1
|
Wang L, Zhou Y, Wei T, Huang H. Two homozygous adjacent novel missense mutations in DYSF gene caused dysferlinopathy due to splicing abnormalities. Front Genet 2024; 15:1404611. [PMID: 38903757 PMCID: PMC11188463 DOI: 10.3389/fgene.2024.1404611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Dysferlinopathy is an autosomal recessive disorder caused by mutations in the DYSF gene. This study reported two homozygous adjacent missense mutations in the DYSF gene, presenting clinically with bilateral lower limb weakness and calf swelling. Two homozygous adjacent missense mutations in the DYSF gene may be associated with the development of dysferlinopathy, but the exact mechanism needs further investigation. Methods: A retrospective analysis of clinical data from a dysferlinopathy-affected family was conducted. Peripheral blood samples were collected from members of this family for whole-exome sequencing (WES) and copy number variation analysis. Sanger sequencing was employed to confirm potential pathogenic variants. The Human Splicing Finder, SpliceAI, and varSEAK database were used to predict the effect of mutations on splicing function. The pathogenic mechanism of aberrant splicing in dysferlinopathy due to two homozygous adjacent missense mutations in the DYSF gene was determined by an in vivo splicing assay and an in vitro minigene assay. Results: The proband was a 42-year-old woman who presented with weakness of the lower limbs for 2 years and edema of the lower leg. Two homozygous DYSF variants, c.5628C>A p. D1876E and c.5633A>T p. Y1878F, were identified in the proband. Bioinformatics databases suggested that the mutation c.5628C>A of DYSF had no significant impact on splicing signals. Human Splicing Finder Version 2.4.1 suggested that the c.5633A>T of DYSF mutation caused alteration of auxiliary sequences and significant alteration of the ESE/ESS motif ratio. VarSEAK and SpliceAI suggested that the c.5633A>T of DYSF mutation had no splicing effect. Both an in vivo splicing assay and an in vitro minigene assay showed two adjacent mutations: c.5628C>A p. D1876E and c.5633A>T p. Y1878F in the DYSF gene leading to an Exon50 jump that resulted in a 32-aa amino acid deletion within the protein. Point mutation c.5628C>A p. D1876E in the DYSF gene affected splicing in vitro, while point mutation c.5633A>T p. Y1878F in the DYSF gene did not affect splicing function. Conclusion: This study confirmed for the first time that two homozygous mutations of DYSF were associated with the occurrence of dysferlinopathy. The c.5628C>A p. D1876E mutation in DYSF affected the splicing function and may be one of the contributing factors to the pathogenicity.
Collapse
Affiliation(s)
- Lun Wang
- Jinzhou Medical University Graduate Training Base, Suizhou Central Hospital Affiliated to Hubei University of Medicine, Suizhou, Hubei, China
| | - Yan Zhou
- Department of Basic Medicine, School of Medicine, Jingchu University of Technology, Jingmen, Hubei, China
| | - Tiantian Wei
- Daytime Surgical Ward, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Hongyao Huang
- Jinzhou Medical University Graduate Training Base, Suizhou Central Hospital Affiliated to Hubei University of Medicine, Suizhou, Hubei, China
- Department of Laboratory, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| |
Collapse
|
2
|
Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, Peterson EL, Lehtimäki KK, Windish HP, Mittal PJ, Albrecht DE, Mendell JR, Rodino-Klapac LR. Systemic Delivery of Dysferlin Overlap Vectors Provides Long-Term Gene Expression and Functional Improvement for Dysferlinopathy. Hum Gene Ther 2018; 29:749-762. [PMID: 28707952 PMCID: PMC6066196 DOI: 10.1089/hum.2017.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Dysferlinopathies comprise a family of disorders caused by mutations in the dysferlin (DYSF) gene, leading to a progressive dystrophy characterized by chronic muscle fiber loss, fat replacement, and fibrosis. To correct the underlying histopathology and function, expression of full-length DYSF is required. Dual adeno-associated virus vectors have been developed, defined by a region of homology, to serve as a substrate for reconstitution of the full 6.5 kb dysferlin cDNA. Previous work studied the efficacy of this treatment through intramuscular and regional delivery routes. To maximize clinical efficacy, dysferlin-deficient mice were treated systemically to target all muscles through the vasculature for efficacy and safety studies. Mice were evaluated at multiple time points between 4 and 13 months post treatment for dysferlin expression and functional improvement using magnetic resonance imaging and magnetic resonance spectroscopy and membrane repair. A systemic dose of 6 × 1012 vector genomes resulted in widespread gene expression in the muscles. Treated muscles showed a significant decrease in central nucleation, collagen deposition, and improvement of membrane repair to wild-type levels. Treated gluteus muscles were significantly improved compared to placebo-treated muscles and were equivalent to wild type in volume, intra- and extramyocellular lipid accumulation, and fat percentage using magnetic resonance imaging and magnetic resonance spectroscopy. Dual-vector treatment allows for production of full-length functional dysferlin with no toxicity. This confirms previous safety data and validates translation of systemic gene delivery for dysferlinopathy patients.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Patricia C. Sondergaard
