbol KLRC3)-NKG2A (HGMW-approved symbol KLRC1)-LY49L (HGMW-approved symbol KLRA1)-cen. This map would facilitate the cloning of new KLR genes and the complete sequencing of this region.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 12
- DNA Primers
- Electrophoresis, Gel, Pulsed-Field
- Gene Library
- Humans
- Killer Cells, Natural/metabolism
- Lectins/genetics
- Lectins, C-Type
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Multigene Family
- NK Cell Lectin-Like Receptor Subfamily D
- Polymerase Chain Reaction
- Receptors, Cell Surface/genetics
- Sequence Tagged Sites
Collapse
Affiliation(s)
- M Renedo
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Madrid, 28006, Spain
| | | | | | | | | | | | | |
Collapse
|