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan W. Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Eric R. Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ellyn L. Peterson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Sondergaard PC, Griffin DA, Pozsgai ER, Johnson RW, Grose WE, Heller KN, Shontz KM, Montgomery CL, Liu J, Clark KR, Sahenk Z, Mendell JR, Rodino-Klapac LR. AAV.Dysferlin Overlap Vectors Restore Function in Dysferlinopathy Animal Models. Ann Clin Transl Neurol 2015; 2:256-70. [PMID: 25815352 PMCID: PMC4369275 DOI: 10.1002/acn3.172] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Dysferlinopathies are a family of untreatable muscle disorders caused by mutations in the dysferlin gene. Lack of dysferlin protein results in progressive dystrophy with chronic muscle fiber loss, inflammation, fat replacement, and fibrosis; leading to deteriorating muscle weakness. The objective of this work is to demonstrate efficient and safe restoration of dysferlin expression following gene therapy treatment. METHODS Traditional gene therapy is restricted by the packaging capacity limit of adeno-associated virus (AAV), however, use of a dual vector strategy allows for delivery of over-sized genes, including dysferlin. The two vector system (AAV.DYSF.DV) packages the dysferlin cDNA utilizing AAV serotype rh.74 through the use of two discrete vectors defined by a 1 kb region of homology. Delivery of AAV.DYSF.DV via intramuscular and vascular delivery routes in dysferlin deficient mice and nonhuman primates was compared for efficiency and safety. RESULTS Treated muscles were tested for dysferlin expression, overall muscle histology, and ability to repair following injury. High levels of dysferlin overexpression was shown for all muscle groups treated as well as restoration of functional outcome measures (membrane repair ability and diaphragm specific force) to wild-type levels. In primates, strong dysferlin expression was demonstrated with no safety concerns. INTERPRETATION Treated muscles showed high levels of dysferlin expression with functional restoration with no evidence of toxicity or immune response providing proof of principle for translation to dysferlinopathy patients.
Collapse
Affiliation(s)
| | | | - Eric R Pozsgai
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio
| | - Ryan W Johnson
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - William E Grose
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kristin N Heller
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kim M Shontz
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | | | - Joseph Liu
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kelly Reed Clark
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio
| | - Zarife Sahenk
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio ; Department of Neurology, The Ohio State University Columbus, Ohio
| | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio ; Department of Neurology, The Ohio State University Columbus, Ohio
| | - Louise R Rodino-Klapac
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio
| |
Collapse
|
4
|
Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer. PLoS One 2012; 7:e39233. [PMID: 22720081 PMCID: PMC3376115 DOI: 10.1371/journal.pone.0039233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/17/2012] [Indexed: 11/22/2022] Open
Abstract
The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.
Collapse
|
5
|
Kawabe K, Goto K, Nishino I, Angelini C, Hayashi YK. Dysferlin mutation analysis in a group of Italian patients with limb-girdle muscular dystrophy and Miyoshi myopathy. Eur J Neurol 2004; 11:657-61. [PMID: 15469449 DOI: 10.1111/j.1468-1331.2004.00755.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the dysferlin gene (DYSF) on chromosome 2p13 cause distinct phenotypes of muscular dystrophy: limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy, which are known by the term 'dysferlinopathy'. We performed mutation analyses of DYSF in 14 Italian patients from 10 unrelated families with a deficiency of dysferlin protein below 20% of the value in normal controls by immunoblotting analysis. We identified 11 different mutations, including eight missense and three deletion mutations. Nine of them were novel mutations. We also identified a unique 6-bp insertion polymorphism within the coding region of DYSF in 15% of Italian population, which was not observed in East Asian populations. The correlation between clinical phenotype and the gene mutations was unclear, which suggested the role of additional genetic and epigenetic factors in modifying clinical symptoms.
Collapse
Affiliation(s)
- K Kawabe
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | | | | | | | | |
Collapse
|
6
|
West AB, Zimprich A, Lockhart PJ, Farrer M, Singleton A, Holtom B, Lincoln S, Hofer A, Hill L, Müller-Myhsok B, Wszolek ZK, Hardy J, Gasser T. Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. Eur J Hum Genet 2001; 9:659-66. [PMID: 11571553 DOI: 10.1038/sj.ejhg.5200698] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2001] [Revised: 06/07/2001] [Accepted: 06/13/2001] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with clinical features of bradykinesia, rigidity, resting tremor and postural instability resulting from the deficiency of dopamine in the nigrostriatal system. Previously we mapped a susceptibility gene for an autosomal dominant form of PD to a 10.6 cM region of chromosome 2p (PARK3; OMIM 602404). A common haplotype shared by two North American kindreds (Families B and C) genealogically traced to Southern Denmark and Northern Germany suggested a founder effect. Here we report progress in the refinement of the PARK3 locus and sequence analysis of candidate genes within the region. Members of families B and C were genotyped using polymorphic markers, reducing the minimum common haplotype to eight markers spanning a physical distance of 2.5 Mb. Analysis of 14 genes within the region did not reveal any potentially pathogenic mutations segregating with the disease, implying that none of these genes are likely candidates for PARK3.
Collapse
Affiliation(s)
- A B West
- Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, Florida, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Faccio L, Fusco C, Viel A, Zervos AS. Tissue-specific splicing of Omi stress-regulated endoprotease leads to an inactive protease with a modified PDZ motif. Genomics 2000; 68:343-7. [PMID: 10995577 DOI: 10.1006/geno.2000.6263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Omi is a human serine protease whose catalytic domain is homologous to a bacterial heat shock endoprotease (HtrA), a protein indispensable to the survival of bacteria at elevated temperatures. Omi is expressed ubiquitously, and its protein product is predominantly localized in the endoplasmic reticulum of mammalian cells. Here we present the genomic structure of Omi, consisting of eight exons located on human chromosome 2p12-p13. Furthermore, we describe an alternatively splice form of Omi (D-Omi) that is expressed predominantly in the kidney, colon, and thyroid. D-Omi lacks peptide sequence encoded by two exons (exons III and VII). The absence of exon VII leads to a protein with a modified PDZ domain unable to interact with a known partner, the Mxi2 protein. The absence of exon III affects the catalytic domain and leads to a protein with no detectable protease activity. Our studies suggest that D-Omi may have a unique role in the normal function of kidney, colon, and thyroid.
Collapse
Affiliation(s)
- L Faccio
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
8
|
Boultwood J, Fidler C, Strickson AJ, Watkins F, Kostrzewa M, Jaju RJ, Müller U, Wainscoat JS. Transcription mapping of the 5q- syndrome critical region: cloning of two novel genes and sequencing, expression, and mapping of a further six novel cDNAs. Genomics 2000; 66:26-34. [PMID: 10843801 DOI: 10.1006/geno.2000.6193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5q- syndrome is a myelodysplastic syndrome with the 5q deletion ¿del(5q) as the sole karyotypic abnormality. We are using the expressed sequence tag (EST) resource as our primary approach to identifying novel candidate genes for the 5q- syndrome. Seventeen ESTs were identified from the Human Gene Map at the National Center for Biotechnology Information that had no significant homology to any known genes and were assigned between DNA markers D5S413 and D5S487, flanking the critical region of the 5q- syndrome at 5q31-q32. Eleven of the 17 cDNAs from which the ESTs were derived (65%) were shown to map to the critical region of the 5q- syndrome by gene dosage analysis and were then sublocalized by PCR screening to a YAC contig encompassing the critical region. Eight of the 11 cDNA clones, upon full sequencing, had no significant homology to any known genes. Each of the 8 cDNA clones was shown to be expressed in human bone marrow. The complete coding sequence was obtained for 2 of the novel genes, termed C5orf3 and C5orf4. The 2.6-kb transcript of C5orf3 encodes a putative 505-amino-acid protein and contains an ATP/GTP-binding site motif A (P loop), suggesting that this novel gene encodes an ATP- or a GTP-binding protein. The novel gene C5orf4 has a transcript of 3.1 kb, encoding a putative 144-amino-acid protein. We describe the cloning of 2 novel human genes and the sequencing, expression patterns, and mapping to the critical region of the 5q- syndrome of a further 6 novel cDNA clones. Genomic localization and expression patterns would suggest that the 8 novel cDNAs described in this report represent potential candidate genes for the 5q- syndrome.
Collapse
Affiliation(s)
- J Boultwood
- Leukaemia Research Fund Molecular Haematology Unit, John Radcliffe Hospital, Headington, 0X3 9DU, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Welander distal myopathy (WDM) is an autosomal dominant myopathy with late-adult onset characterized by slow progression of distal muscle weakness. The disorder is considered a model disease for hereditary distal myopathies and is almost only seen in Sweden and some parts of Finland. A genomewide screening has been performed in initially two Swedish families with 400 highly polymorphic microsatellite markers. We report here that the disease is linked to chromosome 2p13. Seven additional nonrelated families have subsequently been mapped to the same area where a maximum two-point LOD score of 17.97 was obtained with the marker D2S2113 at 0.0 recombination fraction. The region has been restricted by recombinations and the finding of a common shared haplotype through all analyzed families. This restricts the gene locus region to 2.4 cM. These findings provide evidence for the involvement of a single locus for WDM. The WDM region overlaps with the linkage region for Miyoshi myopathy and limb-girdle muscular dystrophy 2B. The dysferlin gene responsible for these disorders is considered a primary candidate gene for WDM.
Collapse
Affiliation(s)
- G Ahlberg
- Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
10
|
Taymans SE, Kirschner LS, Giatzakis C, Stratakis CA. Radiation hybrid mapping of chromosomal region 2p15-p16: integration of expressed and polymorphic sequences maps at the Carney complex (CNC) and Doyne honeycomb retinal dystrophy (DHRD) loci. Genomics 1999; 56:344-9. [PMID: 10087203 DOI: 10.1006/geno.1998.5720] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromosomal region 2p15-p16, which corresponds to the genetic interval flanked by polymorphic markers D2S119 and D2S378 and covers a genetic distance of approximately 16 cM, is underrepresented in the existing maps of chromosome 2. This is primarily due to two large gaps of unknown physical distance within the known yeast and bacterial artificial chromosome (YAC and BAC, respectively) maps. In constructing a YAC/BAC contig covering 2p15-p16, a total of 55 sequence-tagged sites (25 of which are polymorphic), including new sequences derived from chromosomal walking, and 38 expressed sequence tags were screened by a commercially available RH panel (Stanford G3). A total of 45 of these sequences were placed; 32 of them were assigned at unique sites. The high-resolution TNG3 RH panel was then used to define further the chromosomal order of markers contained in the region flanked by D2S391 and D2S2153. This region harbors the genes for two autosomal dominant disorders, Carney complex (CNC), a multiple neoplasia syndrome, and Doyne honeycomb retinal dystrophy (DHRD), a disease leading to blindness at a young age. This is the first attempt to order cloned sequences in chromosomal region 2p15-p16, an area apparently resistant to YAC cloning. Construction of the 2p15-p16 RH map is critical for identifying the genes responsible for CNC and DHRD, as well as for the molecular elucidation of a chromosomal region that is frequently rearranged in tumors.
Collapse
Affiliation(s)
- S E Taymans
- Section on Pediatric Endocrinology, National Institute of Child Health and Human Development, Bethesda, Maryland, 20892-1862, USA.
| | | | | | | |
Collapse
|
11
|
Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira EDS, Zatz M, Beckmann JS, Bushby K. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 1998; 20:37-42. [PMID: 9731527 DOI: 10.1038/1689] [Citation(s) in RCA: 469] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The limb-girdle muscular dystrophies are a genetically heterogeneous group of inherited progressive muscle disorders that affect mainly the proximal musculature, with evidence for at least three autosomal dominant and eight autosomal recessive loci. The latter mostly involve mutations in genes encoding components of the dystrophin-associated complex; another form is caused by mutations in the gene for the muscle-specific protease calpain 3. Using a positional cloning approach, we have identified the gene for a form of limb-girdle muscular dystrophy that we previously mapped to chromosome 2p13 (LGMD2B). This gene shows no homology to any known mammalian gene, but its predicted product is related to the C. elegans spermatogenesis factor fer-1. We have identified two homozygous frameshift mutations in this gene, resulting in muscular dystrophy of either proximal or distal onset in nine families. The proposed name 'dysferlin' combines the role of the gene in producing muscular dystrophy with its C. elegans homology.
Collapse
Affiliation(s)
- R Bashir
- Department of Human Genetics, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998; 20:31-6. [PMID: 9731526 DOI: 10.1038/1682] [Citation(s) in RCA: 640] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Miyoshi myopathy (MM) is an adult onset, recessive inherited distal muscular dystrophy that we have mapped to human chromosome 2p13. We recently constructed a 3-Mb P1-derived artificial chromosome (PAC) contig spanning the MM candidate region. This clarified the order of genetic markers across the MM locus, provided five new polymorphic markers within it and narrowed the locus to approximately 2 Mb. Five skeletal muscle expressed sequence tags (ESTs) map in this region. We report that one of these is located in a novel, full-length 6.9-kb muscle cDNA, and we designate the corresponding protein 'dysferlin'. We describe nine mutations in the dysferlin gene in nine families; five are predicted to prevent dysferlin expression. Identical mutations in the dysferlin gene can produce more than one myopathy phenotype (MM, limb girdle dystrophy, distal myopathy with anterior tibial onset).
Collapse
Affiliation(s)
- J Liu
- Day Neuromuscular Research Laboratory, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|